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Chapter 2

Machine Learning-Driven Market Regime 
Analysis in Equity Markets: A Gaussian Hidden 
Markov Model Approach 

Cemal Öztürk1

Abstract

This research develops a data-based system which reveals concealed market 
patterns through its identification of separate market regimes that produce 
unique return, volatility, and risk characteristics. The current financial models 
fail to recognize the intricate relationships which exist between different 
asset classes, including stocks and bonds, interest rates, commodities, and 
economic data indicators. The research employs a multivariate Hidden 
Markov Model (HMM) with improved data preprocessing techniques and 
principal component analysis (PCA) to process data from 2010 to 2025. 
The developed system detects nine separate market states which match actual 
economic and financial market situations. The market expansion phases 
produce strong investment returns at 20-30% annual rates while keeping 
market volatility at 12% but the contractionary phases lead to dangerous 
market conditions and negative investment results. The market transitions 
between different states occur at a slow pace because market conditions tend 
to stay stable instead of experiencing abrupt changes. The model shows a 
approximately 100% probability that the market operates under Regime 8 
which produces stable returns with a 1.6 Sharpe ratio during November 
2025 while showing limited market volatility. Overall, the results highlight 
the cyclical yet persistent nature of market behavior and provide practical 
tools for improving risk management, policy assessment, and data-informed 
investment decisions.
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1. Introduction

Financial markets experience recurring transitions between different 
market regimes, including bull and bear markets, correction periods, and 
high-volatility phases (Hamilton, 1989; Ang & Bekaert, 2002). These 
regimes cannot be directly observed from the available high-dimensional 
data, which integrates information from equities, fixed income, credit, 
commodities, FX, and macroeconomic indicators. Different market regimes 
exhibit distinct patterns in returns, volatility, correlations, and risk exposure, 
all of which influence asset allocation, risk management strategies, and macro-
financial oversight. The main challenge for researchers and practitioners lies 
in identifying these latent market dynamics from complex, noisy data while 
maintaining both statistical robustness and economic interpretability.

The Hidden Markov Model (HMM) is a widely used framework for 
modeling unobserved market states through Markov chain transitions, 
allowing return distributions to depend on the current state (Hamilton, 
1989; Krolzig, 1997). In its basic form, the HMM typically distinguishes 
between two volatility regimes or business-cycle phases using a small number 
of latent factors. However, modern financial markets require richer and 
higher-dimensional signal structures, as simple models often fail to capture 
regime shifts driven by multiple financial indicators, including cross-asset 
relationships, credit spreads, yield-curve movements, and macroeconomic 
variables. Expanding HMMs to include many correlated predictors often 
leads to overfitting and computational instability, reducing the reliability of 
state estimation (Bishop, 2006; Murphy, 2012).

This study develops a multivariate Hidden Markov Model (HMM) 
framework designed to identify latent market regimes from a comprehensive 
panel of financial and macroeconomic variables. The research design 
integrates three core components. First, it constructs an extensive feature 
set that combines financial indicators from equities, volatility, credit, rates, 
commodities, and FX markets with macroeconomic variables such as the 
yield curve slope, unemployment rate, and high-yield bond spreads. Second, 
it applies robust scaling and principal component analysis (PCA) to extract 
a low-dimensional set of orthogonal factors that capture the dominant 
sources of variation in the data while mitigating the effects of outliers and 
multicollinearity. Third, it estimates a Gaussian HMM on these factors, 
determines the optimal number of states using information criteria, and 
evaluates the identified regimes through a series of return-based performance 
and risk metrics.
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The proposed framework bridges traditional regime-switching models 
with modern high-dimensional feature engineering, enabling the inference 
of market regimes from a broad cross-section of assets and macroeconomic 
indicators rather than from a single index. Methodologically, it demonstrates 
how robust preprocessing and dimensionality reduction can be integrated 
with HMM estimation to yield stable, economically interpretable 
classifications, even in the presence of noisy, highly correlated predictors. 
Empirically, the study documents clear differences among the detected 
regimes in terms of returns, volatility, drawdowns, tail risk, and regime 
persistence—findings that carry important implications for tactical asset 
allocation and risk management.

The remainder of the paper is structured as follows. Section 2 describes 
the dataset and methodological framework, including feature construction, 
robust scaling, PCA, and the HMM specification. Section 3 presents the 
empirical results, highlighting regime characteristics, performance metrics, 
and state transition dynamics. Finally, Section 4 concludes with a discussion 
of the main findings, their limitations, and potential directions for future 
research

2. Data and Methodology

2.1. Data Description

The empirical analysis is based on a daily panel that combines market-
based asset returns with macro-financial indicators. The sample spans 
from 1 January 2010 to 20 November 2025. Daily price data are obtained 
from Yahoo Finance via the yfinance Python library (Aroussi, 2019), while 
macroeconomic and financial time series are retrieved from the Federal 
Reserve Bank of St. Louis via the FRED API (Mehyar, 2014). Lower-
frequency FRED series are converted to daily frequency by forward-filling 
the latest available observation until the next data release.

Missing values are handled using forward- and backward-filling to ensure 
a continuous, balanced daily panel suitable for time-series modeling. The 
inclusion of diverse asset classes and macro-financial indicators enables the 
identification of multiple latent market regimes that reflect both financial 
and macroeconomic dimensions of market dynamics. Table 1 provides an 
overview of the financial and macroeconomic variables included in the 
regime-switching analysis, detailing their sources, frequencies, and roles 
within the model.
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Table 1. Overview of variables used in the regime-switching analysis

Group Asset / Series Ticker / ID Source Frequency Role in model

U.S. equity 
index S&P 500 Index SPX (^GSPC) Yahoo 

Finance Daily Core equity 
market level

U.S. equity 
breadth

Russell 2000 
Index RUT Yahoo 

Finance Daily Small-cap risk / 
market breadth

Volatility CBOE Volatility 
Index VIX Yahoo 

Finance Daily Market-implied 
volatility

Credit – high 
yield

iShares iBoxx 
$ High Yield 

Corporate Bond 
ETF

HYG Yahoo 
Finance Daily Credit risk / 

risk-on proxy

Credit – 
investment 

grade

iShares iBoxx $ 
Investment Grade 
Corporate Bond 

ETF

LQD Yahoo 
Finance Daily

Investment-
grade credit 
conditions

Rates
iShares 20+ Year 
Treasury Bond 

ETF
TLT Yahoo 

Finance Daily
Long-term 

risk-free 
benchmark

Sector equity

Financials, 
Energy, 

Technology, 
Health Care, 
Utilities, 

Consumer 
Staples, 

Consumer 
Discretionary, 
Industrials, 
Materials

XLF, XLE, XLK, 
XLV, XLU, XLP, 
XLY, XLI, XLB

Yahoo 
Finance Daily

Sector rotation 
and cross-

section

Commodities
Gold, Silver, 
Crude Oil, 
Agriculture

GLD, SLV, USO, 
DBA

Yahoo 
Finance Daily

Real asset 
and inflation 

hedges

FX
U.S. Dollar 
Bullish ETF; 

Euro FX Trust
UUP, FXE Yahoo 

Finance Daily
Dollar strength 
/ EUR–USD 

proxy

Int’l equity
Developed ex-
US; Emerging 

Markets
EFA, EEM Yahoo 

Finance Daily
Global risk-
on / risk-off 
conditions

Labour 
market

Unemployment 
Rate UNRATE FRED Monthly → 

Daily (FF)
Business-cycle 

slack

Monetary 
policy

Effective Federal 
Funds Rate FEDFUNDS FRED Daily (via 

FF)
Short-term 

policy stance

Yield curve 
slope

10-year minus 
2-year Treasury 

yield
T10Y2Y FRED Daily (via 

FF)

Term-structure 
/ recession 
indicator
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Credit spread

ICE BofA US 
High Yield Index 
Option-Adjusted 

Spread

BAMLH0A0HYM2 FRED Daily (via 
FF)

Systemic credit 
risk

Oil price WTI Crude Oil 
Price DCOILWTICO FRED Daily (via 

FF)

Commodity 
& inflation 
expectations

FX (macro) USD/EUR 
Exchange Rate DEXUSEU FRED Daily (via 

FF)
External value 
of USD

Volatility 
(macro)

VIX Index 
(FRED) VIXCLS FRED Daily (via 

FF)
Macro-level 

VIX measure

Notes: Yahoo Finance series are obtained through yfinance, and FRED series through 
fredapi. Lower-frequency macro series are merged into the daily panel by forward-filling 

the latest available observation.

2.2. Methodology

The empirical strategy consists of three main steps: (i) feature engineering 
from the raw price and macro data; (ii) robust scaling and dimensionality 
reduction via Principal Component Analysis (PCA); and (iii) estimation of a 
multivariate Gaussian Hidden Markov Model (HMM) to infer latent market 
regimes (Hamilton, 1989; Rabiner, 1989; Jolliffe, 2002). 

All computations are conducted in Python using the scientific stack: 
NumPy for numerical arrays (Harris et al., 2020), pandas for data handling 
(McKinney, 2010), SciPy for optimization routines (Virtanen et al., 2020), 
and scikit-learn for scaling and PCA (Pedregosa et al., 2011). All features 
are scaled using the RobustScaler class from scikit-learn, which standardizes 
variables by their median and interquartile range (IQR), reducing the 
impact of outliers. Regime models are estimated using the hmmlearn 
package (hmmlearn developers, 2015), which provides a Gaussian HMM 
implementation consistent with the scikit-learn API. Visualizations are 
produced with matplotlib (Hunter, 2007) and seaborn (Waskom, 2021).

2.2.1. Feature engineering

Let tp  denote the vector of prices at time t  for all traded assets listed in 
Table 1. The corresponding vector of daily returns is

( ) , , 1
1, , ,
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, , , .i t i t
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−
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−
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where ,i tP  denotes the closing price of the asset i  on day t . Volatility 
and higher-order moments are constructed from rolling windows of 
returns—including 21-, 63-, and 126-day realized volatility, drawdowns, 
and momentum—providing the HMM with a richer description of the 
prevailing risk–return environment.

The realized volatility is computed as:

( )
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where the scaling factor 252 annualizes the measure under the standard 
trading-day convention.

From these returns, the feature-engineering step constructs several classes 
of predictors:

	• Level and volatility features: rolling realized volatility, Parkinson range-
based volatility, Bollinger band positioning, maximum drawdowns, 
and drawdown durations, capturing stress and recovery cycles across 
each market segment.

	• Momentum and trend indicators: short- and medium-horizon 
cumulative returns (e.g., 1-, 3-, 6-month) for equity indices and 
sector ETFs as cross-sectional “risk-on/risk-off ” signals, and trend-
following oscillators such as RSI, MACD, Stochastic %K/%D, ADX, 
and Money Flow Index (MFI) to capture technical sentiment.

	• Volume and breadth indicators: On-Balance Volume (OBV), sector 
breadth ratios, and volume-trend indicators reflecting participation 
strength across sectors.

	• Macro-financial indicators: yield-curve slope (T10Y2Y), high-yield 
spread (BAMLH0A0HYM2), unemployment rate (UNRATE), 
Federal Funds Rate (FEDFUNDS), oil price (DCOILWTICO), 
volatility index (VIXCLS), and USD/EUR exchange rate 
(DEXUSEU)—slow-moving variables that inform the underlying 
business-cycle phase.

	• Cross-market linkages: co-movement among equities (SPX, RUT, 
EFA, EEM), volatility (VIX, VIXCLS), credit (HYG, LQD), rates 
(TLT), commodities (GLD, SLV, USO, DBA), and FX (UUP, FXE, 
DEXUSEU). These linkages are incorporated through the HMM’s 
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full-covariance structure, ensuring that regime identification reflects 
multivariate dependence across asset classes.

The engineered features span six categories: core market, sectoral, 
international, commodity/FX, macroeconomic, and technical indicators. 
This step produces a high-dimensional feature vector p

tx ∈  for each 
day t , encompassing returns, volatilities, drawdowns, macro variables, and 
technical signals.

After feature engineering and data cleaning, 224 model-ready features 
were retained, spanning equity, credit, rates, commodities, FX, and 
macroeconomic domains. Among these, 125 engineered predictors are 
reported in Table 2, grouped into core market, sectoral, international, 
commodity/FX, macroeconomic, and technical categories, while the 
remaining variables consist of underlying FRED series, seasonal dummies, 
and auxiliary transformations that are not individually listed. The resulting 
dataset comprises 3,994 valid daily observations from 2010-01-04 to 2025-
11-20, totaling approximately 16 years of trading history.

Table 2. Summary of engineered feature categories and dataset characteristics

Feature Category Count

Core features 38

Sector features 18

Commodity & FX features 16

International features 7

Advanced technical features 17

Time-series features 10

FRED macro features 19

Total features 125

Note: Table 2 reports only the 125 engineered features. However, the full modeling 
dataset used for PCA and HMM includes 224 features, combining engineered predictors 
with raw market series, FRED macroeconomic variables, and seasonal transformations.

The feature correlation matrix (Figure 1) shows how the engineered 
variables move together across markets and macroeconomic dimensions. 
Each cell, color-coded from -1 (red) to +1 (green), represents the strength 
of the linear relationship between two features.

Clusters along the diagonal reveal groups of variables that tend to move 
in sync—for example, daily price metrics (close, high, low, and open) 
within sector ETFs. In the macro layer, indicators such as UNRATE (the 
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U.S. unemployment rate), FEDFUNDS (the effective federal funds rate 
that reflects the Federal Reserve’s policy stance), and BAMLH0A0HYM2 
(the high-yield credit spread, measuring the extra yield investors demand 
for risky corporate bonds) are nearly perfectly correlated with their derived 
counterparts. This coherence confirms that the macroeconomic variables 
were successfully aligned and forward-filled.

Altogether, 1,366 feature pairs show correlations above 0.8 —a reminder 
that financial data is naturally multicollinear. To handle this redundancy, the 
next step applies Principal Component Analysis (PCA) to compress the 
information into fewer uncorrelated latent factors before estimating the 
Hidden Markov Model.

Figure 1. Feature Correlation Matrix
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2.2.2. Robust scaling and principal component analysis

To mitigate the influence of outliers and heavy-tailed return distributions, 
all continuous features are first transformed using a robust scaler, which 
subtracts the median and rescales by the interquartile range (IQR):

( )
( )

,
,

median
,

IQR
j t j

j t
j

x x
x

x

−
=

where ,j tx  is the j -th raw feature at time t , and the median and IQR 
are computed over the training sample. This transformation reduces the 
impact of extreme observations while preserving the relative ordering of data 
points.

Given the large number of correlated predictors, the next step is to 
apply PCA to the robust-scaled features. PCA finds an orthogonal linear 
transformation z W xt t=   such that the first few components capture most 
of the variance in x t  (Jolliffe, 2002). Specifically, PCA solves the eigenvalue 
problem

where  is the sample covariance matrix, Q  is the matrix of eigenvectors, 
and  is the diagonal matrix of eigenvalues 1 2 0pλ λ λ≥ ≥ ≥ ≥ . The k
-dimensional principal-component representation is then

z Q x ,t k t= 

with Qk  containing the first k  eigenvectors. The number of components 
k  is chosen such that a pre-specified fraction of total variance (95%) is 
retained, trading off parsimony against information loss.

In practice, PCA is implemented using scikit-learn (Pedregosa et al., 
2011), applied to the in-sample observations only. Out-of-sample data are 
projected using the loadings estimated from the training period to avoid 
look-ahead bias.

The Principal Component Analysis (PCA) process for simplifying the 
extensive and strongly related feature set appears in Figure 2. The scree 
plot on the left shows which components explain the most variation in the 
data. The data signal becomes most prominent in the initial components 
but subsequent components add less and less information until the pattern 
reaches a steep decline followed by an extended flat section. The right section 
of the plot shows how information quantity grows when researchers add 
more elements to their research. The curve starts with a rapid ascent before 
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reaching a plateau after the addition of 54 components, which enables the 
capture of more than 95% of total variance (as shown by the dashed lines). 
The dataset contains 224 features, but only needs 54 principal components 
to represent its most important variations.

The analysis benefits from dimensionality reduction because it allows 
researchers to study the most important market and macroeconomic factors 
while eliminating unneeded data points. The uncorrelated components from 
this process produce stable data which enables better Hidden Markov Model 
(HMM) estimation for improved model understanding and operational 
performance.

Figure 2. Principal Component Analysis (PCA): Scree Plot (left) and Cumulative 
Variance Explained (right)

Figure 3 summarizes which features most strongly shape the dataset’s 
underlying structure after applying Principal Component Analysis (PCA). 
The left panel lists the top 20 most influential variables, showing that short-
term oil volatility (Oil_vol_21d) is by far the most significant driver of 
common variation across assets. It is followed by Fed_rate_change_63d, 
capturing shifts in monetary policy, and SPX_MACD, a measure of equity 
market momentum. Several volatility-based indicators—such as Financial_
vol, Tech_vol, and RUT_real_vol_21d—also rank highly, emphasizing how 
fluctuations in risk and liquidity conditions dominate the market’s latent 
structure.

The right panel visualizes these relationships by plotting feature loadings 
on the first two principal components. Most features cluster near the origin, 
suggesting limited standalone influence, while a few—especially Oil_vol_21d 
and Financial_vol—anchor the axes, representing broad volatility and policy-
driven factors.
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Overall, the PCA results show that market-wide volatility and monetary 
dynamics are the primary forces driving asset co-movement, providing a 
compact and interpretable basis for the subsequent regime-switching 
analysis.

Figure 3. PCA feature importance (left) and feature loadings on PC1 vs PC2 (right)

2.2.3. Hidden Markov Model specification

Let { 1}T
t t=z  denote the sequence of dimension-reduced feature vectors 

obtained from PCA. The latent market regime at time t  is represented by a 
discrete-valued random variable { }1, ,tS K∈ … . The HMM assumes that:

The latent state process { }tS  follows a first-order Markov chain with 
transition probabilities

( )1Pr , , 1, , ,ij t ta S j S i i j K−= = = = …∣

collected in the K K×  transition matrix A , and the initial state 
distribution π , where ( )1Pri S iπ = = .

Conditional on the current state, the observation zt  follows a multivariate 
Gaussian distribution with state-specific mean and covariance,

The joint likelihood of observations and states is then



40  |  Machine Learning-Driven Market Regime Analysis in Equity Markets: A Gaussian Hidden...

Where ( )1: 1, ,T T= …z z z  and ( )1: 1, ,T TS S S= … .

Estimation proceeds via maximum likelihood using the Expectation–
Maximization (EM) algorithm, implemented through the Baum–Welch 
procedure (Rabiner, 1989; Hamilton, 1989). The forward–backward 
algorithm yields smoothed state probabilities ( )1:Pr t TS k= z∣  , and the 
Viterbi algorithm is used to obtain the most likely state path 1:

ˆ
TS .

The number of regimes K  is treated as a model-selection problem. 
Candidate models { }3, ,9K ∈ …  are estimated, and the preferred 
specification is chosen based on the Bayesian Information Criterion (BIC),

,ˆBIC 2log logL p T= − +

and Akaike Information Criterion (AIC),

AIC 2log 2 ,L̂ p= − +

where L̂  is the maximised likelihood, p  is the number of free parameters, 
and T  is the number of time points. Preference is given to models with 
lower BIC and AIC; in practice, BIC is used as the primary criterion to 
penalise over-parameterisation more strongly in high-dimensional settings.

2.2.4. Out-of-sample validation

To assess the stability and predictive usefulness of the inferred regimes, 
the sample is split chronologically into an 80/20 train–test partition. Let 

. The HMM is estimated using observations { train
1}T

t t=z  only, 
yielding parameter estimates . These parameters are then 
held fixed, and regime probabilities for the remaining out-of-sample period 

train 1, ,t T T= + …  are computed via the forward recursion:

with normalisation to obtain filtered probabilities

( ) ( )
( )1:

1

Pr .t
t t K

tk

j
S j

k

α

α
=

= =
∑

z∣

This procedure allows the paper to (i) examine whether regimes identified 
in-sample persist out-of-sample, and (ii) relate regime probabilities to 
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subsequent asset-class performance, volatility, and drawdowns without re-
estimating the model each time new data arrive.

2.2.5. Software implementation

All computations are implemented in Python 3.12. Data collection 
employs yfinance (Aroussi, 2019) for market series and fredapi (Mehyar, 
2014) for macroeconomic indicators. Numerical operations rely on NumPy 
and SciPy, data manipulation on pandas, preprocessing and PCA on scikit-
learn, and regime modeling on hmmlearn (hmmlearn developers, 2015). 
Visualization and diagnostics are performed with matplotlib and seaborn.

2.2.6. Model Robustness

To enhance robustness, each HMM configuration is fitted with 10 random 
initializations, and both BIC and AIC are recorded. The full-covariance 
emission assumption enables the model to capture multi-asset dependencies, 
while the multiple initialization strategy reduces the likelihood of converging 
to suboptimal local maxima. This ensures stable and interpretable regime 
detection across estimation runs.

3. Results

The Gaussian HMM was estimated using the 54 principal components 
from the preceding PCA step, which together capture 95% of the variance 
in the original 224 model-ready features. This reduced representation 
preserves the essential structure of market and macroeconomic dynamics 
while ensuring numerical stability in model estimation.

The results of the model selection process are reported in Figure 4, which 
compares the Bayesian Information Criterion (BIC) and Akaike Information 
Criterion (AIC) across models with varying numbers of latent states. As the 
number of states increases from 3 to 9, both criteria decline monotonically, 
indicating improved model fit. However, because the BIC imposes a more 
substantial penalty for model complexity, its minimum value provides a 
more conservative and statistically rigorous benchmark for determining the 
optimal number of regimes.

The right-hand panel of Figure 4 depicts the corresponding log-
likelihood trajectory, which increases steadily with the addition of states, 
reflecting a progressive increase in explanatory power. The convergence of 
both information criteria at their minima for nine states suggests that this 
specification offers the best balance between parsimony and flexibility. 
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This nine-state configuration provides sufficient granularity to capture 
the heterogeneity of financial market behavior over time. It allows for the 
identification of distinct latent regimes corresponding to periods of low-
volatility expansion, elevated market stress, and intermediate transition 
phases. The resulting structure thus forms the empirical foundation for the 
subsequent regime characterization and transition analysis presented in the 
following sections.

Figure 4. Hidden Markov Model selection results: information criteria comparison 
(left) and log-likelihood evolution (right)

Figure 5 presents the temporal structure of the nine latent regimes 
identified by the Hidden Markov Model (HMM) and their relationship 
with major market dynamics over the 2010–2025 period. The visualization 
combines three complementary panels that together provide an intuitive 
interpretation of how the model’s inferred regimes align with observable 
shifts in market behavior and volatility conditions.

The top panel plots the S&P 500 Index level, colored by regime 
classification. Distinct color segments correspond to periods when the 
market exhibited consistent statistical characteristics captured by the HMM. 
For example, extended green and orange intervals reflect prolonged low-
volatility expansions. At the same time, intermittent red and gray segments 
correspond to turbulence and risk-off phases, such as those surrounding the 
2020 COVID-19 crash and subsequent normalization.

The middle panel displays the regime timeline, summarizing transitions 
between latent states over time. This view highlights the persistence and 
recurrence of specific regimes. Some states, such as Regime 0 and Regime 
8, dominate extended portions of the sample, indicating periods of stability, 
whereas others appear as short-lived episodes, capturing temporary 
disruptions or transitional phases between bull and bear environments.
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The bottom panel plots the VIX Index, a widely used measure of implied 
market volatility, also colored by regime. Horizontal dashed lines at VIX = 20 
and VIX = 30-mark conventional thresholds between normal and elevated 
volatility conditions. The alignment of high VIX clusters with red and gray 
regimes confirms that the HMM successfully isolates periods of market 
stress and uncertainty. Conversely, calm, low-VIX intervals correspond to 
expansionary, risk-on phases.

Figure 5. Regime Timeline and Market Context: S&P 500 price (top), regime timeline 
(middle), and VIX dynamics (bottom)

Figure 6 shows the likelihood that the market will remain in or switch 
between the nine identified regimes. Each cell represents the probability of 
moving from one regime (on the y-axis) to another (on the x-axis). The 
diagonal dominance is striking: most regimes have over a 95% chance of 
persisting day to day, and several exceed 99%, meaning that once a market 
condition is established, it tends to last. For instance, Regime 1 and Regime 
0 are the most stable, typically lasting around 8–9 months, while Regimes 
3, 4, and 6 are much shorter-lived, often representing brief but intense 
volatility or transition periods. Transitions between very different regimes 
are rare — the market doesn’t jump chaotically from one environment to 
another. Instead, shifts happen gradually, often through intermediate states.
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Figure 6. Transition probabilities across the Hidden Markov Model regimes

Figure 7 compares how each of the nine market regimes behaves across 
several key dimensions — returns, volatility, risk-adjusted performance, 
drawdowns, win rates, and average volatility levels (VIX). The first panel 
shows that only a few regimes delivered strong positive returns, reflecting 
periods of steady market growth. Others, such as Regime 6, represent clear 
downturn phases with sustained negative performance.

Volatility (top middle) varies sharply between regimes: some display the 
calm, low-volatility environment typical of bull markets, while others show 
extreme spikes — around 80% annualized volatility — consistent with crisis 
or panic conditions. The Sharpe ratio panel highlights the contrast between 
high-efficiency regimes (in green) that deliver attractive returns per unit of 
risk and low-efficiency regimes (in red) where risk dominates reward.

In the lower panels, average drawdowns deepen significantly during 
volatile periods, while win rates generally hover around 50–55%, suggesting 
alternating cycles of optimism and caution. The last panel connects each 
regime to its typical VIX level, showing that stress regimes coincide with 
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volatility above 30, while stable regimes stay below the 20 thresholds. 
Overall, Figure 7 shows that each regime captures a distinct and realistic 
market environment—from tranquil expansion phases to short-lived risk-off 
episodes and full-blown market corrections—mirroring how financial cycles 
unfold in practice.

Figure 7. Comparative summary of performance, risk, and volatility dynamics across 
market regimes

The model presents its current market evaluation through Figure 8. 
The Hidden Markov Model shows approximately 100% probability that 
the market operates under Regime 8. The market provides 20% annualized 
returns with 12% volatility while maintaining a 1.6 Sharpe ratio which 
confirms its risk-efficient market status. The market shows a 57%-win rate 
which confirms its stable condition while maintaining an upward direction. 
The market has experienced a significant decline of -28.2% annualized during 
the last 21 trading days yet volatility and VIX levels stay near their historical 
norms. The bottom section of the graph shows how current market data 
compares to the typical values of this market regime. The present market 
trend shows that the ongoing market decrease will be short-term and does 
not indicate any shift in the broader market environment. The market data 
in Figure 8 shows both low market volatility and a steady bullish market 
direction. The market experiences short periods of market weakness before 
stabilizing until market volatility reaches extreme levels or outside factors 
trigger market disruptions.
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Figure 8. Current market regime and comparison with recent 21-day market conditions

4. Conclusion

This paper develops a comprehensive, data-driven framework for 
detecting latent market regimes using a multivariate Gaussian Hidden 
Markov Model (HMM) applied to a high-dimensional panel of financial 
and macroeconomic variables. By integrating robust preprocessing, 
principal component analysis, and full-covariance regime modeling, the 
study successfully identifies nine distinct market states that correspond to 
empirically meaningful phases of market behavior.

The empirical results demonstrate that the proposed HMM framework 
captures the essential structure of market dynamics over the 2010–
2025 period. The model’s nine-state configuration achieves the optimal 
balance between model fit and parsimony, as evidenced by the minimum 
Bayesian Information Criterion (BIC). The estimated regimes exhibit clear 
economic interpretation: several states correspond to stable, low-volatility 
expansionary phases (e.g., Regime 0 and Regime 8), while others capture 
transitional or crisis environments characterized by heightened volatility 
and negative returns (e.g., Regime 6). The strong diagonal dominance in 
the transition probability matrix indicates that market conditions are highly 
persistent, with regimes typically lasting several months before transitions 
occur gradually rather than abruptly.

From a performance standpoint, the Sharpe ratio, volatility, and 
drawdown profiles across regimes confirm that risk-adjusted efficiency 
varies substantially between states. Expansionary regimes deliver annualized 
returns exceeding 20% with volatility near 12%, while downturn regimes 
are marked by sharp drawdowns and poor risk–reward trade-offs. The 
current market assessment (Figure 8) indicates that the model assigns a 



Cemal Öztürk  |  47

100% probability to Regime 8 — a stable, low-volatility phase characterized 
by moderate returns and a 1.6 Sharpe ratio. Despite short-term corrections, 
volatility and VIX levels remain close to historical averages, implying that 
recent market weakness is cyclical rather than structural.

These findings highlight the model’s ability to differentiate between 
persistent macro-financial conditions and transient market noise, providing 
a valuable decision-support tool for asset allocation, tactical positioning, and 
systemic risk monitoring. By fusing high-dimensional data with interpretable 
probabilistic structure, the framework bridges the gap between econometric 
regime-switching models and modern machine learning techniques.

However, several limitations should be acknowledged. First, the 
Gaussian emission assumption may not fully capture the heavy tails and 
skewness inherent in financial data. Future work could extend the model 
to Student-t or mixture-of-Gaussian distributions to improve robustness 
under extreme conditions. Second, while the PCA step effectively mitigates 
multicollinearity, it reduces interpretability at the feature level; future 
research could incorporate sparse or supervised dimensionality reduction 
techniques to retain more economic meaning. Third, the analysis is confined 
to U.S. and global developed markets—expanding the dataset to include 
cross-country or sectoral perspectives would allow for a richer examination 
of global contagion and spillover effects.

Future research could also explore dynamic model averaging or time-
varying transition probabilities to account for structural breaks and evolving 
policy regimes. Incorporating macroeconomic forecasting components or 
real-time market sentiment data may further enhance predictive accuracy 
and responsiveness.

Overall, this study demonstrates that a well-calibrated multivariate 
Hidden Markov Model provides a powerful and interpretable framework for 
identifying and characterizing market regimes in complex, high-dimensional 
environments. The results underscore the persistence and cyclical nature 
of financial regimes and highlight the potential of probabilistic state-space 
models as a foundation for data-driven risk management and strategic 
investment decisions.
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