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Abstract 

In approximation theory, Korovkin-type theorems are well used since they 

provide us to determine the uniform convergence of positive linear 

operators to identity by using only three functions {1, x, x²}. They have 

been investigated in different function spaces, generally, by using different 

concepts of convergences, by using q -calculus and rarely fractional 

calculus. In this chapter,  by fractional calculus which is a branch of analysis 

dealing with derivatives and integrals of arbitrary order, fractional 

Korovkin-type trigonometric approximation results will be presented via 

P -statistical convergence which depends on a power series method. Also, 

as an application of our theorems various type examples will be constructed. 

1. Introduction and Preliminaries 

Weierstrass theorem which has a complicated proof deals with the 

approximation of algebraic and trigonometric polynomials to a continuous 

function on a closed interval and it has a key role in the development of 

approximation theory [33]. Since this proof is hard to follow, many 

mathematicians aim to give a simpler alternative proof. One of these 

mathematicians is Bernstein who has presented a short, smart proof by 

introducing Bernstein polynomials [8], [22]. Then this proof has been 
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extended not only for positive linear but also nonlinear operators [6], [7], 

[10], [13], [21], [24], [27]. The limit used in these approximation 

theorems is the classical limit of operators. But what if the classical limit 

fails? In the case that the classical limit fails, different kinds of convergences 

have been introduced [4], [5], [14], [16], [30], [32]. One of these 

concepts is statistical convergence and the main motivation behind it is to 

replace finite sets of indices in ordinary convergence with sets of density 

zero. These concepts are effective to use since they generalize the ordinary 

convergence. Therefore, they have been considered in probability, measure 

and number theory, optimization, summability, trigonometric series and 

also approximation theory which has significant applications in polynomial 

approximation, functional analysis, differential and integral equations [18]. 

Recently, approximation theory has also been used in feedforward neural 

networks (FFNs), ReLU networks and deep learning which depends on 

structured deep neural networks [25], [31]. These results have successful 

applications in many areas of science and technology. Therefore, it is 

important to make contributions to the existing literature of 

approximation theory, especially Korovkin-type approximation theory.  

Fractional calculus is the branch of analysis which deals with the 

investigation of integrals and derivatives of arbitrary order. Of course, 

integrals and derivatives are the fundamental concepts of analysis and it is 

interesting to wonder the non-integer order derivative of a function. 

Indeed, fractional calculus has a long mathematical history which has 

started with a letter between Leibniz and L’Hospital. The meaning of the 

derivative of 

1

2
 order has been discussed in this letter and it has not taken 

into consideration enough up to Liouville, Grünwald, Letnikov and 

Riemann. Fractional derivatives have developed as a pure theoretical area 

of mathematics for three centuries but from the late 1900’s, they have 

found practical applications in real world; for example it has been shown 

that fractional derivatives and integrals are very appropriate to describe the 

properties of polymers, rocks, different materials and processes. They also 

provide an important tool in physics, geology, earthquake dynamics, 

bioengineering, eloctromagnetic waves, mechanics [12], [26], [28]. 

Indeed, the existing mathematical theory of fractional calculus is behind 

the necessities of mathematical modellings of all these applications in real 

world. Therefore, it is important to investigate some results of analysis 

from the perspective of fractional calculus. 

In the present chapter, the first aim is to examine fractional 

trigonometric Korovkin-type results for a sequence of positive linear 
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operators with the use of statistical convergence depending on a power 

series, shortly P -statistical convergence. We also provide examples as an 

application of our theorems. We should point out that using P -statistical 

convergence in fractional Korovkin theory is the new idea of this study and 

it is important to note that there are a few papers which combine fractional 

calculus and approximation theory but very rare [1], [2], [3], [11], [19], 

[23]. 

Now we are ready to collect some basic notion, definitions and also the 

known results which will be needed along the paper. 

The natural density of Gℕ is given by  

   
1

: lim # :
k

G n k n G
k




    

if the limit exists where # E  denotes the cardinality of E  and ℕ is the set 

of all natural numbers. If   0G   for every 0  where 𝐺𝜀 =

{𝑛 ∈  ℕ: |𝑠𝑛 − 𝑙| ≥ 𝜀} then  ns s  is said to be statistically convergent to 

𝑙 [15], [17], [29]. Let  np  be sequence of real numbers such that for all 

2, 0nn p  , and   1

1

1

0, : n

n

n

p p t p t






  with a radius of convergence

 0,R  . Then power series method is defined as follows: 

 Let also 

𝐶𝑝 ≔ { 𝑓: (−𝑅, 𝑅)  →  ℝ |  lim
0<𝑡→𝑅−

1

𝑝(𝑡)
 𝑓(𝑡) 𝑒𝑥𝑖𝑠𝑡𝑠 } 

and 

    1

1

: | :
p

n

p n s n n s p

n

C s s p t p t s withradiusof convergence Rand p C






 
     
 

 , 

 
1

0
1

1
lim lim n

n n
t R

n

P x p t s
p t




 


    

where the functional lim:
ppP C   ℝ and then it is said that s is P

−convergent [9], [20]. Consider the following example:  let  1 ,
n

ns    

for 1, 1nn p   then 
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 
1

1,
1

R p t
t

 


 and   

  1

1
1

lim 1 0n

n
t

n

t s t








   

which means that  ns s  is P -convergent to 0  but s is not convergent. 

Therefore we can say that power series method is more effective.  

 If a convergent sequence is also P -convergent to same limit then it is 

said that P  is regular and it is characterized by the following condition:  

 
lim 0,

n

n

t R

p t

p t
  for every n  ℕ 

 [9], [20]. 

 By combining statistical convergence and power series, Ünver and 

Orhan [32] have recently introduced P -statistical convergence and have 

presented a Korovkin-type theorem for positive linear operators defined on 

 0,1C , the space of all continuous functions on  0,1 . 

Now we are ready to recall P -statistical convergence and Caputo 

derivative which are the main tools of our results. 

Let P be regular and G  ℕ. If  

 
 

1

0

1
: lim n

p n
t R

n G

G p t
p t






 


   

exists then it is said to be the P -density of G . One can immediately 

observe that if  p G  exists then    0,1p G   [32].  

Let  ns s be a sequence of real numbers and let P  be regular. If for 

every 0    

 
1

0

1
lim 0n

n
t R

n G

p t
p t







 


  

that is,   0p G   for every 0  , then s is said to be P -statistically 

convergent to l  and we denote it by limp nst s l  [32].  
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In order to show that statistical convergence does not imply P -

statistical convergence and vice versa, illustrative examples have been 

provided in [32]. Therefore we can emphasize that our results make 

important contribution to the existing literature.  

There are many possible generalizations of  
n

n

d
f x

dx
 in the case of 

n  ℕ. Some of them are Riemann-Liouville, Caputo, Grünwald-

Letnikov, Weyl, Riesz and they are well studied by many mathematicians. 

These different definitions of fractional derivatives give the oppurtunity to 

study with the most suitable one with the problem and to obtain the best 

solution. Although there are important relations between these definitions, 

the physical meanings of them differ from each other. For example, an 

attractive difference between Riemann-Liouville and Caputo is the 

derivative of a constant. The Caputo derivative of a constant is zero but for 

a finite lower bound Riemann-Liouville derivative is not zero. In order to 

give a physical comment of a problem, it is necessary to be satisfied that 

the derivative of a constant is zero. Hence, Caputo derivatives are well 

used in the existing literature and here we consider them. 

Throughout the paper we consider the closed interval  , ,J      

we let  be a positive real number, m  is the ceiling of the number  , i.e., 

m     ,   is the Gamma function and 

𝐴𝐶(𝐽) = { 𝑓: 𝐽 → ℝ, 𝑓 𝑖𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 }, 

𝐴𝐶𝑚(𝐽) = { 𝑓: 𝐽 → ℝ, 𝑓(𝑚−1)  ∈ 𝐴𝐶(𝐽) }. 

Then, the left and right Caputo fractional derivatives of  mf AC J  

are defined by 

   
 

     
1

*

1
:

y
m m

D f y y t f t dt
m








 





 
    

for y J ,  

 
 

 
     

11
:

m

m m

y

D f y y f d
m





  




 
 
    



Fractional Trigonometric Korovkin Theory Via Statistical Convergence With Respect To Power… | 18 

for y J , respectively. Here, we also let 
 
0 0

*
,D f f D f f

  
   on J   

and suppose for 
   *

, 0y D f y





    and for  , 0.y D f y


    

The followings are well known from [1], [2], [3].  

1. If 𝜇 > 0, 𝜇 ∉ ℕ,  1, mm f C J      and 
   m

f L J  

then 
     *

0, 0.D f D f 

 
 
     

2. Let y J be fixed. For  10, , mm f C J        and 

 f L J , take into consideration the following Caputo fractional 

derivatives: 

   
 

       
1

*

1
, : : , ,

y
m m

f x

x

U x y D f y y t f t dt for y x
m

 


 
   

  

 

and 

   
 

 
       

11
, : : , , .

m x
m m

f x

y

V x y D f y y f d for y x
m

    




 
    

    

Then for each fixed  , ,.fx J U x  and  ,.fV x  are continuous on 

 ,x   and  , ,x  respectively. Furthermore,    .,. , .,.f fU V  are 

continuous on J J  in the case  .mf C J  

 3. If  g C J J  , then     
 ,

: ,. ,
x

h x w g x





  and 

    
 ,

: ,. ,
x

r x w g x


  are continuous for any 0   at the point 

x J  where  , , 0w f     is the modulus of continuity. 

 4. For any 0  ,  

  
 ,

sup ,. ,f x
x J

w U x





  

and 
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                  
 ,

sup ,. ,f x
x J

w V x







  

if   1mf C J  with 
   .m

f L J  

 5. By setting  
1

1 1
, : ,n nT  
     we can write  

     
1

, 0 0

1

m
k

n m n n

k

T f f K T e e T 





   


  

   
 

  
 , , , ,, ,

sup ,. , sup ,. ,n f n n f nx x
x J x J

w U x w V x 

    
   


 

   
    

   
 

    
 

  
 

1

1
, 0 0 , ,, ,

sup ,. , sup ,. ,n n f n f nx x
x J x J

T e e w U x w V x 
   

  


 

 
    

 
 

where 

 

 

   

 

 

 

1

,

''2 2 1 2
max , , , ' , ,..., ,

1 2 2! 1 !

m

m

ff
K f f

m

 



   

 

   
  

      
 

       : , : sin
4

x x

y x
y y y x y y   

  
      

 
 and  0 1e y  on 

J  and nT  are positive linear operators from  C J  into  C J . Notice 

that the sum in the above inequality collapses if  0,1 .  

 

2. Fractional Calculus and P -statistical Convergence 

In this section, we present our main results which deal with the 

fractional trigonometric approximation in different function spaces by P -

statistical convergence. Throughout the section, 

 we let 𝜇 > 0, 𝜇 ∉ ℕ, .m       
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Theorem 1. ([2]) Let    :nT C J C J  be positive linear operators. If 

the sequence ,n   converges to 0  as n  and   0nT e  is uniformly 

convergent to 0e  on ,J  then   nT f  converges uniformly to f on J  

for every  mf AC J  with 
   .m

f L J  Also, this uniform 

convergence is still true on J  when  .mf C J   

In order to obtain P -statistical version of Theorem 1, we first need the 

following lemma. 

Lemma 1. Let P  be regular and    :nT C J C J  be positive linear 

operators. If  0 0lim 0P nst T e e    and ,lim 0P nst    then 

 lim 0
k

P nst T    for every 1,2,..., 1.k m   

 Proof. Let  1,2,..., 1k m   be fixed. With the use of Hölder inequality 

for positive linear operators which has been obtained in [24], 

         
1

1
, 0 0 ,2

k
k k k k

n n n nT T e e



    

 


 

   
 

 

has been obtained in [3]. Now let us define the following sets: 

𝐺 = { 𝑛 ∈ ℕ: ∥ 𝑇𝑛(|𝜓|𝑘) ∥ ≥ 𝜀 } 

𝐺1 = { 𝑛 ∈ ℕ: (𝜌𝑛,𝜇)
𝑘

∥ 𝑇𝑛(𝑒0) − 𝑒0 ∥
𝜇+1−𝑘

𝜇+1 ≥
𝜀

2(2𝜋)𝑘
 } 

𝐺2 = { 𝑛 ∈ ℕ: 𝜌𝑛,𝜇 ≥
1

2𝜋
 (

𝜀

2
)

1

𝑘
 }. 

Then it is immediate that 1 2.G G G   Also define the following sets: 

𝐺1
′ = { 𝑛 ∈ ℕ: 𝜌𝑛,𝜇 ≥

1

√2𝜋
 (

𝜀

2
)

1

2𝑘
 } 

                      𝐺1
′′ = { 𝑛 ∈ ℕ: ∥ 𝑇𝑛(𝑒0) − 𝑒0 ∥≥ (

𝜀

2(2𝜋)𝑘)

𝜇+1

2(𝜇+1−𝑘)
 }. 
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Then it follows that 1 1 2' '' .G G G G    

Hence,  

       ' ''
21 1

1 1 1 11 1 1 1n n n n

n n n n

n G n Gn G n G

p t p t p t p t
p t p t p t p t

   

  

       

holds and  

 lim 0,
k

P nst T    for each 1,2,..., 1k m   by the hypotheses. 

Thus we complete the proof. □  

Now we can present the first fractional approximation result via P -

statistical convergence.  

 

Theorem 2. Let P  be regular and    :nT C J C J  be positive 

linear operators. If  0 0lim 0P nst T e e    and ,lim 0P nst    

then  lim 0P nst T f f    for every 

 mf AC J  such that 
   m

f L J . 

 Proof. Let  mf AC J  with 
   m

f L J . It is known that  

       
11

1
, 0 0 , , 0 0

1

2 2 ,
m

k

n m n n n n n

k

T f f H T e e T T e e  
    








       

 


 

where 

  
 

  
  , , , ,, ,

max ,sup ,. , , sup ,. , .m m f n f nx x
x J x J

H K w U x w V x    
 


 



 Again define the followings: 

𝐹 = { 𝑛 ∈ ℕ: ∥ 𝑇𝑛(𝑓) − 𝑓 ∥≥ 𝜀 } 

𝐹𝑘 = { 𝑛 ∈ ℕ: ∥ 𝑇𝑛(|𝜓|𝑘) ∥ ≥
𝜀

(𝑚 + 2)𝐻𝑚,𝜇
 } , 𝑘 = 1, 2, … , 𝑚 − 1 

𝐹𝑚 = { 𝑛 ∈ ℕ: ∥ 𝑇𝑛(𝑒0) − 𝑒0 ∥≥
𝜀

(𝑚 + 2)𝐻𝑚,𝜇
 } 
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𝐹𝑚+1 = { 𝑛 ∈ ℕ: 𝜌𝑛,𝜇 ≥ (
𝜀

2(𝑚 + 2)𝐻𝑚,𝜇
)

1

𝜇

 } 

𝐹𝑚+2 = { 𝑛 ∈ ℕ: 𝜌𝑛,𝜇
𝜇

∥ 𝑇𝑛(𝑒0) − 𝑒0 ∥
1

𝜇+1≥
𝜀

2(𝑚 + 2)𝐻𝑚,𝜇
 }. 

Then it follows that 

2

1

.
m

i

i

F F




  If we also define the following sets,  

𝐹𝑚+3 = { 𝑛 ∈ ℕ: ∥ 𝑇𝑛(𝑒0) − 𝑒0 ∥≥ (
𝜀

2(𝑚 + 2)𝐻𝑚,𝜇
)

𝜇+1

2

} 

and 

𝐹𝑚+4 = { 𝑛 ∈ ℕ: 𝜌𝑛,𝜇 ≥ (
𝜀

2(𝑚 + 2)𝐻𝑚,𝜇
)

1

2𝜇

 } 

then we have 2 3 4m m mF F F     and 

4

1

.
m

i

i

F F




  From the hypotheses, 

we obtain   0P F   and this completes the proof. □  

If we consider  mC J  instead of  ,mAC J  then we can slightly 

modify the above theorem. For this, let us prove the next lemma. 

Lemma 2. Let P  be regular and    :nT C J C J  be positive linear 

operators. If  ,lim 0P nst    then we have 

  
 , ,

lim sup ,. , 0P f n x
x J

st w U x  




 
  

 
 

 and  

  
 ,

,lim sup ,. , 0.
x

P f n
x J

st w V x





 
  

 
 

 

Proof.  It is already known from [1], [2], that there exists 0 1,x x J  such 

that  
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  
 

  
 

 
0

, 0 , ,, ,
sup ,. , ,. , :f n f n nx x
x J

w U x w U x p   
  



   

and  

  
 

  
 

 
1

, 1 , ,, ,
sup ,. , ,. , : .f n f n nx x
x J

w V x w V x q   
  

 


   

By the hypotheses, we get  𝛿𝑃({ 𝑛 ∈ ℕ: 𝜌𝑛,𝜇 ≥ 𝛿 }) = 0  for any 0.   

Then, by following the similar arguments in [3], we have that  

{ 𝑛 ∈ ℕ: 𝑝(𝜌𝑛,𝜇) ≥ 𝜀 } ⊆ { 𝑛 ∈ ℕ: 𝜌𝑛,𝜇 ≥ 𝛿1 } 

 and  

{ 𝑛 ∈ ℕ: 𝑞(𝜌𝑛,𝜇) ≥ 𝜀 } ⊆ { 𝑛 ∈ ℕ: 𝜌𝑛,𝜇 ≥ 𝛿2 } 

which imply  

     
, 1,

1 1

::

1 1
,

nn

n n

n n

nn p

p t p t
p t p t


  

 



   

     
, 2,

1 1

::

1 1
.

nn

n n

n n

nn q

p t p t
p t p t


  

 



   

Then by taking limit in both sides and using the hypotheses, we 

complete the proof.  

Now we can present the following result in  mC J . Since the technic 

of the proof is similar in earlier results, we omit the proof here. 

Theorem 3. Let P  be regular and    :nT C J C J  be positive 

linear operators. If  0 0lim 0P nst T e e    and ,lim 0P nst    

then  lim 0P nst T f f    for every  .mf C J  

 

3. Applications 

This section is devoted to the construction of special sequences of 

operators which support our results. Here, it is worthy to note that it is 

not possible to have approximation by earlier results. But we overcome this 
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critical weakness of ordinary convergence and statistical convergence with 

the use of our method. 

Example 1. Define the sequences  np  and  ns  as follows: 

0, 21, 2
, .

0, 2 1 , 2 1
n n

n kn k
p s

n k n n k

 
  

    
 

One can obtain that the method P  is regular and also observe that 

𝐾𝜀 = { 𝑛 ∈ ℕ: |𝑠𝑛 − 0| ≥ 𝜀 } ⊆ { 𝑛 = 2𝑘 + 1: 𝑘 ∈ ℕ } 

holds for every 0  . Then we have  

 
 

1

0

1
lim 0n

P n
t R

n K

K p t
p t








 


   

i.e., lim 0P nst s  . Let  

 
0

2
; ,

2 2

k n kn

n

k

n k x x
B f x f

k n

  


 





       
        

     
  

 ns ,  np  given above and define  

     ; 1 ; , ,n n nT f x s B f x x J n    ℕ. 

Let  
1

,
2

mf AC J    with 
   .m

f L J  Then 

 0 01, lim 0,P nm st T e e        

 
33
22

3

4

1
1n nT s

n

 
 

  
 

 

and 

 
3 3 33
2 2 22

1 3
,
2 4

1 1
1

8
8

n n n
n

T T s

n

   
   

      
  

. 

Then nT satisfies the conditions of our theorem.  
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Example 2. Define the sequences  np ,  nu  and  ns  as follows: 

1, 2
0, 21, 2

, , .1
0, 2 1 , 2 1 , 2 1

2

n n n

n k
n kn k

p u s
n k n k n n k

   
    

      


 

One can obtain that the method P  is regular and also observe that 

𝐾𝜀 = { 𝑛 ∈ ℕ: |𝑠𝑛 − 0| ≥ 𝜀 } ⊆ { 𝑛 = 2𝑘 + 1: 𝑘 ∈ ℕ } 

 holds for every 0  . Then we have  

 
 

1

0

1
lim 0n

P n
t R

n K

K p t
p t








 


   

i.e., lim 0P nst s  , lim 1P nst u  . 

Also define  

   
0

2
; 1 , ,

2 2

k n kn
n n

n n

k

n u x u xk
T f x s f x J n

k n

 


 





       
           

     


 ℕ. 

Let  
1

,
2

mf AC J    with 
   .m

f L J  Then 

 0 01, lim 0P nm st T e e       , 

   

3
33 42
22

1
1 1n n nT s u

n
 
   

      
  

 

and 

   

3
3 3 33 42
2 2 22

1
,
2

1 1 1
1 1

8 8
n n n n

n
T T s u

n
   

     
          

   
. 

Then nT  satisfies the conditions of our theorem. Again it is not possible 

to approximate f  by using  nT f since the sequence  ns  is not 

convergent or statistically convergent. Furthermore it is still possible to 

approximate f  by using  nT f  for every  mf AC J  with 
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   m
f L J  via P −statistical convergence since  ns  is P

−statistically convergent to 0. 

Example 3. Construct nT  by  

   ; ;n n nT f x s B f x  

where  ;nB f x  is given in Example 1 and 

0, 2 1, 2
, .

0, 2 1, 2 1
n n

n k n k
s p

n kn n k

 
  

   
 

One can obtain that the method P  is regular and lim 1P nst s  . As in 

the earlier examples, we notice that nT  satisfies our conditions for 

 
1

,
2

mf AC J    with 
   .m

f L J  

Example 4. Define the sequences  np ,  nu  and  ns  as follows: 

1, 2
0, 21, 2

, , .1
0, 2 1 , 2 1 , 2 1

2

n n n

n k
n kn k

p u s
n k n k n n k

   
    

      


 

One can obtain that the method P  is regular and also observe that  

𝐾𝜀 = { 𝑛 ∈ ℕ: |𝑠𝑛 − 0| ≥ 𝜀 } ⊆ { 𝑛 = 2𝑘 + 1: 𝑘 ∈ ℕ } 

holds for every 0  . Then we have 

 
 

1

0

1
lim 0n

P n
t R

n K

K p t
p t








 


   

i.e., lim 0P nst s  , lim 1P nst u  . 

Then define  

   
0

2
; 1 , ,

2 2

k n kn
n n

n n

k

n u x u xk
T f x s f x J n

k n

 


 





       
           

     
  ℕ. 
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Now let  
1

,
4

f AC J    with  ' .f L J  Then 

 0 01, lim 0,P nm st T e e        by applying Hölder inequality 

for 

8 8
,

5 3
p q  , we obtain 

   

5
55 82
44

1
1 1n n nT s u

n
 
   

      
  

 

and 

   

5
5 5 55 82
4 4 44

1 5 5
,
4 4 4

1 1 1
1 1

4 4

n n n n
n

T T s u
n

   
     

          
   

 

which imply 1
,
4

lim 0P
n

st   . 

Then nT  satisfies the conditions of our theorem. Again it is not possible 

to approximate f  by using  nT f  since the sequence  ns  is not 

convergent or statistically convergent. Furthermore it is still possible to 

approximate f  by using  nT f   for every  mf AC J  with 

   m
f L J  via P −statistical convergence since  ns  is P

−statistically convergent to 0. 
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