

The Era of Hyper-Personalization in Marketing Management and the Privacy Paradox

Oğuzhan Aydın¹

Abstract

This book chapter explores how AI-powered personalization and hyper-personalization have transformed digital marketing, illustrated through concrete examples encountered in daily life. Thanks to big data, machine learning, and data analytics, marketing today has evolved into a smarter and more proactive structure that focuses directly on the individual rather than merely on similar consumers. In this transformation, recommendation systems emerge as key tools that facilitate the consumer decision-making process and make the experience more seamless. This chapter also discusses the delicate balance between the benefits offered by hyper-personalization and privacy concerns, emphasizing the pivotal role of trust in this process. The study argues that sustainable success in AI-based marketing applications depends not only on technological capability but also on adopting an ethical, transparent, and trust-oriented approach.

1. Introduction

Henry Ford's famous remark in the early 1900s regarding the Model T vehicles rolling off the mass production line "*Any customer can have a car painted any colour that he wants so long as it is black*" constitutes a milestone in the history of marketing. Reflecting on this statement today, many might assume it alluded to the nobility of the colour black or the aesthetic preferences of that era. However, this statement by Henry Ford actually best reflects the supply-demand imbalance of the period and the mindset of "*I can sell whatever I produce!*" In stark contrast to those days when options were limited and demand exceeded supply, consumers in the contemporary marketing

¹ Asst. Prof., Pamukkale University, Faculty of Applied Sciences, Department of International Trade and Logistics, oguzhana@pau.edu.tr, ORCID: 0000-0002-5104-2986

landscape are inundated with countless alternatives. Consequently, Ford's "*one-size-fits-all*" approach has inevitably given way to "*tailor-made*" solutions.

Throughout its history, the marketing discipline has evolved through distinct phases; Production, Product, Sales, and Modern Marketing ultimately adopting the Holistic Marketing approach today. This new era, characterized by concepts such as the Information Society, Industry 4.0, or the Digital Economy, has propelled marketing to a level that Henry Ford could not have even imagined. Disruptive technologies such as the Internet of Things (IoT), big data analytics, blockchain, and artificial intelligence have radically altered the way organizations operate. Among all these disruptive technologies, artificial intelligence stands out as the latest technological transformer, holding immense potential for marketing transformation. Marketing professionals globally are striving to discover the most effective artificial intelligence solutions within their marketing processes.

At the core of this transformation lie data-driven decision-making, data analytics, and artificial intelligence-based marketing applications. It is evident that strategies traditionally implemented as Segmentation, Targeting, and Positioning (STP) have evolved into mass customization alongside digitalization. For instance, a process where a consumer designs their own footwear on a sportswear brand's website (e.g., Nike by You) is shaped directly by consumer demand. However, today we stand at a brand-new threshold where artificial intelligence plays the leading role. We are no longer discussing a reactive marketing management that waits for the consumer to make a request; rather, we refer to a proactive management style that presents the most suitable option to the consumer before they even realize their own desires.

Today, our digital footprints—originating from the Internet of Things, electronic devices, visited web pages, social media interactions, health data measured by wearable technologies, and online marketplaces—are ceaselessly flowing into databases. Not only the products we purchase, but also the items abandoned in our carts, the sellers we rate poorly, or even payments made via a coffee application are simultaneously filling our personal data pools. Artificial intelligence has shed its instrumental position over time, taking the initiative to assume a system-building role today. In past years, accessing data was an arduous process for organizations, requiring significant budget, time, and effort. In contrast to those days of data scarcity, the staggering advancements in internet and communication technologies have transported us to the era of Big Data. Accessing data is now significantly cheaper and easier compared to the past. However, this situation brings with it a new paradox termed the

Curse of Data. Data analysts and managers face new concerns regarding how to manage this Big Data, which has reached massive proportions.

2. Conceptual Framework

2.1. Recommendation Systems

In the modern marketing approach, data has become the most strategic asset for businesses. The process of transforming this data from its raw state into processed information is managed through Marketing Information Systems (MIS). Marketing information systems are integrated structures that ensure the regular and continuous collection, analysis, storage, transmission, and presentation of information obtained from internal and external sources to decision-makers. As emphasized by Mocean and Pop (2012), these systems encompass the systematic and formal methods used to manage all market-related processes of an organization. Once viewed merely as simple reporting tools in the past, these systems today play a critical role in businesses achieving competitive advantage. Although recommendation systems provide significant benefits to consumers, the primary reason for their insufficient widespread adoption in the market is the oversight of the usability issue while focusing on technical features (Murray and Häubl, 2009).

Online marketplaces closely monitor AI-based technologies and developments in order to provide better service to their customers (Verma and Yadav, 2021; Habil et al., 2023). In particular, recommendation systems and consumer feedback play a key role in reducing search costs and the uncertainty associated with unknown products (Pathak et al., 2010). Today, recommendation systems are not merely technical tools that reveal the relationships between products; they are also significant elements that support the strategic marketing goals of organizations (Deng et al., 2020).

Recommendation systems facilitate the consumer decision-making process, thereby increasing sales and cross-sales. These systems also provide flexibility to online retailers regarding dynamic pricing (Pathak et al., 2010). Fundamentally, these systems adopt two main methods: Content-Based Filtering and Collaborative Filtering. The logic behind content-based filtering is quite simple; it recommends products similar in characteristics to those the user has liked in the past. For example, for a user listening to a specific genre (e.g., instrumental rock) on Spotify, the system presents new instrumental rock tracks with similar rhythms and attributes in the *“Discover Weekly”* playlist. Collaborative filtering, on the other hand, relies on the preferences of users who exhibit similar behaviours. An example of this is cross-selling on

Amazon by suggesting to a user who purchased a camping tent, “*Customers who bought this item also bought this sleeping bag or privacy tent!*”.

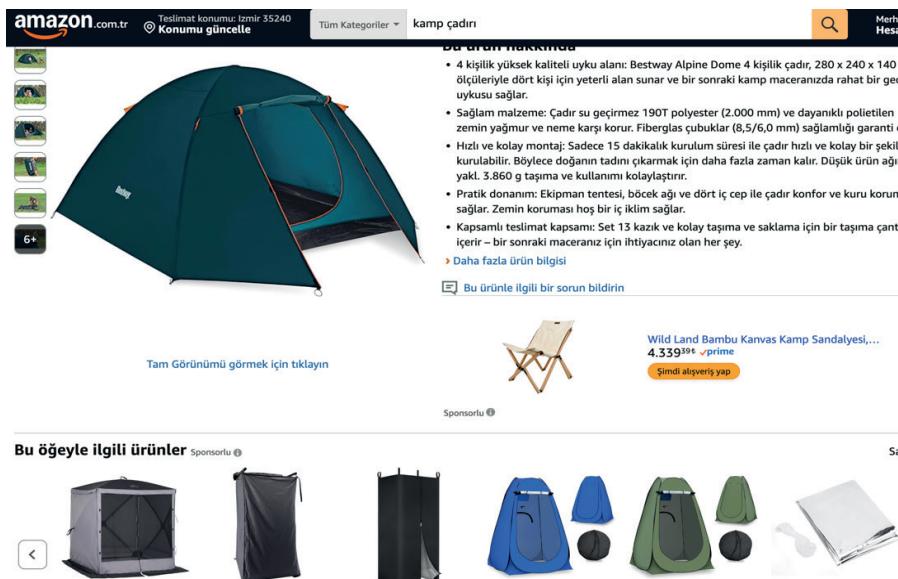


Figure 1. An illustrative example of the collaborative filtering approach on Amazon

The majority of current e-commerce recommendation systems focus on recommending the right products based on users' individual transaction histories and cookie data. By learning users' prior behaviours, recommendation systems predict their current preferences for specific products and offer them personalized service support (Verma and Sharma, 2020; Chinchanachokchai et al., 2021; Zhang et al., 2021). However, it is observed that a significant portion of researchers working in data analytics and digital marketing mostly build their analyses on past transaction data. This approach leads to the exclusion of consumers' real-time behaviours in the online environment from the analysis (Yılmaz and Aydın, 2023). At this point, the artificial intelligence techniques that come into play (fuzzy logic, transfer learning, genetic algorithms, deep learning, etc.) increase prediction accuracy while significantly minimizing fundamental problems such as data sparsity and cold start (Verma and Sharma, 2020; Zhang et al., 2021). AI-powered systems offer new opportunities for retailers to understand consumer needs and predict their future behaviours. Particularly from the perspective of personalized recommendation systems and retargeting ads, the role of these systems in creating value for consumers and providing competitive advantage to retailers is extremely important (Habil et al., 2023). For example, Netflix maximizes

customer loyalty thanks to AI algorithms that offer instant recommendations by looking not only at what the user watches but also on which day, at what time, and on which device they watch it.

2.2. Artificial Intelligence in Personalized Marketing

Today, e-commerce has become a fundamental online retail ecosystem that reshapes consumers' shopping behaviours. One of the most important advantages online marketplaces provide to consumers is offering place and time utility. In this way, shopping ceases to be a time-consuming process for consumers and transforms into a more efficient activity. Achieving instant and efficient service delivery depends on accurately analysing consumers' individual needs and creating personalized shopping lists based on these analyses (Hung, 2005). In this direction, the loss of validity of the traditional "one-size-fits-all" approach has necessitated marketing theories to adapt to this transformation. Artificial intelligence offers more precise, scalable, and real-time segmentation capabilities by processing massive datasets, thereby directly increasing the efficiency of marketing activities and customer satisfaction (Anshari et al., 2019; Hemalatha et al., 2024; Iyelolu et al., 2024). Web personalization ensures that the user views more products and makes decisions more easily by showing suitable products to the user. This, in turn, increases advertising revenues and sales (Ho and Bodoff, 2014). While one-to-one marketing approaches provide higher effectiveness in cases where a rich and consistent transaction history exists about users, micro-segmentation strategies emerge as a more suitable and effective alternative in cases where user data is limited or irregular (Jiang and Tuzhilin, 2006). At this point, AI-based methods contribute to higher interaction and conversion rates by increasing user targeting and personalization accuracy (Iyelolu et al., 2024).

Personalization is defined as the process of offering the right product and service to the right customer at the right time and in the right place (Sunikka and Bragge, 2012). The significance of personalization within marketing strategies is increasingly growing. It is clearly evident that this approach has evolved from being merely a tactical application into a strategic component. Indeed, some approaches propose positioning personalization as the eighth element (8P) of the marketing mix by integrating it not only with the classic marketing mix components—product, price, place, and promotion—but also into the extended services mix. This proposition demonstrates that the tailor-made adaptation of goods and services to individual needs is assuming an increasingly central role in modern marketing (Goldsmith, 1999).

One of the primary reasons for failure in personalization implementations is the lack of consensus on the concept's definition. The varying interpretations of personalization by actors within the value chain sever communication between parties and hinder the establishment of effective collaboration (Vesanen, 2007). As a fundamental element of interactive marketing, personalization is a strategic process aimed at maximizing profit for the producer and value for the consumer by adapting standardized offers to individual needs. Often evaluated in the literature as the modern equivalent of traditional market segmentation in the digital age (Montgomery and Smith, 2009), the concept of personalization is a critical tool for product or service differentiation, especially in highly competitive markets. Indeed, a correctly structured (optimal) personalization strategy can create a direct and positive effect on customer satisfaction and loyalty (Kwon and Kim, 2012).

However, today personalization goes beyond this traditional perspective. Although current approaches often treat personalization as a subset or extension of segmentation, this narrow perspective remains insufficient in reflecting the true depth and meaning of the concept (Chandra et al., 2022). AI-supported segmentation strategies diverge from traditional methods through deep learning and clustering algorithms. Miceli et al. (2007) warn that the concepts of personalization and customization are frequently confused. However, Chandra et al. (2022) draws a clear line between the two. Personalization occurs when the brand recognizes the customer and takes appropriate steps (control lies with the company), whereas customization occurs when consumers take the reins and realize their own desires themselves. The process of value co-creation directly increases the service capability of organizations. This increase makes customization and personalization processes more effective and sustainable for both organizations and consumers (Kumar, 2007; Zhang and Chen, 2008). Consumers generally exhibit a positive attitude towards mass customization applications and derive a high level of satisfaction from their purchasing experiences. In particular, young, educated individuals with relatively good income levels stand out as the consumer group showing the most interest in such products (Goldsmith and Freiden, 2004).

Although personalization models in the literature are generally based on product variety and interaction intensity, it is known that excessive product variety creates "information overload" and leads to confusion among consumers. The fact that customers' capabilities and willingness regarding interaction are highly distinct (heterogeneous) poses a risk of inefficient investment for firms. The e-customer profiling framework, developed as a solution to this problem, proposes distinguishing between the "*content*" (benefit) and "*process*" (interaction) dimensions of personalization. In this

regard, Ricotta and Costabile (2007) focus on four fundamental dimensions to manage customer differences. These are the dimensions of value, knowledge, orientation, and relationship quality. Examining the personalization literature through a bibliometric study, Chandra et al. (2022) summarized the evolution of personalized marketing studies over the years via the alluvial diagram presented in Figure 2.

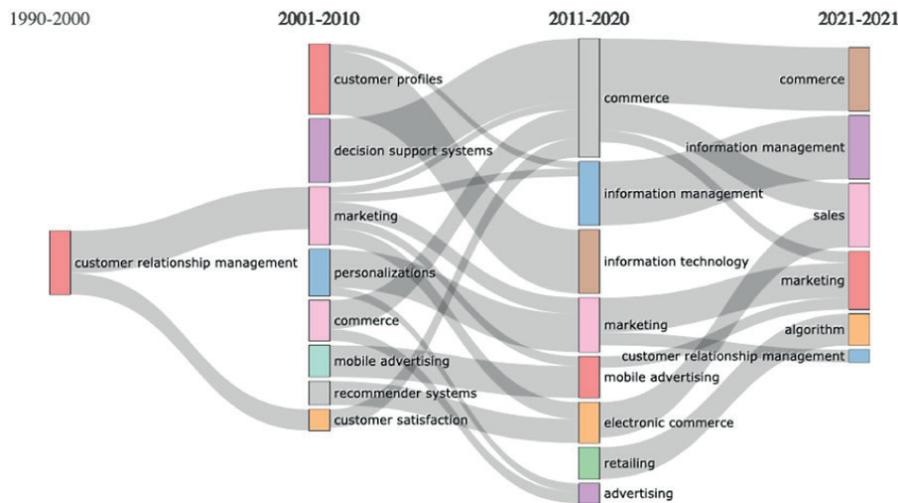


Figure 2. Alluvial diagram on the evolution of personalized marketing research

Source: Chandra, S., Verma, S., Lim, W. M., Kumar, S., & Dontbu, N. (2022). Personalization in personalized marketing: Trends and ways forward. *Psychology & Marketing*, 39(8), 1529-1562.

An examination of Figure 2 reveals that the concept of personalization, the foundations of which were laid in the 1990s with Customer Relationship Management (CRM), gained technical depth in the 2000s through recommendation systems and customer profiling technologies. Today, however, it is observed that this evolution, converging around information management and algorithms, has shifted its focus from relationships to direct sales and e-commerce performance.

A comprehensive classification system can contribute to more effective marketing practices and communication strategies, particularly when personalization is integrated with new technologies. With the integration of artificial intelligence technologies into marketing applications, personalization has ceased to be a one-dimensional concept in the literature; instead, it has transformed into a multi-layered structure (Figure 3) that differentiates

depending on the source of data used and its processing method (Cavdar-Aksoy et al., 2021).

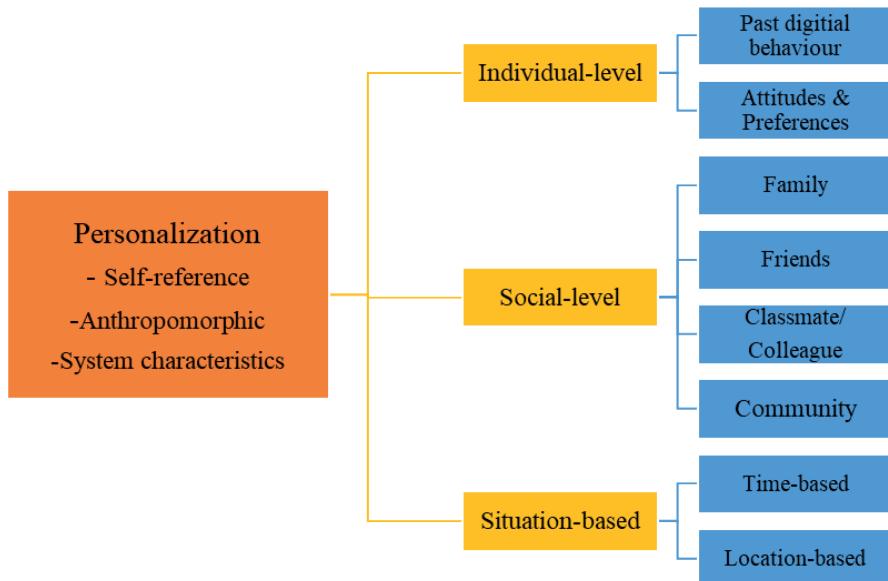


Figure 3. Proposed classification framework for personalization

Source: Cavdar Aksoy, N., Tumer Kabadayi, E., Yilmaz, C., & Kocak Alan, A. (2021). A typology of personalisation practices in marketing in the digital age. *Journal of marketing management*, 37(11-12), 1091-1122.

The framework in Figure 3 groups personalization practices under three main method headings: self-reference, anthropomorphic, and system characteristics. The information flow forming the basis of these methods is classified into three dimensions as individual, social, and situation-based approaches. This developed typology (Cavdar Aksoy et al., 2021) illustrates how brands enrich the consumer experience by utilizing a wide data pool ranging from past behaviours to real-time temporal data.

The Self-reference Method shapes communication by positioning the individual's self-concept at the center of the strategy, utilizing "you" language, addressing the user by name (e.g., "Hello Ali"), and referencing personal interests. Associating the targeted message directly with the individual facilitates easier cognitive processing of the information, ensures stronger memory retention, and promotes adoption by the consumer.

The Anthropomorphic Method involves attributing human characteristics (voice, gestures, facial expressions, emotional responses, etc.) to technology

or a system. Instead of a mechanical interaction through virtual assistants or chatbots, this method aims to create a “*lifelike*” dialogue environment akin to human-to-human communication that addresses the consumer’s social and emotional needs. Examples of this method include virtual assistants like Siri or Alexa that speak to the user and adjust their tone of voice; avatar-based virtual customer representatives that interact using facial expressions and gestures on websites (e.g., Ugi: Garanti BBVA); or the system using human and empathetic language such as “*Sorry, I couldn’t find what you were looking for, I’m a bit confused!*” instead of simply saying “*Error code 404*”. Such applications strengthen the user experience by rendering the interaction established with technology warmer and more accessible.

The System Characteristics Method refers to approaches that provide service to the consumer like a professional “*personal assistant*” by utilizing big data analysis and advanced algorithms. Through systems such as smart shopping carts or recommendation engines, it continuously analyses consumer behavior patterns in the background and creates the right value at the moment it is needed. One of the most current examples of the system characteristics method is the Amazon Dash Cart. Dash Cart is a high-tech shopping cart that automatically recognizes products while shopping in the grocery store, displays the total amount, and enables checkout without going to the register. Thanks to the cameras, weight sensors, and deep learning algorithms on the Amazon Dash Cart, it functions as a digital shopping assistant by instantly identifying the products added to the cart. While offering complementary product recommendations compatible with the consumer’s current selection, this smart system also eliminates the necessity of waiting at the checkout by automating the payment process in the background. Thus, AI-supported perception and decision-making systems transform the shopping process into a faster and personalized experience by processing the consumer’s real-time behavioral data.

2.2.1. Individual-level Personalization

Individual-level personalization represents the most traditional and widely adopted form of personalization within digital marketing. In this approach, the focus lies on the individual data traces generated by the consumer, independent of other individuals. The system treats the user as a singular and unique entity rather than merely a component of collective patterns. In this context, individual-level personalization is grounded in two fundamental data sources: past digital behaviours and attitudes and preferences.

Past digital behaviours encompass behavioral data—predominantly implicit in nature—such as clickstream data, purchase history, page view frequency, and viewing durations left by the consumer in the digital environment. AI-based algorithms analyse this data to generate individual predictions based on the user's past interest and interaction patterns, rather than relying on the traditional “*co-purchase*” logic. Thus, instead of the approach “*Users who viewed this item also viewed that*,” the system can offer more customized recommendations for content or products the user might be interested in, guided by their prior behaviours.

Attitudes and preferences, on the other hand, consist of data explicitly declared by the consumer to the system via surveys, registration forms, or profile settings. Directly specifying interests, favourite product categories, or content preferences falls within this scope. Since such data reflects the consumer's subjective evaluations, it assumes a more guiding and complementary function in the personalization process compared to behavioral data.

2.2.2. Social-level Personalization

Social-level personalization is grounded in the assumption that individual decisions are shaped by the social environment. In this approach, personalization integrates with social network analysis and collaborative filtering techniques; hence, the recommendations offered to the consumer are derived not solely from the individual's own data but also from the data of the social groups with which they interact. Consequently, recommendation systems take into account not only the user's singular preferences but also their position within the social relationship network and similarity patterns.

In this context, social-level personalization is structured through social circles possessing varying degrees of proximity. The family, situated in the narrowest circle, represents the social environment where the element of trust is highest and recommendations are powerfully influential. Classmates or colleagues, forming a wider circle, reflect the behavioral patterns of individuals who share similar needs and consumption motivations within an educational or professional context. Finally, communities occupy the widest circle. The general trends of groups sharing similar interests, tastes, or common goals (such as fan communities or clubs) become determinant factors in shaping individual recommendations.

2.2.3. Situation-based Personalization

Situation-based personalization can be considered a form of personalization closely related to the contextual marketing approach. In this approach, the

data source is derived from the conditions in which the individual finds themselves at a specific moment, rather than their relatively fixed characteristics. Consequently, situation-based personalization is inherently dynamic, capable of changing over time or even instantaneously.

In this scope, situation-based personalization relies primarily on time-based and location-based contextual variables. Time-based personalization refers to recommendations that vary depending on the time of day, the day of the week, or the specific time of the year the consumer is in. Location-based personalization, on the other hand, has gained importance with the proliferation of mobile technologies and encompasses personalized content triggered based on the consumer's geographical location (such as proximity to a physical store or being in a state of travel).

In this framework, situation-based personalization makes it possible to systematically correlate which contextual data sources nourish the different strategic approaches to personalization (such as self-reference or anthropomorphic methods). Current artificial intelligence applications aim for the highest level of interaction and perceived relevance by utilizing individual, social, and situation-based personalization levels in a hybrid manner (for instance, by recommending a product liked by the consumer's social circle, compatible with their past behaviours, and contingent upon their current location).

Artificial intelligence tools enable the more effective optimization of marketing strategies through their capabilities in predicting consumer behavior, performing sentiment analysis, and designing immersive experiences. The integration of these technologies into marketing applications not only increases conversion rates but also provides organizations with a significant competitive advantage in an increasingly data-driven market (Iyelolu et al., 2024). However, while the proliferation of artificial intelligence in the field of marketing signals the beginning of the hyper-personalization era, it also compels organizations to adopt a more responsible and cautious approach regarding data privacy, algorithmic bias, and ethical transparency (Wilson et al., 2024).

With the expansion of the digital ecosystem, the ways in which consumers acquire information about products and brands have significantly diversified. The development of social network services such as Facebook and Instagram enables consumers to access product-related information through various digital channels (Lee et al., 2024). Similarly, word-of-mouth communication (e-WoM and r-WoM) taking place on gaming and streaming platforms like Discord and Twitch is influential in shaping potential users' expectations

regarding products and services (Aydin & Sarica, 2024). In line with these developments, the diversification of consumer preferences and the increase in online touchpoints make the need for personalized marketing practices increasingly critical for organizations (Lee et al., 2024). The effectiveness of personalized marketing practices depends on continuous innovation and investments made in artificial intelligence (Iyelolu et al., 2024). However, it is emphasized that these practices need to be evaluated in conjunction with different digital technologies such as big data, blockchain, and wearable technologies (Tong et al., 2020; Chandra et al., 2022). This integrated approach contributes to carrying personalization to a more advanced level.

2.3. Hyper-Personalization and Its Applications

The acceleration of digitalization concomitant with Industry 4.0 brings about an expectation for a higher level of personalization in customer experience. With intensifying competition, brands are compelled to abandon traditional marketing and resort to more creative methods. At the center of this new era lies hyper-personalization, managed by big data analytics and artificial intelligence. Systems that were previously limited to simple product recommendations such as "*Customers who bought this item also bought that*" have today been replaced by AI-supported structures that adapt interactions, information, and recommendations to the individual in real-time. Machine Learning and Natural Language Processing (NLP) technologies have transformed static sales processes, formerly applied identically to everyone, into dynamic experiences completely specific to the customer.

Consider the scenario of sending a generic email titled "*Summer Deals*"; a hyper-personalization engine detects that a user consistently prefers boutique and quiet hotels during their recent vacations but viewed flight tickets within the last 24 hours and exited without purchasing. By analysing the upcoming weekend gap in the user's digital calendar and their payday, the system can push a notification to the user's mobile screen precisely on the evening of a busy and stressful workday: "*That cove far from the crowd is reserved for you, offering the exact quietness you seek, with an instant price advantage defined just for you!*". In this way, the system is capable of transforming a dreamed-of experience for the user into an undeniable, tangible offer.

Advanced algorithms such as Hierarchical Recurrent Neural Networks play a critical role in this process, which influences fundamental behaviours regarding "*how, when, and why*" the customer makes a purchase. These algorithms attempt to understand behaviours by analysing when and how users perform transactions. Thus, it becomes possible to present personalized

offers at the appropriate time that can increase users' loyalty and willingness to pay (Kumar et al., 2022). For instance, this technology can perfectly match the routine of an employee who stops by the same busy coffee chain every morning on their way to work using "*timestamp*" data. The system learns that the user places an order regularly at 08:00 every morning. A notification sent to their phone at 07:55, before the user even reaches the shop, saying "*Good morning! Your usual Oat Milk Latte has started being prepared; confirm now and pick up your coffee without waiting in that long morning rush line!*" ensures that abstract data analysis transforms into tangible comfort and loyalty for the user. A successful hyper-personalization strategy relies not only on technology but also on the harmonious operation of data infrastructure, decision mechanisms, design, and distribution processes (Valdez Mendoza et al., 2022).

This transformation is not limited solely to online platforms; it also paves the way for profound changes in physical retail. On-site customer profiling and hyper-personalization systems utilized in physical retail aim to digitize the in-store experience via deep learning methods. These systems are capable of creating purchasing profiles devoid of personally identifiable information by automatically analysing customers' demographic details such as age and gender, their instantaneous emotional states within the store, and how they interact with products (Micu et al., 2022). Whereas product placements and promotional content are identical for all users in traditional retailing, AI-supported smart systems can analyse the facial expression and age range of a user standing in the cosmetics section within a short time. The moment the customer puts the product back on the shelf, the content of the digital screen can automatically update to present a personalized product recommendation like "*Glow-boosting care treatment for your tired skin!*" instead of a generic advertisement, offering an incentive coupon valid at the checkout. This ensures the transformation of the user's instantaneous emotional state into purchasing motivation.

In the highly competitive retail ecosystem, the ability of new ventures (start-ups) to exist sustainably depends on their capacity to differentiate themselves in crowded markets. Despite having more limited resources compared to large-scale organizations, start-ups can achieve a significant competitive advantage thanks to their adaptability in decision-making and implementation processes. AI-supported hyper-personalization transforms this adaptability into a strategic competitive tool. Unlike the cumbersome decision structures of large organizations, start-ups can offer simultaneous and more personal experiences to a large number of users by utilizing real-time data. For example, while a large retail chain sends a standard "*Baby Products*

Discount" newsletter to all its users, a data-driven start-up can predict that diaper stocks are about to run low or that a transition to the next size up is needed by analysing a parent's recent purchase history. When this prediction is combined with a personalized notification delivered at the right time, it offers a value that directly corresponds to the user's actual need.

The Fast-Moving Consumer Goods (FMCG) sector stands at the forefront of the hyper-personalization revolution due to its dynamic structure where decisions are made instantaneously. While brands utilize AI-supported algorithms and Natural Language Processing (NLP) technologies to process big data in this field, they have moved the scope of analysis beyond words today. Organizations now read emojis, the most powerful non-verbal communication tool of the digital age (Aydin, 2024), as universal "*data signals*" that most rapidly indicate the consumer's current mood, emotional intensity, and needs. For example, while a traditional brand in the Fast Fashion sector shows the same shirt advertisement to everyone under the title "*Men's Wear Discount*", artificial intelligence analyses the increasing interaction on social media, especially on Friday evenings. A university student adding only a □ 🤔 (thinking face) or □ 🤔 (I don't know) emoji to a "*Undecided look in the mirror!*" photo shared before upcoming weekend plans or a first date is interpreted by the system as a silent request for style assistance. The algorithm captures this visual cue, examines the user's past streetwear preferences, and instead of presenting a standard product list, presents a personalized notification saying: "*End the worry of what to wear tomorrow: That Khaki Bomber Jacket and Parachute Pants outfit that fits your style perfectly has been prepared for you!*". Thus, a simple emoji transforms into intelligent style consultancy that eliminates one of the male consumer's biggest problems, the "*hassle of creating an outfit*", and converts into a one-click purchase.

Finally, Generative AI, based on advanced machine learning models, maximizes customer engagement and conversion rates by rendering hyper-personalized messaging strategies scalable within the retail sector. However, this technological transformation, while enhancing marketing efficiency, brings with it ethical responsibilities and integration challenges that must be addressed with caution. Research indicates that sustainability in technologies such as Generative AI and the Metaverse depends on the balance between innovation, data privacy, and ethical responsibilities (Chakranarayan, 2025). For instance, a customer receiving a message from their favourite cosmetics brand saying, "*Is your skin ready for winter? We have reserved your moisturizer for you!*" creates a warm touch that strengthens loyalty. However, the picture changes when such personalization crosses the privacy boundary. When the AI of a pharmacy application analyses a user's vitamin purchases and pregnancy-

related searches to send a notification regarding a situation they have not yet shared with their social circle, saying “*Special discount for you on stretch mark creams you will need in the first months of pregnancy!*”, technology ceases to be an assistant serving the customer and transforms into a creepy spy infiltrating the most private sphere. That moment represents the breaking point where the data is accurate but ethics are violated, and trust in the brand turns into fear within seconds. Consequently, the market leaders of the future will emerge from those who can balance the limitless power of artificial intelligence with their respect for human privacy. For in the digital age, true strategic superiority no longer depends solely on the speed of algorithms, but on how humanely and transparently those algorithms are managed.

2.4. The Privacy Paradox

The ethical concerns and data sensitivity arising from personalization and customization processes possess a subjective nature that varies from individual to individual. Customization based on user control is perceived as less ethically problematic by consumers compared to system-driven personalization (Treiblmaier et al., 2024). This situation demonstrates that despite the high utility potential of personalization, it generates a strong privacy tension among consumers. However, discussions regarding ethics and data privacy are predominantly addressed in the literature through the unilateral perspectives of disconnected disciplines such as law, morality, or psychology. Yet, data privacy is a multi-layered and complex process that affects both the internal and external stakeholders of an organization. Consequently, there is a need for a holistic research approach that transcends these narrow frameworks and converges different interest groups on a common ground.

Personalization, in its most general definition, is the optimization of the purchasing experience based on consumers’ personal data and preferences; however, consumer privacy concerns can significantly weaken the commercial effectiveness of online personalization efforts (Chellappa & Sin, 2005). In particular, the lack of transparency in data collection, storage, and processing procedures shakes the trust placed in data-driven marketing practices. As retailers increase the depth of personalized services, paradoxically, the consumers’ sense of distrust rises, and interaction declines. Indeed, research confirms that while explicit (transparent) data collection increases the intention to click, covert (implicit) collection suppresses this intention, thereby triggering the “*personalization paradox*” in the literature (Aguirre et al., 2015; Martin & Murphy, 2017; Chandra et al., 2022).

Although privacy concerns constitute a primary barrier to mass adoption, this obstacle can be surmounted through a fair “*value exchange*” mechanism established between consumers and brands. For instance, highly sensitive data such as heart rhythm or sleep patterns can be voluntarily shared by users in return for vital benefits like “*early disease warning*” offered by devices such as Apple Watch or Fitbit. This situation indicates that individuals relegate their privacy concerns to the background when the expected benefit exceeds the perceived risk (Pitta et al., 2003). The “*Privacy Calculus*” model explaining this phenomenon reveals that consumers’ risk-benefit analysis varies depending on the presentation mode of personalization (explicit/implicit) and that individual characteristics play a moderating role in this calculation (Xu et al., 2011; Aiolfi et al., 2021). In this delicate balance between the consumer and the brand, trust is the most critical element that mitigates negative effects (Pitta et al., 2003; Chellappa & Sin, 2005; Ho, 2006; Aguirre et al., 2015; Guo et al., 2016; Gürbüzler & Haşiloğlu, 2024; Aydin & Gürbüzler, 2025).

3. Conclusion

AI-based personalization technologies offer a unique strategic competitive advantage to businesses in today’s digital ecosystem. This high-level, need-anticipating personalization experience provided to consumers redefines customer interaction. This transformation process not only modernizes the ways organizations do business but also provides them with a much higher value creation capacity compared to traditional methods. Technologies such as Machine Learning, Natural Language Processing (NLP), and predictive analytics create a structural transformation that understands the consumer in real-time and anticipates their needs, going beyond merely automating marketing decision processes. However, this powerful transformation is not limited solely to the effectiveness of data-driven sales algorithms. On the contrary, sustainable success emerges at the point where the hyper-personalization capacity offered by artificial intelligence is blended with ethical principles, data privacy, transparency, and human oversight (Kedi et al., 2024; Al Prince et al., 2025). Current research clearly demonstrates that although businesses have a high appetite for technological investment, data privacy, implementation costs, and social trust expectations are critical breaking points determining the speed of this transformation.

Today, while predictive data analyses, chatbots, and autonomous decision systems create a significant transformation in businesses, they also bring along discussions regarding privacy, autonomy, and ethical responsibility. Organizations must now ask not only the question “*How much personalization can be done?*” but also “*Which type of personalization can be ethically and*

socially acceptable?”. Therefore, the future of digital marketing depends not merely on technological performance, but on the delicate balance between personalization, privacy, and ethics. At the point where this balance is disrupted, trust erodes rapidly. Conversely, artificial intelligence applications that converge personalization, privacy, and ethical principles within the same framework go beyond being a sales-oriented tool; they become a strategic lever that deepens user trust, produces social benefit, and strengthens long-term corporate reputation. Consequently, competitive advantage stems not from deploying artificial intelligence quickly, but from the ability to manage it in a responsible, ethical, and transparent manner. True superiority in digital marketing takes shape precisely here.

References

Aguirre, E., Mahr, D., Grewal, D., De Ruyter, K., & Wetzels, M. (2015). Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. *Journal of retailing*, 91(1), 34-49. <https://doi.org/10.1016/j.jretai.2014.09.005>

Aiolfi, S., Bellini, S., & Pellegrini, D. (2021). Data-driven digital advertising: benefits and risks of online behavioral advertising. *International Journal of Retail & Distribution Management*, 49(7), 1089-1110. <https://doi.org/10.1108/IJRD-10-2020-0410>

Al Prince, A., Siddiqui, H. A., Lakho, M. B., Ahmad, S., & Asghar, A. (2025). Leveraging Artificial Intelligence for Hyper-Personalized Marketing: Opportunities and Challenges in the Digital Era. *Inverge Journal of Social Sciences*, 4(3), 274-287. <https://doi.org/10.63544/ijss.v4i3.166>

Anshari, M., Almunawar, M. N., Lim, S. A., & Al-Mudimigh, A. (2019). Customer relationship management and big data enabled: Personalization & customization of services. *Applied computing and informatics*, 15(2), 94-101. <https://doi.org/10.1016/j.aci.2018.05.004>

Aydin, O. (2024). Emojilerin Hedonik ve Faydacı Mesajlar Üzerindeki Etkisi. *Pazarlama ve Pazarlama Araştırmaları Dergisi*, 17(2), 495-526. <https://doi.org/10.15659/ppad.17.2.1455256>

Aydin, O., & Gürbüzer, Ş. G. (2025). The Moderating Effect of E-Marketplaces Familiarity on The Relationship Between Trust and Risk Reduction Based on Product Types. *Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi*, (70), 361-376. <https://doi.org/10.30794/pausbed.1612001>

Aydin, O., ve Sarica, Y. (2024). Dijital Oyun Geri Bildirimlerinin Duygu Analizi ile İncelenmesi: e-WoM'dan r-WoM'a Geçiş Mümkün Mü? *3. Sektor Sosyal Ekonomi Dergisi*, 59(4), 2667-2683. <https://doi.org/10.15659/3.sektor-sosyal-ekonomi.24.11.2559>

Chakranarayan, V. (2025). Hyper-Personalization in E-commerce Through AI and Big Data. In *Data-Driven Decision Making for Sustainable Business Growth* (pp. 129-138). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-96530-2_12

Chandra, S., Verma, S., Lim, W. M., Kumar, S., & Donthu, N. (2022). Personalization in personalized marketing: Trends and ways forward. *Psychology & Marketing*, 39(8), 1529-1562. <https://doi.org/10.1002/mar.21670>

Chellappa, R. K., & Sin, R. G. (2005). Personalization versus privacy: An empirical examination of the online consumer's dilemma. *Information technology and management*, 6(2), 181-202. <https://doi.org/10.1007/s10799-005-5879-y>

Chinchanachokchai, S., Thontirawong, P., & Chinchanachokchai, P. (2021). A tale of two recommender systems: The moderating role of consumer expertise on artificial intelligence-based product recommendations. *Journal of*

Retailing and Consumer Services, 61, 102528. <https://doi.org/10.1016/j.jretconser.2021.102528>

Deng, W., Shi, Y., Chen, Z., Kwak, W., & Tang, H. (2020). Recommender system for marketing optimization. *World Wide Web*, 23(3), 1497-1517. <https://doi.org/10.1007/s11280-019-00738-1>

Goldsmith, R. E. (1999). The personalised marketplace: beyond the 4Ps. *Marketing Intelligence & Planning*, 17(4), 178-185. <https://doi.org/10.1108/02634509910275917>

Goldsmith, R. E., & Freiden, J. B. (2004). Have it your way: consumer attitudes toward personalized marketing. *Marketing Intelligence & Planning*, 22(2), 228-239. <https://doi.org/10.1108/02634500410525887>

Guo, X., Zhang, X., & Sun, Y. (2016). The privacy–personalization paradox in mHealth services acceptance of different age groups. *Electronic Commerce Research and Applications*, 16, 55-65. <https://doi.org/10.1016/j.elerap.2015.11.001>

Gürbüzer, Ş. G., ve Haşiloğlu, S. B. (2024). Dijital Pazarlama Güven Ölçeğinin Geliştirilmesi. *İnternet Uygulamaları ve Yönetimi Dergisi*, 15(1), 1-23. <https://doi.org/10.34231/iuyd.1398034>

Habil, S., El-Deeb, S., & El-Bassiouny, N. (2023). AI-based recommendation systems: the ultimate solution for market prediction and targeting. In *The Palgrave handbook of interactive marketing* (pp. 683-704). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-14961-0_30

Hemalatha, R., Amulya, G., & Lalitha, C. H. S. (2024, November). AI-Driven Customer Segmentation for Personalized Marketing. In *2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES)* (pp. 1-5). IEEE. <https://doi.org/10.1109/IC3TES62412.2024.10877505>

Ho, S. Y. (2006). The attraction of internet personalization to web users. *Electronic markets*, 16(1), 41-50. <https://doi.org/10.1080/10196780500491162>

Ho, S. Y., & Bodoff, D. (2014). The effects of web personalization on user attitude and behavior. *MIS quarterly*, 38(2), 497-A10. Available online at: <https://www.jstor.org/stable/26634936>

Hung, L. P. (2005). A personalized recommendation system based on product taxonomy for one-to-one marketing online. *Expert systems with applications*, 29(2), 383-392. <https://doi.org/10.1016/j.eswa.2005.04.016>

Iyelolu, T. V., Agu, E. E., Idemudia, C., & Ijomah, T. I. (2024). Leveraging artificial intelligence for personalized marketing campaigns to improve conversion rates. *International Journal of Engineering Research and Development*, 20(8), 253-270. Available online at: <https://www.ijerd.com/paper/vol20-issue8/2008253270.pdf>

Jiang, T., & Tuzhilin, A. (2006). Segmenting customers from population to individuals: Does 1-to-1 keep your customers forever?. *IEEE Transactions on knowledge and data engineering*, 18(10), 1297-1311. <https://doi.org/10.1109/TKDE.2006.164>

Kedi, W. E., Ejimuda, C., Idemudia, C., & Ijomah, T. I. (2024). AI software for personalized marketing automation in SMEs: Enhancing customer experience and sales. *World Journal of Advanced Research and Reviews*, 23(1), 1981-1990. <https://doi.org/10.30574/wjarr.2024.23.1.2159>

Kumar, A. (2007). From mass customization to mass personalization: A strategic transformation. *International Journal of Flexible Manufacturing Systems*, 19(4), 533-547. <https://doi.org/10.1007/s10696-008-9048-6>

Kumar, S., Ashoka Rajan, R., Swaminathan, A., & Johnson, E. (2022). Hyper-personalization and its impact on customer buying behaviour. In *Data Intelligence and Cognitive Informatics: Proceedings of ICDICI 2022* (pp. 649-664). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6004-8_50

Kwon, K., & Kim, C. (2012). How to design personalization in a context of customer retention: Who personalizes what and to what extent?. *Electronic Commerce Research and Applications*, 11(2), 101-116. <https://doi.org/10.1016/j.elerap.2011.05.002>

Lee, G. H., Lee, K. J., Jeong, B., & Kim, T. (2024). Developing personalized marketing service using generative AI. *IEEE Access*, 12, 22394 <https://doi.org/10.1109/ACCESS.2024.3361946>

Martin, K. D., & Murphy, P. E. (2017). The role of data privacy in marketing. *Journal of the Academy of Marketing Science*, 45(2), 135-155. <https://doi.org/10.1007/s11747-016-0495-4>

Miceli, G. N., Ricotta, F., & Costabile, M. (2007). Customizing customization: A conceptual framework for interactive personalization. *Journal of Interactive Marketing*, 21(2), 6-25. <https://doi.org/10.1002/dir.20076>

Micu, A., Capatina, A., Cristea, D. S., Munteanu, D., Micu, A. E., & Sarpe, D. A. (2022). Assessing an on-site customer profiling and hyper-personalization system prototype based on a deep learning approach. *Technological Forecasting and Social Change*, 174, 121289. <https://doi.org/10.1016/j.techfore.2021.121289>

Mocean, L., & Pop, C. M. (2012). Marketing recommender systems: a new approach in digital economy. *Informatica Economică*, 16(4), 142-149. Available online at: <https://revistaie.ase.ro/64.html>

Montgomery, A. L., & Smith, M. D. (2009). Prospects for Personalization on the Internet. *Journal of Interactive Marketing*, 23(2), 130-137. <https://doi.org/10.1016/j.intmar.2009.02.001>

Murray, K. B., & Häubl, G. (2009). Personalization without interrogation: Towards more effective interactions between consumers and feature-based recommendation agents. *Journal of Interactive Marketing*, 23(2), 138-146. <https://doi.org/10.1016/j.intmar.2009.02.009>

Pathak, B., Garfinkel, R., Gopal, R. D., Venkatesan, R., & Yin, F. (2010). Empirical analysis of the impact of recommender systems on sales. *Journal of Management Information Systems*, 27(2), 159-188. <https://doi.org/10.2753/MIS0742-1222270205>

Pitta, D. A., Franzak, F., & Laric, M. (2003). Privacy and one-to-one marketing: resolving the conflict. *Journal of Consumer Marketing*, 20(7), 616-628. <https://doi.org/10.1108/07363760310506157>

Ricotta, F., & Costabile, M. (2007). Customizing customization: A conceptual framework for interactive personalization. *Journal of interactive marketing*, 21(2), 6-25. <https://doi.org/10.1002/dir.20076>

Sunikka, A., & Bragge, J. (2012). Applying text-mining to personalization and customization research literature—Who, what and where? *Expert Systems with Applications*, 39(11), pp. 10049–10058. <https://doi.org/10.1016/j.eswa.2012.02.042>

Tong, S., Luo, X., & Xu, B. (2020). Personalized mobile marketing strategies. *Journal of the Academy of Marketing Science*, 48(1), 64-78. <https://doi.org/10.1007/s11747-019-00693-3>

Treiblmaier, H., Madlberger, M., Knotzer, N., & Pollach, I. (2004, January). Evaluating personalization and customization from an ethical point of view: An empirical study. In *37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the* (pp. 10-pp). IEEE. <https://doi.org/10.1109/HICSS.2004.1265434>

Valdez Mendia, J. M., & Flores-Cuautle, J. D. J. A. (2022). Toward customer hyper-personalization experience—A data-driven approach. *Cogent Business & Management*, 9(1), 2041384. <https://doi.org/10.1080/23311975.2022.2041384>

Verma, P., & Sharma, S. (2020). Artificial intelligence-based recommendation system. In 2020 2nd international conference on advances in computing, communication control and networking (ICACCCN) (pp. 669-673). IEEE. <https://doi.org/10.1109/ICACCCN51052.2020.9362962>

Verma, S., & Yadav, N. (2021). Past, present, and future of electronic word of mouth (e-WoM). *Journal of interactive marketing*, 53(1), 111-128. <https://doi.org/10.1016/j.intmar.2020.07.00>

Vesanen, J. (2007). What is personalization? A conceptual framework. *European Journal of Marketing*, 41(5/6), 409-418. <https://doi.org/10.1108/03090560710737534>

Wilson, G., Johnson, O., & Brown, W. (2024). Exploring the use of artificial intelligence in personalizing marketing campaigns. <https://doi.org/10.20944/preprints202408.0007.v1>

Xu, H., Luo, X. R., Carroll, J. M., & Rosson, M. B. (2011). The personalization privacy paradox: An exploratory study of decision-making process for location-aware marketing. *Decision support systems*, 51(1), 42-52. <https://doi.org/10.1016/j.dss.2010.11.017>

Yılmaz, M. A., & Aydın, O. (2023). Online Alışveriş Sürecinde Fare Hareketlerinin İzlenmesi: Kullanıcı Deneyimine Yönelik Alternatif Bir Araştırma. *İnternet Uygulamaları ve Yönetimi Dergisi*, 14(1), 16-28. <https://doi.org/10.34231/iuyd.1296594>

Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. *Complex & intelligent systems*, 7(1), 439-457. <https://doi.org/10.1007/s40747-020-00212-w>

Zhang, X., & Chen, R. (2008). Examining the mechanism of the value co-creation with customers. *International Journal of Production Economics*, 116(2), 242-250. <https://doi.org/10.1016/j.ijpe.2008.09.004>