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Abstract

This research develops a data-based system which reveals concealed market
patterns through its identification of separate market regimes that produce
unique return, volatility, and risk characteristics. The current financial models
fail to recognize the intricate relationships which exist between different
asset classes, including stocks and bonds, interest rates, commodities, and
economic data indicators. The research employs a multivariate Hidden
Markov Model (HMM) with improved data preprocessing techniques and
principal component analysis (PCA) to process data from 2010 to 2025.
The developed system detects nine separate market states which match actual
economic and financial market situations. The market expansion phases
produce strong investment returns at 20-30% annual rates while keeping
market volatility at 12% but the contractionary phases lead to dangerous
market conditions and negative investment results. The market transitions
between different states occur at a slow pace because market conditions tend
to stay stable instead of experiencing abrupt changes. The model shows a
approximately 100% probability that the market operates under Regime 8
which produces stable returns with a 1.6 Sharpe ratio during November
2025 while showing limited market volatility. Overall, the results highlight
the cyclical yet persistent nature of market behavior and provide practical
tools for improving risk management, policy assessment, and data-informed
investment decisions.
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1. Introduction

Financial markets experience recurring transitions between different
market regimes, including bull and bear markets, correction periods, and
high-volatility phases (Hamilton, 1989; Ang & Bekaert, 2002). These
regimes cannot be directly observed from the available high-dimensional
data, which integrates information from equities, fixed income, credit,
commodities, FX, and macroeconomic indicators. Different market regimes
exhibit distinct patterns in returns, volatility, correlations, and risk exposure,
all of which influence asset allocation, risk management strategies, and macro-
tinancial oversight. The main challenge for researchers and practitioners lies
in identifying these latent market dynamics from complex, noisy data while
maintaining both statistical robustness and economic interpretability.

The Hidden Markov Model (HMM) is a widely used framework for
modeling unobserved market states through Markov chain transitions,
allowing return distributions to depend on the current state (Hamilton,
1989; Krolzig, 1997). In its basic form, the HMM typically distinguishes
between two volatility regimes or business-cycle phases using a small number
of latent factors. However, modern financial markets require richer and
higher-dimensional signal structures, as simple models often fail to capture
regime shifts driven by multiple financial indicators, including cross-asset
relationships, credit spreads, yield-curve movements, and macroeconomic
variables. Expanding HMMs to include many correlated predictors often
leads to overfitting and computational instability, reducing the reliability of
state estimation (Bishop, 2006; Murphy, 2012).

This study develops a multivariate Hidden Markov Model (HMM)
framework designed to identify latent market regimes from a comprehensive
panel of financial and macroeconomic variables. The research design
integrates three core components. First, it constructs an extensive feature
set that combines financial indicators from equities, volatility, credit, rates,
commodities, and FX markets with macroeconomic variables such as the
yield curve slope, unemployment rate, and high-yield bond spreads. Second,
it applies robust scaling and principal component analysis (PCA) to extract
a low-dimensional set of orthogonal factors that capture the dominant
sources of variation in the data while mitigating the effects of outliers and
multicollinearity. Third, it estimates a Gaussian HMM on these factors,
determines the optimal number of states using information criteria, and
evaluates the identified regimes through a series of return-based performance
and risk metrics.
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The proposed framework bridges traditional regime-switching models
with modern high-dimensional feature engineering, enabling the inference
of market regimes from a broad cross-section of assets and macroeconomic
indicators rather than from a single index. Methodologically, it demonstrates
how robust preprocessing and dimensionality reduction can be integrated
with  HMM estimation to vyield stable, economically interpretable
classifications, even in the presence of noisy, highly correlated predictors.
Empirically, the study documents clear differences among the detected
regimes in terms of returns, volatility, drawdowns, tail risk, and regime
persistence—findings that carry important implications for tactical asset
allocation and risk management.

The remainder of the paper is structured as follows. Section 2 describes
the dataset and methodological framework, including feature construction,
robust scaling, PCA, and the HMM specification. Section 3 presents the
empirical results, highlighting regime characteristics, performance metrics,
and state transition dynamics. Finally, Section 4 concludes with a discussion
of the main findings, their limitations, and potential directions for future
research

2. Data and Methodology

2.1. Data Description

The empirical analysis is based on a daily panel that combines market-
based asset returns with macro-financial indicators. The sample spans
from 1 January 2010 to 20 November 2025. Daily price data are obtained
from Yahoo Finance via the yfinance Python library (Aroussi, 2019), while
macroeconomic and financial time series are retrieved from the Federal
Reserve Bank of St. Louis via the FRED API (Mehyar, 2014). Lower-
frequency FRED series are converted to daily frequency by forward-filling
the latest available observation until the next data release.

Missing values are handled using forward- and backward-filling to ensure
a continuous, balanced daily panel suitable for time-series modeling. The
inclusion of diverse asset classes and macro-financial indicators enables the
identification of multiple latent market regimes that reflect both financial
and macroeconomic dimensions of market dynamics. Table 1 provides an
overview of the financial and macroeconomic variables included in the
regime-switching analysis, detailing their sources, frequencies, and roles
within the model.
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Table 1. Overview of varviables used in the vegime-switching analysis

Group Asset / Series Ticker / ID Source  Frequency Role in model
US.equity  qop 500 Index  SPX (~GSPC)  2hoo Daily Core equity
index Finance market level
U.S. equity Russell 2000 Yahoo . Small-cap risk /
breadth Index RUT Finance Daily market breadth
Volatility CBOE Volatility VIX ¥ahoo Daily Markct-{rgphcd
Index Finance volatility
iShares iBoxx
Crele —high  $ High Yield HYG ¥ahoo Daily Qrcdlt risk /
yield Corporate Bond Finance ’ risk-on proxy
ETF
Credit — iShares iBoxx $ Investment-
. Investment Grade Yahoo . .
investment LQD . Daily grade credit
Corporate Bond Finance ..
grade ETE conditions
iShares 20+ Year Yahoo Long-term
Rates Treasury Bond TLT Fi Daily risk-free
ETF tnance benchmark
Financials,
Energy,
Technology,
Health Care,
Utilities, XLE XLE, XLK, Yahoo Sector rotation
Sector equity Consumer XLV, XLU, XLP, Finance Daily and cross-
Staples, XLY, XLI, XLLB section
Consumer
Discretionary,
Industrials,
Materials
. Gold, Silver, oy Gy USO, Yahoo . Real asser
Commodities Crude Oil > > . Daily and inflation
. > DBA Finance ’
Agriculture hedges
U.S. Dollar vah Dollar strength
FX Bullish ETE; UUP, EXE 100 Daily ~ /EUR-USD
Finance ’
Euro FX Trust proxy
Developed ex- vah Global risk-
Intlequity  US; Emerging EFA, EEM 1hoo Daily on / risk-off
4 Finance ..
Markets conditions
Labour Unemployment Monthly —  Business-cycle
market Rate UNRATE FRED Daily (FF) slack
Monetary  Effective Federal Daily (via Short-term
policy Funds Rate FEDFUNDS FRED FF) policy stance
. 10-year minus . . Term-structure
Yield curve 2-year Treasury T10Y2Y FRED Daily (via / recession
slope ’ ’ FF)

yield

indicator
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ICE BofA US

. High Yield Index B Daily (via  Systemic credit
Credit spread Option-Adjusted BAMLHOAOHYM2 FRED FF) risk
Spread
. . . Commodity
Oilprice. ~ WIHCUde Ol pyoqwrico rrep P (R g inflacion
Price FF) .
expectations
USD/EUR Daily (via  External value
FX (macro) Exchange Rate DEXUSEU FRED FF) of USD
Volatility VIX Index Daily (via Macro-level
(macro) (FRED) VIXCLS FRED FF) VIX measure

Notes: Yahoo Finance series ave obtained thvough yfinance, and FRED series through
fredapi. Lower-fiequency macro series ave merged into the daily panel by forward-filling
the latest available observation.

2.2. Methodology

The empirical strategy consists of three main steps: (1) feature engineering
from the raw price and macro data; (ii) robust scaling and dimensionality
reduction via Principal Component Analysis (PCA); and (iii) estimation of a
multivariate Gaussian Hidden Markov Model (HMM) to infer latent market
regimes (Hamilton, 1989; Rabiner, 1989; Jolliffe, 2002).

All computations are conducted in Python using the scientific stack:
NumPy for numerical arrays (Harris et al., 2020), pandas for data handling
(McKinney, 2010), SciPy for optimization routines (Virtanen et al., 2020),
and scikit-learn for scaling and PCA (Pedregosa et al., 2011). All features
are scaled using the RobustScaler class from scikit-learn, which standardizes
variables by their median and interquartile range (IQR), reducing the
impact of outliers. Regime models are estimated using the hmmlearn
package (hmmlearn developers, 2015), which provides a Gaussian HMM
implementation consistent with the scikit-learn API. Visualizations are
produced with matplotlib (Hunter, 2007) and seaborn (Waskom, 2021).

2.2.1. Feature engineering

Let p, denote the vector of prices at time ¢ for all traded assets listed in
Table 1. The corresponding vector of daily returns is

T
r, :(rl,t"">rN,t) ’n,t =
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where F,, denotes the closing price of the asset i on day ¢. Volatility
and higher-order moments are constructed from rolling windows of
returns—including 21-, 63-, and 126-day realized volatility, drawdowns,
and momentum—providing the HMM with a richer description of the
prevailing risk-return environment.

The realized volatility is computed as:

h-1
o,.{’;) = /252 S,
j=0

where the scaling factor 252 annualizes the measure under the standard
trading-day convention.

|-

From these returns, the feature-engineering step constructs several classes
of predictors:

¢ Leveland volatility features: rolling realized volatility, Parkinson range-
based volatility, Bollinger band positioning, maximum drawdowns,
and drawdown durations, capturing stress and recovery cycles across
each market segment.

e Momentum and trend indicators: short- and medium-horizon
cumulative returns (e.g., 1-, 3-, 6-month) for equity indices and
sector ETFs as cross-sectional “risk-on/risk-oft™ signals, and trend-
tollowing oscillators such as RSI, MACD, Stochastic %K/%D, ADX,
and Money Flow Index (MFI) to capture technical sentiment.

* Volume and breadth indicators: On-Balance Volume (OBV), sector
breadth ratios, and volume-trend indicators reflecting participation
strength across sectors.

* Macro-financial indicators: yield-curve slope (T10Y2Y), high-yield
spread (BAMLHOAOHYM2), unemployment rate (UNRATE),
Federal Funds Rate (FEDFUNDS), oil price (DCOILWTICO),
volatility index (VIXCLS), and USD/EUR exchange rate
(DEXUSEU)—slow-moving variables that inform the underlying
business-cycle phase.

* Cross-market linkages: co-movement among equities (SPX, RUT,
EFA, EEM), volatility (VIX, VIXCLS), credit (HYG, LQD), rates
(TLT), commodities (GLD, SLV, USO, DBA), and FX (UUD, FXE,
DEXUSEU). These linkages are incorporated through the HMM’s
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tull-covariance structure, ensuring that regime identification reflects
multivariate dependence across asset classes.

The engineered features span six categories: core market, sectoral,
international, commodity/FX, macroeconomic, and technical indicators.
This step produces a high-dimensional feature vector x, € R” for each
day 7, encompassing returns, volatilities, drawdowns, macro variables, and
technical signals.

After feature engineering and data cleaning, 224 model-ready features
were retained, spanning equity, credit, rates, commodities, FX, and
macroeconomic domains. Among these, 125 engineered predictors are
reported in Table 2, grouped into core market, sectoral, international,
commodity/FX, macroeconomic, and technical categories, while the
remaining variables consist of underlying FRED series, seasonal dummies,
and auxiliary transformations that are not individually listed. The resulting
dataset comprises 3,994 valid daily observations from 2010-01-04 to 2025-
11-20, totaling approximately 16 years of trading history.

Table 2. Summary of engineeved feature categories and dataset charvacteristics

Feature Category Count
Core features 38
Sector features 18
Commodity & FX features 16

International features 7

Advanced technical features 17
Time-series features 10
FRED macro features 19
Total features 125

Note: Table 2 veports only the 125 engineered featuves. However; the full modeling
dataset used for PCA and HMM includes 224 featuves, combining engineered predictors
with vaw mavket series, FRED macroeconomic vaviables, and seasonal transformations.

The feature correlation matrix (Figure 1) shows how the engineered
variables move together across markets and macroeconomic dimensions.
Each cell, color-coded from -1 (red) to +1 (green), represents the strength
of the linear relationship between two features.

Clusters along the diagonal reveal groups of variables that tend to move
in sync—for example, daily price metrics (close, high, low, and open)
within sector ETFs. In the macro layer, indicators such as UNRATE (the
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U.S. unemployment rate), FEDFUNDS (the effective federal funds rate
that reflects the Federal Reserve’s policy stance), and BAMLHOAOHYM?2
(the high-yield credit spread, measuring the extra yield investors demand
for risky corporate bonds) are nearly perfectly correlated with their derived
counterparts. This coherence confirms that the macroeconomic variables
were successfully aligned and forward-filled.

Altogether, 1,366 feature pairs show correlations above |O. 8| —a reminder
that financial data is naturally multicollinear. To handle this redundancy, the
next step applies Principal Component Analysis (PCA) to compress the
information into fewer uncorrelated latent factors before estimating the
Hidden Markov Model.

Feature Correlation Matrix

075

050

--025

—0s0

-075

-1.00

Figuve 1. Feature Corrvelation Matrix
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2.2.2. Robust scaling and principal component analysis

To mitigate the influence of outliers and heavy-tailed return distributions,
all continuous features are first transformed using a robust scaler, which
subtracts the median and rescales by the interquartile range (IQR):

X, —medlan(xj)

PR

b

where x;, is the j-th raw feature at time #, and the median and IQR
are computed over the training sample. This transformation reduces the
impact of extreme observations while preserving the relative ordering of data
points.

Given the large number of correlated predictors, the next step is to
apply PCA to the robust-scaled features. PCA finds an orthogonal linear
transformation z, = W 'X, such that the first few components capture most
of the variance in X, (Jolliffe, 2002). Specifically, PCA solves the eigenvalue
problem

¥ =Var(X,)=QAQ",

where X is the sample covariance matrix, Q is the matrix of eigenvectors,
and A is the diagonal matrix of eigenvalues 4, 24, 2---> 4, 20.The k
-dimensional principal-component representation is then

Z, = Qk Xy
with Q, containing the first k eigenvectors. The number of components

k is chosen such that a pre-specified fraction of total variance (95%) is
retained, trading off parsimony against information loss.

In practice, PCA is implemented using scikit-learn (Pedregosa et al.,
2011), applied to the in-sample observations only. Out-of-sample data are
projected using the loadings estimated from the training period to avoid
look-ahead bias.

The Principal Component Analysis (PCA) process for simplifying the
extensive and strongly related feature set appears in Figure 2. The scree
plot on the left shows which components explain the most variation in the
data. The data signal becomes most prominent in the initial components
but subsequent components add less and less information until the pattern
reaches a steep decline followed by an extended flat section. The right section
of the plot shows how information quantity grows when researchers add
more elements to their research. The curve starts with a rapid ascent before
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reaching a plateau after the addition of 54 components, which enables the
capture of more than 95% of total variance (as shown by the dashed lines).
The dataset contains 224 features, but only needs 54 principal components
to represent its most important variations.

The analysis benefits from dimensionality reduction because it allows
researchers to study the most important market and macroeconomic factors
while eliminating unneeded data points. The uncorrelated components from
this process produce stable data which enables better Hidden Markov Model
(HMM) estimation for improved model understanding and operational
performance.

Scree Plot C lative Variance

--- Average eigenvalue 10

e

°
N
S

°
2

0.7

0.6

Explained Variance Ratio
2
S

0.05

Cumulative Explained Variance

~=- 95% threshold
54 components

0.00 0.2
25 5.0 75 10.0 125 15.0 175 20.0 0 50 100 150 200
Principal Component Number of Components

Figure 2. Principal Component Analysis (PCA): Scvee Plot (left) and Cumulative
Vaviance Explained (vight)

Figure 3 summarizes which features most strongly shape the dataset’s
underlying structure after applying Principal Component Analysis (PCA).
The left panel lists the top 20 most influential variables, showing that short-
term oil volatility (Oil_vol 21d) is by far the most significant driver of
common variation across assets. It is followed by Fed_rate_change 63d,
capturing shifts in monetary policy, and SPX_MACD, a measure of equity
market momentum. Several volatility-based indicators—such as Financial
vol, Tech_vol, and RUT _real_vol_21d—also rank highly, emphasizing how
fluctuations in risk and liquidity conditions dominate the market’s latent
structure.

The right panel visualizes these relationships by plotting feature loadings
on the first two principal components. Most features cluster near the origin,
suggesting limited standalone influence, while a few—especially Oil_vol_21d
and Financial_vol—anchor the axes, representing broad volatility and policy-
driven factors.
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Overall, the PCA results show that market-wide volatility and monetary
dynamics are the primary forces driving asset co-movement, providing a
compact and interpretable basis for the subsequent regime-switching

analysis.

Top 20 Most Important Features Feature Loadings on PC1 vs PC2
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Figure 3. PCA featuve importance (left) and featuve loadings on PC1 vs PC2 (vight)

2.2.3. Hidden Markov Model specification

Let {z,}", denote the sequence of dimension-reduced feature vectors
obtained from PCA. The latent market regime at time # is represented by a
discrete-valued random variable S, € {1,. LK } . The HMM assumes that:

The latent state process {St} follows a first-order Markov chain with
transition probabilities

a, =Pr(S,=jIS,_ =i)i,j=1...,K,

collected in the K XxK transition matrix A, and the initial state
distribution 7, where 7, = Pr(S1 =i )

Conditional on the current state, the observation z, follows a multivariate
Gaussian distribution with state-specific mean and covariance,

z,1(S,=k)~N (1,.%,).k=1,....K.

The joint likelihood of observations and states is then

r r
Pr(zlzT’ SI:T) =T, Has,_ls, HN (Zz | Hs X )a
=2 =1
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Where z,, = (Zl, . T) and SI:T:(SP""ST)‘

Estimation proceeds via maximum likelihood using the Expectation—
Maximization (EM) algorithm, implemented through the Baum-Welch
procedure (Rabiner, 1989; Hamilton, 1989). The forward-backward
algorithm yields smoothed state probabilities Pr(St =kl ZI:Z) , and the
Viterbi algorithm is used to obtain the most likely state path S, .

The number of regimes K is treated as a model-selection problem.
Candidate models K € {3,...,9} are estimated, and the preferred
specification is chosen based on the Bayesian Information Criterion (BIC),

BIC = —2logL + plogT,
and Akaike Information Criterion (AIC),
AIC = —2logl +2p,

where L is the maximised likelihood, p is the number of free parameters,
and T is the number of time points. Preference is given to models with
lower BIC and AIC; in practice, BIC is used as the primary criterion to
penalise over-parameterisation more strongly in high-dimensional settings.

2.2.4. Out-of-sample validation

To assess the stability and predictive usefulness of the inferred regimes,
the sample is split chronologically into an 80/20 train—test partition. Let
T = 0.87. The HMM is estimated usmg observations fz }tT““; only,
yielding parameter estimates 7, A A4, k} 41 - These parameters are then
held fixed, and regime probabilities for the remaining out-of-sample period
t=T_. +1,...,T are computed via the forward recursion:

train

[Za“ } (z a2 ),jzl,...,K,
with normalisation to obtain filtered probabilities

a()
Z;il“r (k)

This procedure allows the paper to (i) examine whether regimes identified
in-sample persist out-of-sample, and (ii) relate regime probabilities to

Pr(St :j|z1:t):



Cemal Oztiirk | 41

subsequent asset-class performance, volatility, and drawdowns without re-
estimating the model each time new data arrive.

2.2.5. Software implementation

All computations are implemented in Python 3.12. Data collection
employs yfinance (Aroussi, 2019) for market series and fredapi (Mehyar,
2014) for macroeconomic indicators. Numerical operations rely on NumPy
and SciPy, data manipulation on pandas, preprocessing and PCA on scikit-
learn, and regime modeling on hmmlearn (hmmlearn developers, 2015).
Visualization and diagnostics are performed with matplotlib and seaborn.

2.2.6. Model Robustness

To enhance robustness, each HMM configuration is fitted with 10 random
initializations, and both BIC and AIC are recorded. The full-covariance
emission assumption enables the model to capture multi-asset dependencies,
while the multiple initialization strategy reduces the likelihood of converging
to suboptimal local maxima. This ensures stable and interpretable regime
detection across estimation runs.

3. Results

The Gaussian HMM was estimated using the 54 principal components
from the preceding PCA step, which together capture 95% of the variance
in the original 224 model-ready features. This reduced representation
preserves the essential structure of market and macroeconomic dynamics
while ensuring numerical stability in model estimation.

The results of the model selection process are reported in Figure 4, which
compares the Bayesian Information Criterion (BIC) and Akaike Information
Criterion (AIC) across models with varying numbers of latent states. As the
number of states increases from 3 to 9, both criteria decline monotonically,
indicating improved model fit. However, because the BIC imposes a more
substantial penalty for model complexity, its minimum value provides a
more conservative and statistically rigorous benchmark for determining the
optimal number of regimes.

The right-hand panel of Figure 4 depicts the corresponding log-
likelihood trajectory, which increases steadily with the addition of states,
reflecting a progressive increase in explanatory power. The convergence of
both information criteria at their minima for nine states suggests that this
specification ofters the best balance between parsimony and flexibility.
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This nine-state configuration provides sufficient granularity to capture
the heterogeneity of financial market behavior over time. It allows for the
identification of distinct latent regimes corresponding to periods of low-
volatility expansion, elevated market stress, and intermediate transition
phases. The resulting structure thus forms the empirical foundation for the
subsequent regime characterization and transition analysis presented in the
following sections.

Model Selection: BIC vs AIC Model Fit: Log-Likelihood
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- AIC ~190000
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Figure 4. Hidden Mavkov Model selection vesults: information criteria comparison
(left) and log-likelihood evolution (vight)

Figure 5 presents the temporal structure of the nine latent regimes
identified by the Hidden Markov Model (HMM) and their relationship
with major market dynamics over the 2010-2025 period. The visualization
combines three complementary panels that together provide an intuitive
interpretation of how the model’s inferred regimes align with observable
shifts in market behavior and volatility conditions.

The top panel plots the S&P 500 Index level, colored by regime
classification. Distinct color segments correspond to periods when the
market exhibited consistent statistical characteristics captured by the HMM.
For example, extended green and orange intervals reflect prolonged low-
volatility expansions. At the same time, intermittent red and gray segments
correspond to turbulence and risk-oft phases, such as those surrounding the
2020 COVID-19 crash and subsequent normalization.

The middle panel displays the regime timeline, summarizing transitions
between latent states over time. This view highlights the persistence and
recurrence of specific regimes. Some states, such as Regime 0 and Regime
8, dominate extended portions of the sample, indicating periods of stability,
whereas others appear as short-lived episodes, capturing temporary
disruptions or transitional phases between bull and bear environments.
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The bottom panel plots the VIX Index, a widely used measure of implied
market volatility, also colored by regime. Horizontal dashed lines at VIX = 20
and VIX = 30-mark conventional thresholds between normal and elevated
volatility conditions. The alignment of high VIX clusters with red and gray
regimes confirms that the HMM successfully isolates periods of market
stress and uncertainty. Conversely, calm, low-VIX intervals correspond to
expansionary, risk-on phases.

S&P 500 Price Colored by Regime
. Regime0 . Regimel . Regime2 + Regime3 . Regimed + RegimeS « Regime6 s+ Regime] . Regimes /"
v

2 3000
2000

2012 2014 2016 2018 2020 2022 2024 2026

Regime Timeline

W RegimeO W Regimel s Regime2 W Regime3 i Regimed4 M Regime5 W Regime 6 MMM Regime7 i Regime 8

Regime

2018 2020 2024 2026

VIX Index Colored by Regime

- ViX=20
e VIX=30

Figure 5. Regime Timeline and Mavket Context: S&P 500 price (top), vegime timeline
(middle), and VIX dynamics (bottom)

Figure 6 shows the likelihood that the market will remain in or switch
between the nine identified regimes. Each cell represents the probability of
moving from one regime (on the y-axis) to another (on the x-axis). The
diagonal dominance is striking: most regimes have over a 95% chance of
persisting day to day, and several exceed 99%, meaning that once a market
condition is established, it tends to last. For instance, Regime 1 and Regime
0 are the most stable, typically lasting around 8-9 months, while Regimes
3, 4, and 6 are much shorter-lived, often representing brief but intense
volatility or transition periods. Transitions between very different regimes
are rare — the market doesn’t jump chaotically from one environment to
another. Instead, shifts happen gradually, often through intermediate states.
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Figure 6. Transition probabilities acvoss the Hidden Mavkov Model regimes

Figure 7 compares how each of the nine market regimes behaves across
several key dimensions — returns, volatility, risk-adjusted performance,
drawdowns, win rates, and average volatility levels (VIX). The first panel
shows that only a few regimes delivered strong positive returns, reflecting
periods of steady market growth. Others, such as Regime 6, represent clear
downturn phases with sustained negative performance.

Volatility (top middle) varies sharply between regimes: some display the
calm, low-volatility environment typical of bull markets, while others show
extreme spikes — around 80% annualized volatility — consistent with crisis
or panic conditions. The Sharpe ratio panel highlights the contrast between
high-efficiency regimes (in green) that deliver attractive returns per unit of
risk and low-efticiency regimes (in red) where risk dominates reward.

In the lower panels, average drawdowns deepen significantly during
volatile periods, while win rates generally hover around 50-55%, suggesting
alternating cycles of optimism and caution. The last panel connects each
regime to its typical VIX level, showing that stress regimes coincide with
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volatility above 30, while stable regimes stay below the 20 thresholds.
Overall, Figure 7 shows that each regime captures a distinct and realistic
market environment—from tranquil expansion phases to short-lived risk-off
episodes and full-blown market corrections—mirroring how financial cycles
unfold in practice.

Annualized Returns by Regime Annualized Volatility by Regime Sharpe Ratio by Regime
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Figure 7. Comparative s "y of performance, visk, and volatility dynamics acvoss
market rvegimes

The model presents its current market evaluation through Figure 8.
The Hidden Markov Model shows approximately 100% probability that
the market operates under Regime 8. The market provides 20% annualized
returns with 12% volatility while maintaining a 1.6 Sharpe ratio which
confirms its risk-efficient market status. The market shows a 57%-win rate
which confirms its stable condition while maintaining an upward direction.
The market has experienced a significant decline of -28.2% annualized during
the last 21 trading days yet volatility and VIX levels stay near their historical
norms. The bottom section of the graph shows how current market data
compares to the typical values of this market regime. The present market
trend shows that the ongoing market decrease will be short-term and does
not indicate any shift in the broader market environment. The market data
in Figure 8 shows both low market volatility and a steady bullish market
direction. The market experiences short periods of market weakness before
stabilizing until market volatility reaches extreme levels or outside factors
trigger market disruptions.
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Figure 8. Current market vegime and comparison with recent 21-day market conditions

4. Conclusion

This paper develops a comprehensive, data-driven framework for
detecting latent market regimes using a multivariate Gaussian Hidden
Markov Model (HMM) applied to a high-dimensional panel of financial
and macroeconomic variables. By integrating robust preprocessing,
principal component analysis, and full-covariance regime modeling, the
study successfully identifies nine distinct market states that correspond to
empirically meaningful phases of market behavior.

The empirical results demonstrate that the proposed HMM framework
captures the essential structure of market dynamics over the 2010-
2025 period. The model’s nine-state configuration achieves the optimal
balance between model fit and parsimony, as evidenced by the minimum
Bayesian Information Criterion (BIC). The estimated regimes exhibit clear
economic interpretation: several states correspond to stable, low-volatility
expansionary phases (e.g., Regime 0 and Regime 8), while others capture
transitional or crisis environments characterized by heightened volatility
and negative returns (e.g., Regime 6). The strong diagonal dominance in
the transition probability matrix indicates that market conditions are highly
persistent, with regimes typically lasting several months before transitions
occur gradually rather than abruptly.

From a performance standpoint, the Sharpe ratio, volatility, and
drawdown profiles across regimes confirm that risk-adjusted efficiency
varies substantially between states. Expansionary regimes deliver annualized
returns exceeding 20% with volatility near 12%, while downturn regimes
are marked by sharp drawdowns and poor risk-reward trade-offs. The
current market assessment (Figure 8) indicates that the model assigns a
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100% probability to Regime 8 — a stable, low-volatility phase characterized
by moderate returns and a 1.6 Sharpe ratio. Despite short-term corrections,
volatility and VIX levels remain close to historical averages, implying that
recent market weakness is cyclical rather than structural.

These findings highlight the model’s ability to differentiate between
persistent macro-financial conditions and transient market noise, providing
a valuable decision-support tool for asset allocation, tactical positioning, and
systemic risk monitoring. By fusing high-dimensional data with interpretable
probabilistic structure, the framework bridges the gap between econometric
regime-switching models and modern machine learning techniques.

However, several limitations should be acknowledged. First, the
Gaussian emission assumption may not fully capture the heavy tails and
skewness inherent in financial data. Future work could extend the model
to Student-t or mixture-of-Gaussian distributions to improve robustness
under extreme conditions. Second, while the PCA step effectively mitigates
multicollinearity, it reduces interpretability at the feature level; future
research could incorporate sparse or supervised dimensionality reduction
techniques to retain more economic meaning. Third, the analysis is confined
to U.S. and global developed markets—expanding the dataset to include
cross-country or sectoral perspectives would allow for a richer examination
of global contagion and spillover effects.

Future research could also explore dynamic model averaging or time-
varying transition probabilities to account for structural breaks and evolving
policy regimes. Incorporating macroeconomic forecasting components or
real-time market sentiment data may further enhance predictive accuracy
and responsiveness.

Overall, this study demonstrates that a well-calibrated multivariate
Hidden Markov Model provides a powerful and interpretable framework for
identifying and characterizing market regimes in complex, high-dimensional
environments. The results underscore the persistence and cyclical nature
of financial regimes and highlight the potential of probabilistic state-space
models as a foundation for data-driven risk management and strategic
investment decisions.
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