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Abstract

Aircraft maintenance is a cornerstone of flight safety, operational continuity, 
and cost-effectiveness in the aviation industry. Traditional maintenance 
approaches, relying on scheduled inspections and corrective actions, face 
limitations in flexibility and efficiency due to their dependence on human 
intervention. In recent years, artificial intelligence has revolutionized the sector 
by shifting maintenance management from reactive methods to predictive and 
data-driven strategies. This transformation has enabled innovative solutions 
in digital twins, structural health monitoring, automated visual inspections, 
foreign object debris detection on runways, decision-support systems, and 
spare parts logistics optimization.

AI-powered predictive maintenance leverages sensor data and deep learning 
algorithms to estimate the remaining useful life of critical components, 
minimizing unplanned downtime and improving operational reliability. 
Digital twin technology creates virtual replicas of aircraft to enable real-time 
monitoring and proactive maintenance planning. Moreover, automated visual 
inspection systems reduce technicians’ workload while enhancing inspection 
accuracy and quality standards.

However, challenges such as data integrity, explainable artificial intelligence, 
regulatory compliance, and effective human–machine collaboration remain 
critical to ensuring the safe and sustainable implementation of these 
technologies.
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This chapter highlights how artificial intelligence contributes to improved 
safety, efficiency, cost reduction, and sustainability in aircraft maintenance. 
It also provides a forward-looking perspective on the development of 
human-centric, ethical, and regulation-compliant maintenance ecosystems, 
outlining how these emerging technologies will shape the future of aviation 
maintenance practices.

1. Introduction

The aviation sector has a structure that differs from other sectors due to 
its complex nature, which requires the highest level of safety standards and 
a high degree of technical knowledge and experience (Okine et al., 2025). 
Maintenance activities in the aviation sector are not only an operational 
necessity but also one of the fundamental parameters of safety, economic 
sustainability, and legal compliance. Considering the complex structure of the 
systems that make up aircraft, their exposure to environmental conditions, 
and their high frequency of use, a regular and effective maintenance process 
has become mandatory (Żyluk et al., 2025). The International Civil Aviation 
Organisation highlights maintenance activities as one of the most important 
parameters of flight safety. It has made it mandatory for maintenance activities 
to be supervised by national authorities (Shelton-Mur, 2025). Aircraft 
are integrated systems consisting of thousands of component parts. Any 
malfunction in any component of these integrated systems can cause large-
scale failures through a chain reaction and even lead to accidents that threaten 
flight safety. Planned maintenance activities performed on aircraft are critical 
not only for repairing faults but also for preventing them from occurring in 
the first place (Stolzer et al., 2023). In addition to safety and continuity, the 
economic aspect of maintenance is also very important for airline operators. 
Maintenance costs constitute a large portion of airline operators’ annual 
expenses (Kinnison & Siddiqui, 2013). For airline operators, this situation 
reveals that maintenance activities are not only technical but also a strategic 
planning element. Effective maintenance strategies reduce aircraft downtime, 
optimise spare parts management, and prevent indirect costs. The proper 
documentation of maintenance activities and full compliance with regulations 
are essential for maintaining aircraft operability and certification compliance. 
Any deficiencies or errors in maintenance records can lead not only to legal 
sanctions but also to a loss of corporate reputation (Stolzer et al., 2023). 
When evaluated in all these aspects, maintenance activities in aviation are 
a multidimensional element that protects human life, makes operations 
sustainable, and builds sectoral trust. In today’s aviation, the importance 
of maintenance continues to grow not only at the technical level but also 
at the managerial, economic, and strategic levels (Truong & Lee, 2025). 
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Maintenance activities also play a significant role in ensuring operational 
continuity for airlines (Kabashkin et al., 2025). The situation where an 
aircraft is grounded due to an unintended malfunction (AOG – Aircraft on 
Ground) causes both financial losses and programme disruptions for airlines. 
Preventing programme disruptions is directly related to the proactive and 
predictive implementation of maintenance. Particularly with the use of 
artificial intelligence-supported systems today, maintenance processes are 
now data-driven, time-sensitive, and capable of predicting systemic risks in 
advance (MoghadasNian, 2025).

The integration of artificial intelligence into maintenance processes in 
recent years has brought about a significant transformation in the sector. 
Artificial intelligence-based algorithms analyse sensor data, particularly in 
aircraft engines and critical components, to predict remaining useful life 
(RUL), thus enabling the prediction of failures before they occur (Khan 
et al., 2025). This contributes significantly to reducing both AOG events 
and unexpected downtime (Alomar & Nikita, 2025). The integration of 
artificial intelligence in aviation maintenance processes stands out as a 
versatile tool that not only provides safety and continuity but also enables 
cost optimisation, operational efficiency, and strategic decision support. In the 
coming years, it is anticipated that artificial intelligence will be more widely 
used in maintenance processes and become a standard practice in maintenance 
management (Moghadasnian and Rajol, 2025).

2. Traditional Maintenance Approaches and Challenges

Aircraft maintenance is one of the most critical activities in aviation, 
playing an indispensable and crucial role in terms of the aircraft’s safety, 
security, cost and continuity (Ram et al., 2019). These aircraft maintenance 
activities exhibit a multidisciplinary structure through the simultaneous 
use of different engineering, planning, and operational processes and are 
of great importance in all steps of aviation (Marais and Robichaud, 2017). 
Traditional maintenance has been implemented in the aviation sector for 
many years in accordance with standardised procedures and specific criteria 
set by authorities (SKYbrary, n.d.). Traditional maintenance approaches 
generally consist of two main elements: scheduled maintenance and post-
failure maintenance. While scheduled maintenance involves inspecting the 
aircraft at predetermined intervals or according to the aircraft’s flight hours, 
post-failure maintenance is applied after any problem or issue is detected 
in the aircraft (Tsang et al., 2020). These elements have provided a safety 
and security-centred structure for many years and have contributed to the 
establishment of standards in training and inspection processes for aircraft 
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personnel (Gonçalves et al., 2018). However, these traditional approaches 
and methods also bring different challenges. Considering the cost dimension 
of aircraft maintenance operations , replacing parts before the end of their 
service life causes significant financial loss (Marais and Robichaud, 2017). 
Such situations increase operating costs and reduce the efficiency of the parts 
used. On the other hand, traditional maintenance approaches are reactive, 
meaning intervention is only possible after a problem has occurred. This, in 
turn, leads to undesirable problems such as operational disruptions, flight 
delays and cancellations. These problems also give rise to undesirable negative 
situations such as reduced customer satisfaction (Tsang et al., 2020).   In 
addition, human factors in maintenance processes are another risk factor. The 
high probability of maintenance personnel making mistakes due to fatigue, 
time pressure, and stress directly affects the quality of maintenance (Latorella 
and Prabhu, 2000). Furthermore, the rigidity of traditional maintenance 
procedures has been observed to lack sufficient flexibility in unprepared and 
unexpected situations and to be unable to produce quick solutions (SKYbrary, 
n.d.). Traditional aircraft maintenance practices are mostly based on a 
manual inspection, visual control, and technician experience approach. This 
approach limits maintenance reliability due to its susceptibility to human error 
(Latorella and Prabhu, 2000). The adverse effects of human error on flight 
and ground safety have long been discussed in the literature, and it has been 
noted that measures taken to prevent errors, particularly in traditional aircraft 
maintenance systems, are insufficient (Gonçalves et al., 2018). Although 
traditional aircraft maintenance approaches have laid very solid foundations 
in terms of continuity and safety, they face significant challenges in terms 
of cost, flexibility, and the human factor in today’s advancing and changing 
aviation field. For this reason, the transition to a more innovative, data-driven, 
and proactive maintenance style in the aviation field is accelerating with each 
passing day (Ram et al., 2019).

3. The Role of Artificial Intelligence Technologies in Maintenance

The aviation industry is undergoing a significant and accelerating 
transformation by integrating artificial intelligence technologies into aircraft 
maintenance processes in its quest to enhance operational reliability, safety, 
and cost-effectiveness. At the heart of this transformation is the shift from 
traditional reactive or periodic maintenance to predictive maintenance, which 
anticipates potential failures and optimises maintenance actions (Kabashkin 
and Perekrestov, 2024). One of the fundamental roles of artificial intelligence 
is its ability to detect abnormal patterns and impending failures by analysing 
sensor data, flight records, and historical maintenance data, particularly 
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using machine learning and deep learning algorithms (Akbari et al., 2023). 
Real-time data collected by Internet of Things devices, combined with the 
analytical power of artificial intelligence, creates an ecosystem that monitors 
aircraft health and generates actionable insights (Kabashkin & Perekrestov, 
2024). This synergy enhances flight safety by predicting potential problems 
before they arise, significantly reducing the risk of unexpected failures. 
According to Patibandla’s comprehensive research, the implementation 
of sophisticated predictive analytics engines in major airlines has achieved 
fault prediction accuracy ranging from 87.6% to 93.2% in critical aircraft 
components, resulting in significant reductions in unplanned maintenance 
events (Patibandla, 2024). In this context, AI-powered systems enable the 
planning of part replacements at the most appropriate time by accurately 
predicting the remaining useful life (RUL) of components. For example, 
using complex hybrid data preparation and optimisation models, the number 
of aircraft equipment failures can be predicted with high success, minimising 
maintenance costs by preventing unnecessary part replacements while reducing 
flight delays and cancellations (Uyar, 2024). 

Artificial intelligence is not limited to failure prediction but optimises 
the entire range of Maintenance, Repair and Overhaul (MRO) operations. 
Reinforcement Learning (RL) algorithms are used to optimise decision-
making processes such as maintenance scheduling and resource allocation. 
These algorithms continuously improve their ability to predict the optimal 
times for part replacement, repair planning, and workforce allocation by 
learning from interactions with the environment and receiving feedback based 
on the results obtained (Patibandla, 2024). Furthermore, artificial intelligence 
plays a key role in reducing human error and increasing operational efficiency 
by analysing large amounts of structural and operational data, providing 
technicians with faster and more accurate decision support systems during 
maintenance and troubleshooting processes. The Genetic Algorithm 
(GA)-based optimisation method proposed in the work of Kabashkin and 
Perekrestov has been shown to offer significant reductions in total life cycle 
costs by providing a dynamic maintenance schedule that adapts to real-time 
component health data (Kabashkin and Perekrestov, 2024).

However, the integration of artificial intelligence into aviation maintenance 
also presents significant challenges. One of the most critical challenges is 
data quality and availability. Machine learning algorithms require high-
quality, accurate, and consistent data to be effective.  Compatibility issues 
with existing legacy systems and incomplete/inconsistent data can reduce 
the accuracy and reliability of e predictions (Patibandla, 2024). Another 
important problem is algorithmic transparency (explainable AI - XAI) and 
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model drift. In a high-risk field such as aviation, it must be understandable 
why AI predicts a failure or recommends an action. Model drift, defined as the 
model’s performance declining over time and producing incorrect predictions, 
poses a significant safety risk requiring continuous monitoring and updating 
(Patibandla, 2024). To overcome these challenges, a structured AI governance 
framework integrated with aviation safety standards and certification methods 
is required. In summary, artificial intelligence is moving aviation maintenance 
towards a safer, more economical and sustainable future, but fully realising 
this potential depends on the balanced management of technology, regulation 
and human expertise.

4. Predictive Maintenance

Thanks to advances in artificial intelligence, machine learning, and big 
data analytics, predictive maintenance systems have begun to play an effective 
role in the aviation industry’s aircraft maintenance systems. Unlike traditional 
maintenance strategies, predictive maintenance systems have the ability to 
predict potential failures by analysing real-time monitoring and historical data 
through corrective or planned preventive maintenance systems. By providing 
warnings before potential failures occur in aircraft, they offer the opportunity 
to reduce unplanned downtime, thereby enhancing operational efficiency 
and safety, which are of critical importance in aviation. (Khan et al., 2025).   
Modern aircraft are equipped with numerous sensors to enhance flight safety 
and security. These sensors have the capability to continuously generate 
large amounts of data for the protection of aircraft engine health, structural 
integrity, and improved avionics performance. Using this collected data, 
predictive maintenance systems can be implemented in aviation maintenance 
systems for the estimated material wear time of parts that will reach the end 
of their service life. In predictive maintenance systems, the collected data is 
analysed using artificial intelligence-based algorithms to detect anomalies. For 
example, deep learning techniques have successfully analysed turbofan engine 
data and demonstrated high accuracy in predicting engine failures (Kabashkin 
et al., 2025). The use of predictive maintenance systems in the aviation sector 
provides many advantages for the industry. Maintenance practices and the 
maintenance of aircraft by maintenance personnel are of great importance in 
aviation and play a significant role in aircraft accident incidents (Truong and 
Lee, 2025). Predictive maintenance systems make it possible to prevent such 
incidents using data provided by maintenance personnel. Furthermore, the 
International Civil Aviation Organisation (ICAO) has stated that predictive 
maintenance is one of the important parameters for improving flight safety 
and optimising global maintenance inspection programmes (Shelton-
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Mur, 2025). Despite these advantages, the implementation of predictive 
maintenance involves challenges such as data standardisation, integration 
between heterogeneous aircraft systems, and the legal approval requirements 
for artificial intelligence-based tools. However, increasing research and 
industrial adoption make it clear that predictive maintenance will become 
a fundamental part of aviation maintenance practices over the next decade 
(MoghadasNian, 2025).

5. Image Processing and Autonomous Inspections

In recent years, artificial intelligence and, in particular, deep learning 
architectures have been frequently used in three key areas of aircraft 
maintenance processes: condition monitoring and predictive maintenance 
(PHM/PdM), visual inspection automation, and runway foreign object 
debris (FOD) detection. This transformation directly contributes to the 
safety, cost and continuity objectives of maintenance by enabling the scalable 
processing of sensor data and images. AI-based PdM approaches enable pre-
failure intervention by estimating the remaining useful life (RUL) of engines, 
landing gear, and structural subsystems, thereby reducing delays and AOG 
risks (Fu et al., 2023). Complementing this, the quantitative validation of 
fault detection reliability in fibre optic, piezoelectric, and accelerometer-
based SHM architectures using probability-based methods (Probability-of-
Detection, POD) has become a critical requirement for regulatory compliance 
and certification (Galasso et al., 2024). Finally, in MRO fields, CNN-based 
perception and detection models are increasingly replacing human-eye-based 
visual inspection, reducing labour costs while increasing reproducibility 
(Yasuda et al., 2022; Ali et al., 2025). Predictive maintenance (PdM) and 
PHM. Post-2020 academic literature addresses PdM using data-driven (CNN, 
LSTM, Transformer), physics-based, and hybrid approaches, emphasising 
fleet-scale generalisation capability through multimodal sensor fusion 
(vibration, temperature, acoustic emission, fibre-optic strain) and online 
learning. The value proposition of PdM is quantified through prediction 
accuracy (RUL), false alarm rate, and maintenance window optimisation. 
However, explainable artificial intelligence ( , XAI), data access/labelling, and 
domain shift in distribution are reported as the main barriers to industrial-
scale deployment (Fu et al., 2023). In SHM, PoD-based reliability analysis 
and quantitative proof of detection performance under field conditions serve 
as a bridge in the certification journey of artificial intelligence models (Galasso 
et al., 2024). Automation of visual inspection. The use of artificial intelligence 
in the optical inspection of aircraft exterior surfaces (skin), rivet lines, paint/
coating, and composite repair areas provides pixel-level defect detection, 
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repeatability, and time savings compared to previous labour-intensive manual 
processes. Systematic reviews indicate that single-stage detectors such as the 
YOLO family and RT-DETR  excel in real-time performance in this field; 
however, data imbalance, rare defects, and imaging variables such as lighting/
reflection remain challenging (Yasuda et al., 2022). In the most recent field 
applications, it is stated that deep learning-based fault detection on images 
obtained by unmanned aerial vehicles achieves meaningful accuracy even 
under noise/emission variation and geometric diversity and can be integrated 
into maintenance cycles (Ali et al., 2025). Runway FOD detection directly 
threatens take-off and landing safety and requires rapid clearance. Post-2020 
studies show that lightweight and attention-mechanism-enhanced YOLO/
DETR derivatives, which focus on small object detection, deliver high mAP 
and FPS values despite background noise such as runway texture and oil stains. 
Using dual-mode cameras (visible and infrared) for day/night robustness and 
multi-scale feature fusion has yielded significant gains in detecting small FODs 
(Mo et al., 2024). A comprehensive recent review emphasises that integrating 
radar/LiDAR, optical, and AI-based methods into combined architectures 
adapted to airport conditions is the most promising approach for scalability 
and environmental robustness (Shan et al., 2025). Field experiments indicate 
that the probability of missing small-scale FODs increases with range in 
fixed camera-based systems; therefore, the need for perspective/distance 
compensation and multi-sensor fusion is evident (Noroozi et al., 2023).

In terms of open issues and research directions, airports are heterogeneous 
in terms of runway surface, climate, and traffic; this leads to shifts in data 
distribution and model degradation. Domain adaptation, data augmentation, 
and synthetic-real hybrid datasets are emerging as solutions (Shan et al., 
2025). Secondly, although rare, labelling costs, FODs, and critical defects 
are quite low, offering hope for combinations of weak/unsupervised learning 
and interactive/active learning (Yasuda et al., 2022). Thirdly, reliability and 
explainability: Supporting PdM/SHM decisions with PoD, confidence 
intervals, and explainable AI representations is a decisive factor in maintenance 
authority and regulatory processes (Galasso et al., 2024; Fu et al., 2023). 
Finally, for system-level integration, AI-based detection outputs must be 
linked online with CMMS/MRO planning tools and digital twins to maximise 
operational benefits (Fu et al., 2023).

In conclusion, post-2020 literature indicates that AI is a maturing 
technology in maintenance detection and FOD management, yet it still 
requires solutions in terms of data, reliability, and field integration. Infrared-
visible fusion, lightweight, and attention-focused detectors are the closest 
approaches to achieving a balance between high safety and economic efficiency 
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in maintenance decisions, while PoD-supported SHM and XAI-rich PdM 
approaches are the closest approaches to achieving a balance between high 
safety and economic efficiency in maintenance decisions (Mo et al., 2024; 
Noroozi et al., 2023; Galasso et al., 2024; Fu et al., 2023; Shan et al., 2025; 
Ali et al., 2025).

6. Decision Support and Maintenance Management Systems

Traditional maintenance planning is typically based on fixed schedules 
or post-failure intervention. This leads to unnecessary maintenance, wasted 
resources, or high cost periods due to unexpected failures. Machine learning 
algorithms and real-time data from IoT-enabled sensors are used to overcome 
these challenges through AI-supported planning and optimisation (Baryannis 
et al., 2019).

The most important application in this field is artificial intelligence-
supported predictive maintenance (PdM) systems. PdM analyses operational 
data such as vibration, temperature, pressure and current to predict with high 
accuracy when equipment or machines will fail (Lee et al., 2020). These 
systems learn from past failure records and normal operating patterns to detect 
anomalies and predict maintenance needs before a potential failure point. This 
allows maintenance activities to be scheduled at the most appropriate time 
when the equipment truly needs it, thereby reducing unplanned downtime 
and minimising unnecessary maintenance costs (Ding et al., 2021). On the 
optimisation side, artificial intelligence algorithms such as Decision Trees, 
Support Vector Machines, and Deep Learning models are highly effective 
methods for creating the most efficient maintenance programmes by 
simultaneously evaluating multiple constraints, including personnel, vehicles, 
budget, and equipment criticality. For example, Mixed-Integer Programming 
approaches, combined with large language models (LLMs), can create 
integrated maintenance schedules that combine both numerical optimisation 
results and strategic qualitative analyses ( ) (Wandabwa, 2025). This enables 
maintenance teams to focus their time on the most critical tasks, increasing 
the effective use of human resources and operational reliability (Deloitte, 
2024). Spare parts inventory management and logistics, an integral part of 
maintenance management, is another critical area where artificial intelligence 
applications provide significant benefits. The high variety of spare parts 
and challenges such as typically intermittent and irregular demand patterns 
(lumpy demand) render traditional statistical forecasting methods inadequate 
(Gopalakrishnan and Banerji, 2014; Boute and Udenio, 2021). 
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For spare parts demand forecasting, artificial neural networks and other 
machine learning models offer higher accuracy than traditional methods 
in predicting spare parts demand. These models enable more accurate 
predictions by analysing not only historical demand data but also a wide 
variety of predictors such as equipment age, usage intensity, maintenance 
history, and even environmental conditions (Młyńczak, 2008). This allows 
businesses to minimise inventory costs while also reducing the risk of stock-
outs. Reinforcement learning, in particular, is a highly successful method 
for optimising the cost balance between excess and shortage of stock by 
dynamically adjusting stock levels (Malyk, 2023). 

Logistics and Supply Chain Optimisation is utilised in maintenance logistics 
to ensure that parts and technicians arrive at the right place at the right time 
through the use of artificial intelligence. AI-supported route optimisation is 
used to calculate the most efficient transport and field service routes, taking 
into account multiple variables such as traffic conditions, vehicle capacity, 
delivery urgency, and prioritised maintenance plans (Talaat et al., 2025). 
This reduces transportation costs, shortens delivery times, and helps reduce 
the carbon footprint (Boute and Udenio, 2021). Furthermore, artificial 
intelligence supports risk management and sustainable supplier selection by 
increasing visibility throughout the supply chain (Baryannis et al., 2019).

The integration of AI into Decision Support and Maintenance Management 
Systems represents a highly beneficial transformation for industrial operations. 
AI-supported PdM systems significantly increase equipment reliability and 
operational efficiency by shifting planning and optimisation from traditional, 
reactive approaches to proactive, data-driven approaches. Furthermore, the 
use of artificial intelligence in spare parts and logistics management plays a 
critical role in reducing overall costs and environmental impacts for businesses 
by enabling more accurate demand forecasting, optimised inventory levels, 
and more efficient supply chain logistics. In the future, with the proliferation 
of AI-based CMMS, maintenance processes will become autonomous, and 
collaboration between humans and intelligent systems will become the new 
standard in the industry. However, issues such as data quality, ethics, and 
the transparency of AI models, as well as their successful implementation in 
systems, present important challenges that need to be addressed.

7. Safety, Regulations, and Human-Machine Collaboration

Like many technologies used in the aviation sector, artificial intelligence 
must also undergo international certification to become standardised. RTCA 
and EURA guidance documents incorporate artificial intelligence adaptations 
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into the DO-178C software standardisation (RTCA, 2024). The Artificial 
Intelligence Safety Assurance Roadmap published by the FAA is considered a 
crucial framework in terms of AI risk management, AI testing, and adapting 
aircraft airworthiness processes. Recent AI-based systems have enabled 
maintenance to be managed in a safer, more efficient manner, with more 
accurate predictions of outcomes (FAA, 2024). Furthermore, the integration 
of artificial intelligence into aviation necessitates broad consideration not 
only of technical aspects but also of regulations, ethical standards, and the 
human factor (EASA, 2024).   EASA has developed long-term strategies to 
ensure the safe use of artificial intelligence in aviation (EASA, 2023). The AI 
Roadmap 2.0 document adopts a human-centred approach and emphasises 
that artificial intelligence must be evaluated not only technically but also 
ethically and in terms of safety (EASA, 2023). Concept Paper Issue 01 and 
Issue 2 documents explain the applications of machine learning and how it 
will be implemented through regulations (EASA, 2021). On the US side, the 
FAA provides corporate guidance called STEP resources to support artificial 
intelligence. This resource shows how to ensure the compliance of artificial 
intelligence in the design, verification, testing, and operational phases of 
safety compliance (FAA, 2024).    The human factor is always central to 
aircraft maintenance. Research shows that maintenance technicians working 
with artificial intelligence systems have a very low probability of making 
mistakes (Kirwan et al., 2025). Reports published by NASA recommend 
the development of evidence-based safety reasoning in human-machine 
teamwork. In situations where humans and machines work together, the 
importance of responsibility distribution and who the decision-maker is 
is emphasised. Furthermore, it is thought that AI systems will reduce the 
workload of technicians but cannot assume responsibility alone (Graydon 
et al., 2025). It should never be forgotten that  integrating AI into aircraft 
maintenance carries not only technical but also ethical responsibilities.  The 
Ethics Guidelines for Trustworthy AI defined by the European Commission 
outline fundamental requirements such as fairness, accountability, and 
transparency (European Commission High-Level Expert Group on AI, 2019). 
The greatest contribution of artificial intelligence lies in its positive potential 
within aircraft maintenance processes (EASA, 2024). When considering its 
efficiency in terms of safety, regulation, and human-machine collaboration, 
its greatest contribution is to increase flight and ground safety as well as 
maintenance efficiency (Demir et al., 2024).  However, the successful use 
of artificial intelligence technology is only possible with transparency, ethics, 
compliance, risk assessment, and a detailed examination of the human factor 
(ISO, 2023). It is predicted that in future processes, safer, more transparent, 
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and human-centred approaches will lead the way in artificial intelligence 
(INCOSE, 2025).

8. Current Applications and Future Perspectives

Artificial intelligence has ushered in an innovative new era in aircraft 
maintenance in recent years (Bisanti et al., 2023). Extensive and widespread 
applications have begun in the aviation sector in key technological areas such 
as digital twins, explainable artificial intelligence, predictive maintenance, and 
data analysis (Chia et al., 2024).

Digital twin technology enables the maintenance process to be monitored 
in real time and simultaneously by creating a virtual copy of the aircraft 
(Bisanti et al., 2023). Using this method, maintenance personnel, engineers, 
and technicians can detect and diagnose signs of wear or failure before they 
occur and plan maintenance in advance. Digital twins are predicted to play a 
critical role in aircraft fuselage and structural integrity analyses in the coming 
years (Chia et al., 2024). Looking ahead to future perspectives, digital twin-
based ecosystems are expected to be integrated into maintenance and also 
used in education (Kabashkin et al., 2025). Explainable artificial intelligence, 
on the other hand, is anticipated to be a critical requirement for regulations, 
as artificial intelligence covering maintenance processes must be explainable 
(Dereci et al., 2024). Many artificial intelligence models are being developed 
to increase the transparency of these artificial intelligence models. In data-
driven transformation, the PAM 2023 conference suggests that the future of 
maintenance in aviation will be entirely data-driven (Aviation Business News, 
2023).   Another area of application for artificial intelligence is predictive and 
proactive maintenance. This type of maintenance has the ability to predict 
the likelihood of failures in advance using information from real-time analysis 
of aircraft components, replacing traditional maintenance (Stanton et al., 
2023). Predictive and proactive maintenance significantly reduces costs 
while increasing operational maintenance and safety. According to research 
conducted by NASA, regulatory approvals and cultural adaptation are 
considered to be the limiting factors for predictive maintenance (Teubert et 
al., 2023). It is stated that Airbus has made considerable efforts to promote the 
widespread adoption of Skywise Predictive Maintenance applications within 
some of its aircraft type programmes, and that the world is likely to move in 
this direction, with standardisation across all aircraft models considered highly 
probable (Airbus, 2024). When considering regulations and standards, the 
Artificial Intelligence Roadmap 2.0 document published by EASA emphasises 
the adoption of a human-centred approach to AI integration in aviation 
(EASA, 2023). In addition, EASA has initiated certification processes with 
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some guidance programmes (EASA, 2024). Similarly, the FAA outlines the 
framework for safety verification in its Assurance Roadmap report (FAA, 
2024). RTCA and SAE International provide standards programmes 
supporting integration through AI/ML integration (RTCA, 2023).

9. Conclusion

This highlights the contributions that the transition from traditional 
methods to AI-supported approaches in aircraft maintenance processes 
brings to the aviation sector and its future potential. Artificial intelligence-
based systems have transformed maintenance activities from a mere technical 
necessity into a strategic decision-support element. Predictive maintenance 
systems can detect faults before they occur by analysing sensor data, thereby 
significantly reducing unplanned downtime and operational disruptions. This 
approach both enhances flight safety and contributes to lower maintenance 
costs. Digital twin technology enables engineers and technicians to make 
more effective decisions by providing the ability to monitor maintenance 
processes in real time and simultaneously. AI-supported applications, such 
as the automation of visual inspections and runway foreign object detection, 
reduce human error while accelerating maintenance cycles and raising quality 
standards. Decision support and inventory management systems ensure more 
efficient use of resources and more sustainable operations. However, the 
integration of artificial intelligence technologies into maintenance processes 
still has areas that need to be developed, such as data reliability, ethical 
principles, regulatory compliance, and human-machine collaboration. At 
this point, it is crucial that technological advances are addressed in a manner 
consistent with regulatory frameworks and the human factor.

In conclusion, the contributions of artificial intelligence to aircraft 
maintenance offer significant opportunities to the aviation sector in terms of 
safety, cost-effectiveness, sustainability, and environmental responsibility. With 
the more widespread use of these technologies in the future, it is anticipated 
that maintenance processes will become safer, more efficient, and more 
human-centred.
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