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Abstract

Aircraft maintenance is a cornerstone of flight safety, operational continuity,
and cost-effectiveness in the aviation industry. Traditional maintenance
approaches, relying on scheduled inspections and corrective actions, face
limitations in flexibility and efficiency due to their dependence on human
intervention. In recent years, artificial intelligence has revolutionized the sector
by shifting maintenance management from reactive methods to predictive and
data-driven strategies. This transformation has enabled innovative solutions
in digital twins, structural health monitoring, automated visual inspections,
foreign object debris detection on runways, decision-support systems, and
spare parts logistics optimization.

Al-powered predictive maintenance leverages sensor data and deep learning
algorithms to estimate the remaining useful life of critical components,
minimizing unplanned downtime and improving operational reliability.
Digital twin technology creates virtual replicas of aircraft to enable real-time
monitoring and proactive maintenance planning. Moreover, automated visual
inspection systems reduce technicians’ workload while enhancing inspection
accuracy and quality standards.

However, challenges such as data integrity, explainable artificial intelligence,
regulatory compliance, and effective human-machine collaboration remain
critical to ensuring the safe and sustainable implementation of these
technologies.
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This chapter highlights how artificial intelligence contributes to improved
safety, efficiency; cost reduction, and sustainability in aircraft maintenance.
It also provides a forward-looking perspective on the development of
human-centric, ethical, and regulation-compliant maintenance ecosystems,
outlining how these emerging technologies will shape the future of aviation
maintenance practices.

1. Introduction

The aviation sector has a structure that differs from other sectors due to
its complex nature, which requires the highest level of safety standards and
a high degree of technical knowledge and experience (Okine et al., 2025).
Maintenance activities in the aviation sector are not only an operational
necessity but also one of the fundamental parameters of safety, economic
sustainability, and legal compliance. Considering the complex structure of the
systems that make up aircraft, their exposure to environmental conditions,
and their high frequency of use, a regular and effective maintenance process
has become mandatory (Zyluk et al., 2025). The International Civil Aviation
Organisation highlights maintenance activities as one of the most important
parameters of flight safety. It has made it mandatory for maintenance activities
to be supervised by national authorities (Shelton-Mur, 2025). Aircraft
are integrated systems consisting of thousands of component parts. Any
malfunction in any component of these integrated systems can cause large-
scale failures through a chain reaction and even lead to accidents that threaten
flight safety. Planned maintenance activities performed on aircraft are critical
not only for repairing faults but also for preventing them from occurring in
the first place (Stolzer et al., 2023). In addition to safety and continuity, the
economic aspect of maintenance is also very important for airline operators.
Maintenance costs constitute a large portion of airline operators’ annual
expenses (Kinnison & Siddiqui, 2013). For airline operators, this situation
reveals that maintenance activities are not only technical but also a strategic
planning element. Effective maintenance strategies reduce aircraft downtime,
optimise spare parts management, and prevent indirect costs. The proper
documentation of maintenance activities and full compliance with regulations
are essential for maintaining aircraft operability and certification compliance.
Any deficiencies or errors in maintenance records can lead not only to legal
sanctions but also to a loss of corporate reputation (Stolzer et al., 2023).
When evaluated in all these aspects, maintenance activities in aviation are
a multidimensional element that protects human life, makes operations
sustainable, and builds sectoral trust. In today’s aviation, the importance
of maintenance continues to grow not only at the technical level but also
at the managerial, economic, and strategic levels (Truong & Lee, 2025).
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Maintenance activities also play a significant role in ensuring operational
continuity for airlines (Kabashkin et al., 2025). The situation where an
aircraft is grounded due to an unintended malfunction (AOG - Aircraft on
Ground) causes both financial losses and programme disruptions for airlines.
Preventing programme disruptions is directly related to the proactive and
predictive implementation of maintenance. Particularly with the use of
artificial intelligence-supported systems today, maintenance processes are
now data-driven, time-sensitive, and capable of predicting systemic risks in
advance (MoghadasNian, 2025).

The integration of artificial intelligence into maintenance processes in
recent years has brought about a significant transformation in the sector.
Artificial intelligence-based algorithms analyse sensor data, particularly in
aircraft engines and critical components, to predict remaining useful life
(RUL), thus enabling the prediction of failures before they occur (Khan
et al., 2025). This contributes significantly to reducing both AOG events
and unexpected downtime (Alomar & Nikita, 2025). The integration of
artificial intelligence in aviation maintenance processes stands out as a
versatile tool that not only provides safety and continuity but also enables
cost optimisation, operational efficiency, and strategic decision support. In the
coming years, it is anticipated that artificial intelligence will be more widely
used in maintenance processes and become a standard practice in maintenance
management (Moghadasnian and Rajol, 2025).

2. Traditional Maintenance Approaches and Challenges

Aircraft maintenance is one of the most critical activities in aviation,
playing an indispensable and crucial role in terms of the aircraft’s safety,
security, cost and continuity (Ram et al., 2019). These aircraft maintenance
activities exhibit a multidisciplinary structure through the simultaneous
use of different engineering, planning, and operational processes and are
of great importance in all steps of aviation (Marais and Robichaud, 2017).
Traditional maintenance has been implemented in the aviation sector for
many years in accordance with standardised procedures and specific criteria
set by authorities (SKYbrary, n.d.). Traditional maintenance approaches
generally consist of two main elements: scheduled maintenance and post-
failure maintenance. While scheduled maintenance involves inspecting the
aircraft at predetermined intervals or according to the aircraft’s flight hours,
post-failure maintenance is applied after any problem or issue is detected
in the aircraft (Tsang et al., 2020). These elements have provided a safety
and security-centred structure for many years and have contributed to the
establishment of standards in training and inspection processes for aircraft
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personnel (Gongalves et al., 2018). However, these traditional approaches
and methods also bring different challenges. Considering the cost dimension
of aircraft maintenance operations , replacing parts before the end of their
service life causes significant financial loss (Marais and Robichaud, 2017).
Such situations increase operating costs and reduce the efficiency of the parts
used. On the other hand, traditional maintenance approaches are reactive,
meaning intervention is only possible after a problem has occurred. This, in
turn, leads to undesirable problems such as operational disruptions, flight
delays and cancellations. These problems also give rise to undesirable negative
situations such as reduced customer satisfaction (Tsang et al., 2020). In
addition, human factors in maintenance processes are another risk factor. The
high probability of maintenance personnel making mistakes due to fatigue,
time pressure, and stress directly affects the quality of maintenance (Latorella
and Prabhu, 2000). Furthermore, the rigidity of traditional maintenance
procedures has been observed to lack sufficient flexibility in unprepared and
unexpected situations and to be unable to produce quick solutions (SKYbrary,
n.d.). Traditional aircraft maintenance practices are mostly based on a
manual inspection, visual control, and technician experience approach. This
approach limits maintenance reliability due to its susceptibility to human error
(Latorella and Prabhu, 2000). The adverse effects of human error on flight
and ground safety have long been discussed in the literature, and it has been
noted that measures taken to prevent errors, particularly in traditional aircraft
maintenance systems, are insufficient (Gongalves et al., 2018). Although
traditional aircraft maintenance approaches have laid very solid foundations
in terms of continuity and safety, they face significant challenges in terms
of cost, flexibility, and the human factor in today’s advancing and changing
aviation field. For this reason, the transition to a more innovative, data-driven,
and proactive maintenance style in the aviation field is accelerating with each

passing day (Ram et al., 2019).

3. The Role of Artificial Intelligence Technologies in Maintenance

The aviation industry is undergoing a significant and accelerating
transformation by integrating artificial intelligence technologies into aircraft
maintenance processes in its quest to enhance operational reliability, safety,
and cost-eftectiveness. At the heart of this transformation is the shift from
traditional reactive or periodic maintenance to predictive maintenance, which
anticipates potential failures and optimises maintenance actions (Kabashkin
and Perekrestov, 2024 ). One of the fundamental roles of artificial intelligence
is its ability to detect abnormal patterns and impending failures by analysing
sensor data, flight records, and historical maintenance data, particularly
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using machine learning and deep learning algorithms (Akbari et al., 2023).
Real-time data collected by Internet of Things devices, combined with the
analytical power of artificial intelligence, creates an ecosystem that monitors
aircraft health and generates actionable insights (Kabashkin & Perekrestov,
2024). This synergy enhances flight safety by predicting potential problems
before they arise, significantly reducing the risk of unexpected failures.
According to Patibandla’s comprehensive research, the implementation
of sophisticated predictive analytics engines in major airlines has achieved
fault prediction accuracy ranging from 87.6% to 93.2% in critical aircraft
components, resulting in significant reductions in unplanned maintenance
events (Patibandla, 2024). In this context, Al-powered systems enable the
planning of part replacements at the most appropriate time by accurately
predicting the remaining useful life (RUL) of components. For example,
using complex hybrid data preparation and optimisation models, the number
of aircraft equipment failures can be predicted with high success, minimising
maintenance costs by preventing unnecessary part replacements while reducing
flight delays and cancellations (Uyar, 2024).

Artificial intelligence is not limited to failure prediction but optimises
the entire range of Maintenance, Repair and Overhaul (MRO) operations.
Reinforcement Learning (RL) algorithms are used to optimise decision-
making processes such as maintenance scheduling and resource allocation.
These algorithms continuously improve their ability to predict the optimal
times for part replacement, repair planning, and workforce allocation by
learning from interactions with the environment and receiving feedback based
on the results obtained (Patibandla, 2024). Furthermore, artificial intelligence
plays a key role in reducing human error and increasing operational efficiency
by analysing large amounts of structural and operational data, providing
technicians with faster and more accurate decision support systems during
maintenance and troubleshooting processes. The Genetic Algorithm
(GA)-based optimisation method proposed in the work of Kabashkin and
Perekrestov has been shown to offer significant reductions in total life cycle
costs by providing a dynamic maintenance schedule that adapts to real-time
component health data (Kabashkin and Perekrestov, 2024).

However, the integration of artificial intelligence into aviation maintenance
also presents significant challenges. One of the most critical challenges is
data quality and availability. Machine learning algorithms require high-
quality;, accurate, and consistent data to be effective. Compatibility issues
with existing legacy systems and incomplete/inconsistent data can reduce
the accuracy and reliability of e predictions (Patibandla, 2024). Another
important problem is algorithmic transparency (explainable Al - XAI) and
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model drift. In a high-risk field such as aviation, it must be understandable
why Al predicts a failure or reccommends an action. Model drift, defined as the
model’s performance declining over time and producing incorrect predictions,
poses a significant safety risk requiring continuous monitoring and updating
(Patibandla, 2024). To overcome these challenges, a structured Al governance
framework integrated with aviation safety standards and certification methods
is required. In summary; artificial intelligence is moving aviation maintenance
towards a safer, more economical and sustainable future, but fully realising
this potential depends on the balanced management of technology, regulation
and human expertise.

4. Predictive Maintenance

Thanks to advances in artificial intelligence, machine learning, and big
data analytics, predictive maintenance systems have begun to play an effective
role in the aviation industry’s aircraft maintenance systems. Unlike traditional
maintenance strategies, predictive maintenance systems have the ability to
predict potential failures by analysing real-time monitoring and historical data
through corrective or planned preventive maintenance systems. By providing
warnings before potential failures occur in aircraft, they offer the opportunity
to reduce unplanned downtime, thereby enhancing operational efficiency
and safety, which are of critical importance in aviation. (Khan et al., 2025).
Modern aircraft are equipped with numerous sensors to enhance flight safety
and security. These sensors have the capability to continuously generate
large amounts of data for the protection of aircraft engine health, structural
integrity, and improved avionics performance. Using this collected data,
predictive maintenance systems can be implemented in aviation maintenance
systems for the estimated material wear time of parts that will reach the end
of their service life. In predictive maintenance systems, the collected data is
analysed using artificial intelligence-based algorithms to detect anomalies. For
example, deep learning techniques have successfully analysed turbofan engine
data and demonstrated high accuracy in predicting engine failures (Kabashkin
etal., 2025). The use of predictive maintenance systems in the aviation sector
provides many advantages for the industry. Maintenance practices and the
maintenance of aircraft by maintenance personnel are of great importance in
aviation and play a significant role in aircraft accident incidents (Truong and
Lee, 2025). Predictive maintenance systems make it possible to prevent such
incidents using data provided by maintenance personnel. Furthermore, the
International Civil Aviation Organisation (ICAO) has stated that predictive
maintenance is one of the important parameters for improving flight safety
and optimising global maintenance inspection programmes (Shelton-
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Mur, 2025). Despite these advantages, the implementation of predictive
maintenance involves challenges such as data standardisation, integration
between heterogeneous aircraft systems, and the legal approval requirements
for artificial intelligence-based tools. However, increasing research and
industrial adoption make it clear that predictive maintenance will become
a fundamental part of aviation maintenance practices over the next decade

(MoghadasNian, 2025).

5. Image Processing and Autonomous Inspections

In recent years, artificial intelligence and, in particular, deep learning
architectures have been frequently used in three key areas of aircraft
maintenance processes: condition monitoring and predictive maintenance
(PHM/PdM), visual inspection automation, and runway foreign object
debris (FOD) detection. This transformation directly contributes to the
safety, cost and continuity objectives of maintenance by enabling the scalable
processing of sensor data and images. Al-based PAM approaches enable pre-
failure intervention by estimating the remaining useful life (RUL) of engines,
landing gear, and structural subsystems, thereby reducing delays and AOG
risks (Fu et al., 2023). Complementing this, the quantitative validation of
fault detection reliability in fibre optic, piezoelectric, and accelerometer-
based SHM architectures using probability-based methods (Probability-of-
Detection, POD) has become a critical requirement for regulatory compliance
and certification (Galasso et al., 2024). Finally, in MRO fields, CNN-based
perception and detection models are increasingly replacing human-eye-based
visual inspection, reducing labour costs while increasing reproducibility
(Yasuda et al., 2022; Ali et al., 2025). Predictive maintenance (PdM) and
PHM. Post-2020 academic literature addresses PAM using data-driven (CNN,
LSTM, Transformer), physics-based, and hybrid approaches, emphasising
fleet-scale generalisation capability through multimodal sensor fusion
(vibration, temperature, acoustic emission, fibre-optic strain) and online
learning. The value proposition of PdM is quantified through prediction
accuracy (RUL), false alarm rate, and maintenance window optimisation.
However, explainable artificial intelligence ( , XAI), data access/labelling, and
domain shift in distribution are reported as the main barriers to industrial-
scale deployment (Fu et al., 2023). In SHM, PoD-based reliability analysis
and quantitative proof of detection performance under field conditions serve
as a bridge in the certification journey of artificial intelligence models (Galasso
etal., 2024). Automation of visual inspection. The use of artificial intelligence
in the optical inspection of aircraft exterior surfaces (skin), rivet lines, paint/
coating, and composite repair areas provides pixel-level defect detection,
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repeatability, and time savings compared to previous labour-intensive manual
processes. Systematic reviews indicate that single-stage detectors such as the
YOLO family and RI-DETR  excel in real-time performance in this field;
however, data imbalance, rare defects, and imaging variables such as lighting/
reflection remain challenging (Yasuda et al., 2022). In the most recent field
applications, it is stated that deep learning-based fault detection on images
obtained by unmanned aerial vehicles achieves meaningful accuracy even
under noise/emission variation and geometric diversity and can be integrated
into maintenance cycles (Ali et al., 2025). Runway FOD detection directly
threatens take-oft and landing safety and requires rapid clearance. Post-2020
studies show that lightweight and attention-mechanism-enhanced YOLO/
DETR derivatives, which focus on small object detection, deliver high mAP
and FPS values despite background noise such as runway texture and oil stains.
Using dual-mode cameras (visible and infrared) for day/night robustness and
multi-scale feature fusion has yielded significant gains in detecting small FODs
(Mo etal., 2024). A comprehensive recent review emphasises that integrating
radar/LiDAR, optical, and Al-based methods into combined architectures
adapted to airport conditions is the most promising approach for scalability
and environmental robustness (Shan et al., 2025). Field experiments indicate
that the probability of missing small-scale FODs increases with range in
fixed camera-based systems; therefore, the need for perspective/distance
compensation and multi-sensor fusion is evident (Noroozi et al., 2023).

In terms of open issues and research directions, airports are heterogeneous
in terms of runway surface, climate, and traffic; this leads to shifts in data
distribution and model degradation. Domain adaptation, data augmentation,
and synthetic-real hybrid datasets are emerging as solutions (Shan et al.,
2025). Secondly, although rare, labelling costs, FODs, and critical defects
are quite low, offering hope for combinations of weak/unsupervised learning
and interactive/active learning (Yasuda et al., 2022). Thirdly, reliability and
explainability: Supporting PAM/SHM decisions with PoD, confidence
intervals, and explainable AI representations is a decisive factor in maintenance
authority and regulatory processes (Galasso et al., 2024; Fu et al., 2023).
Finally, for system-level integration, Al-based detection outputs must be
linked online with CMMS/MRO planning tools and digital twins to maximise
operational benefits (Fu et al., 2023).

In conclusion, post-2020 literature indicates that Al is a maturing
technology in maintenance detection and FOD management, yet it still
requires solutions in terms of data, reliability, and field integration. Infrared-
visible fusion, lightweight, and attention-focused detectors are the closest
approaches to achieving a balance between high safety and economic efficiency
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in maintenance decisions, while PoD-supported SHM and XAI-rich PdAM
approaches are the closest approaches to achieving a balance between high
safety and economic efficiency in maintenance decisions (Mo et al., 2024;
Noroozi et al., 2023; Galasso et al., 2024; Fu et al., 2023; Shan et al., 2025;
Ali et al., 2025).

6. Decision Support and Maintenance Management Systems

Traditional maintenance planning is typically based on fixed schedules
or post-failure intervention. This leads to unnecessary maintenance, wasted
resources, or high cost periods due to unexpected failures. Machine learning
algorithms and real-time data from IoT-enabled sensors are used to overcome
these challenges through Al-supported planning and optimisation (Baryannis
etal.,, 2019).

The most important application in this field is artificial intelligence-
supported predictive maintenance (PdM) systems. PAM analyses operational
data such as vibration, temperature, pressure and current to predict with high
accuracy when equipment or machines will fail (Lee et al., 2020). These
systems learn from past failure records and normal operating patterns to detect
anomalies and predict maintenance needs before a potential failure point. This
allows maintenance activities to be scheduled at the most appropriate time
when the equipment truly needs it, thereby reducing unplanned downtime
and minimising unnecessary maintenance costs (Ding et al., 2021). On the
optimisation side, artificial intelligence algorithms such as Decision Trees,
Support Vector Machines, and Deep Learning models are highly effective
methods for creating the most efficient maintenance programmes by
simultaneously evaluating multiple constraints, including personnel, vehicles,
budget, and equipment criticality. For example, Mixed-Integer Programming
approaches, combined with large language models (LLMs), can create
integrated maintenance schedules that combine both numerical optimisation
results and strategic qualitative analyses ( ) (Wandabwa, 2025). This enables
maintenance teams to focus their time on the most critical tasks, increasing
the effective use of human resources and operational reliability (Deloitte,
2024). Spare parts inventory management and logistics, an integral part of
maintenance management, is another critical area where artificial intelligence
applications provide significant benefits. The high variety of spare parts
and challenges such as typically intermittent and irregular demand patterns
(lumpy demand) render traditional statistical forecasting methods inadequate
(Gopalakrishnan and Banerji, 2014; Boute and Udenio, 2021).
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For spare parts demand forecasting, artificial neural networks and other
machine learning models offer higher accuracy than traditional methods
in predicting spare parts demand. These models enable more accurate
predictions by analysing not only historical demand data but also a wide
variety of predictors such as equipment age, usage intensity, maintenance
history, and even environmental conditions (Mtynczak, 2008). This allows
businesses to minimise inventory costs while also reducing the risk of stock-
outs. Reinforcement learning, in particular, is a highly successful method
tor optimising the cost balance between excess and shortage of stock by

dynamically adjusting stock levels (Malyk, 2023).

Logistics and Supply Chain Optimisation is utilised in maintenance logistics
to ensure that parts and technicians arrive at the right place at the right time
through the use of artificial intelligence. Al-supported route optimisation is
used to calculate the most efficient transport and field service routes, taking
into account multiple variables such as traftic conditions, vehicle capacity,
delivery urgency, and prioritised maintenance plans (Talaat et al., 2025).
This reduces transportation costs, shortens delivery times, and helps reduce
the carbon footprint (Boute and Udenio, 2021). Furthermore, artificial
intelligence supports risk management and sustainable supplier selection by
increasing visibility throughout the supply chain (Baryannis et al., 2019).

The integration of Al into Decision Support and Maintenance Management
Systems represents a highly beneficial transformation for industrial operations.
Al-supported PdM systems significantly increase equipment reliability and
operational efficiency by shifting planning and optimisation from traditional,
reactive approaches to proactive, data-driven approaches. Furthermore, the
use of artificial intelligence in spare parts and logistics management plays a
critical role in reducing overall costs and environmental impacts for businesses
by enabling more accurate demand forecasting, optimised inventory levels,
and more efficient supply chain logistics. In the future, with the proliferation
of Al-based CMMS, maintenance processes will become autonomous, and
collaboration between humans and intelligent systems will become the new
standard in the industry. However, issues such as data quality, ethics, and
the transparency of AI models, as well as their successful implementation in
systems, present important challenges that need to be addressed.

7. Safety, Regulations, and Human-Machine Collaboration

Like many technologies used in the aviation sector, artificial intelligence
must also undergo international certification to become standardised. RTCA
and EURA guidance documents incorporate artificial intelligence adaptations
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into the DO-178C software standardisation (RTCA, 2024). The Artificial
Intelligence Safety Assurance Roadmap published by the FAA is considered a
crucial framework in terms of Al risk management, Al testing, and adapting
aircraft airworthiness processes. Recent Al-based systems have enabled
maintenance to be managed in a safer, more efficient manner, with more
accurate predictions of outcomes (FAA, 2024). Furthermore, the integration
of artificial intelligence into aviation necessitates broad consideration not
only of technical aspects but also of regulations, ethical standards, and the
human factor (EASA, 2024). EASA has developed long-term strategies to
ensure the safe use of artificial intelligence in aviation (EASA, 2023). The AI
Roadmap 2.0 document adopts a human-centred approach and emphasises
that artificial intelligence must be evaluated not only technically but also
ethically and in terms of safety (EASA, 2023). Concept Paper Issue 01 and
Issue 2 documents explain the applications of machine learning and how it
will be implemented through regulations (EASA, 2021). On the US side, the
FAA provides corporate guidance called STEP resources to support artificial
intelligence. This resource shows how to ensure the compliance of artificial
intelligence in the design, verification, testing, and operational phases of
safety compliance (FAA, 2024). The human factor is always central to
aircraft maintenance. Research shows that maintenance technicians working
with artificial intelligence systems have a very low probability of making
mistakes (Kirwan et al., 2025). Reports published by NASA recommend
the development of evidence-based safety reasoning in human-machine
teamwork. In situations where humans and machines work together, the
importance of responsibility distribution and who the decision-maker is
is emphasised. Furthermore, it is thought that Al systems will reduce the
workload of technicians but cannot assume responsibility alone (Graydon
et al., 2025). It should never be forgotten that integrating Al into aircraft
maintenance carries not only technical but also ethical responsibilities. The
Ethics Guidelines for Trustworthy Al defined by the European Commission
outline fundamental requirements such as fairness, accountability, and
transparency (European Commission High-Level Expert Group on Al 2019).
The greatest contribution of artificial intelligence lies in its positive potential
within aircraft maintenance processes (EASA, 2024). When considering its
efficiency in terms of safety, regulation, and human-machine collaboration,
its greatest contribution is to increase flight and ground safety as well as
maintenance efficiency (Demir et al., 2024). However, the successtul use
of artificial intelligence technology is only possible with transparency, ethics,
compliance, risk assessment, and a detailed examination of the human factor
(ISO, 2023). It is predicted that in future processes, safer, more transparent,
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and human-centred approaches will lead the way in artificial intelligence
(INCOSE, 2025).

8. Current Applications and Future Perspectives

Artificial intelligence has ushered in an innovative new era in aircraft
maintenance in recent years (Bisanti et al., 2023). Extensive and widespread
applications have begun in the aviation sector in key technological areas such
as digital twins, explainable artificial intelligence, predictive maintenance, and
data analysis (Chia et al., 2024).

Digital twin technology enables the maintenance process to be monitored
in real time and simultaneously by creating a virtual copy of the aircraft
(Bisanti et al., 2023). Using this method, maintenance personnel, engineers,
and technicians can detect and diagnose signs of wear or failure before they
occur and plan maintenance in advance. Digital twins are predicted to play a
critical role in aircraft fuselage and structural integrity analyses in the coming
years (Chia et al., 2024). Looking ahead to future perspectives, digital twin-
based ecosystems are expected to be integrated into maintenance and also
used in education (Kabashkin et al., 2025). Explainable artificial intelligence,
on the other hand, is anticipated to be a critical requirement for regulations,
as artificial intelligence covering maintenance processes must be explainable
(Dereci et al., 2024). Many artificial intelligence models are being developed
to increase the transparency of these artificial intelligence models. In data-
driven transformation, the PAM 2023 conference suggests that the future of
maintenance in aviation will be entirely data-driven (Aviation Business News,
2023). Another area of application for artificial intelligence is predictive and
proactive maintenance. This type of maintenance has the ability to predict
the likelihood of failures in advance using information from real-time analysis
of aircraft components, replacing traditional maintenance (Stanton et al.,
2023). Predictive and proactive maintenance significantly reduces costs
while increasing operational maintenance and safety. According to research
conducted by NASA, regulatory approvals and cultural adaptation are
considered to be the limiting factors for predictive maintenance (Teubert et
al., 2023). Itis stated that Airbus has made considerable efforts to promote the
widespread adoption of Skywise Predictive Maintenance applications within
some of its aircraft type programmes, and that the world is likely to move in
this direction, with standardisation across all aircraft models considered highly
probable (Airbus, 2024). When considering regulations and standards, the
Artificial Intelligence Roadmap 2.0 document published by EASA emphasises
the adoption of a human-centred approach to Al integration in aviation
(EASA, 2023). In addition, EASA has initiated certification processes with
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some guidance programmes (EASA, 2024). Similarly, the FAA outlines the
framework for safety verification in its Assurance Roadmap report (FAA,
2024). RTCA and SAE International provide standards programmes
supporting integration through AI/ML integration (RTCA, 2023).

9. Conclusion

This highlights the contributions that the transition from traditional
methods to Al-supported approaches in aircraft maintenance processes
brings to the aviation sector and its future potential. Artificial intelligence-
based systems have transformed maintenance activities from a mere technical
necessity into a strategic decision-support element. Predictive maintenance
systems can detect faults before they occur by analysing sensor data, thereby
significantly reducing unplanned downtime and operational disruptions. This
approach both enhances flight safety and contributes to lower maintenance
costs. Digital twin technology enables engineers and technicians to make
more effective decisions by providing the ability to monitor maintenance
processes in real time and simultaneously. Al-supported applications, such
as the automation of visual inspections and runway foreign object detection,
reduce human error while accelerating maintenance cycles and raising quality
standards. Decision support and inventory management systems ensure more
efficient use of resources and more sustainable operations. However, the
integration of artificial intelligence technologies into maintenance processes
still has areas that need to be developed, such as data reliability, ethical
principles, regulatory compliance, and human-machine collaboration. At
this point, it is crucial that technological advances are addressed in a manner
consistent with regulatory frameworks and the human factor.

In conclusion, the contributions of artificial intelligence to aircraft
maintenance offer significant opportunities to the aviation sector in terms of
safety, cost-effectiveness, sustainability, and environmental responsibility. With
the more widespread use of these technologies in the future, it is anticipated
that maintenance processes will become safer, more efficient, and more
human-centred.
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