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The Dynamics of Jump Intensity in Stock Prices: 
BIST 100 Example 
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Abstract

This paper is concerned with the estimation of the time-varying jump 
intensity of the Borsa Istanbul 100 (BIST 100) index. In the estimation 
phase, we utilize a new two-step method. In the first step, we employ wavelet 
filters to compute the number of jumps as a counting process. Next, we apply 
an integer-valued generalized autoregressive conditional heteroscedasticity 
model to examine the deterministic and stochastic components of the jump 
dynamics. Our results indicate not only deterministic diurnal patterns but 
also an autoregressive mechanism in BIST 100 jump dynamics.

1. Introduction

Understanding the jump dynamics of financial time series helps traders to 
realize the risk and profitability profile of the traded securities. In this regard, 
the literature is rich in theoretical and empirical studies on the estimation of 
jump models. For instance, Duffie et al. (2000) provide an extensive analysis 
of jump-diffusion models. After the study of Duffie et al. (2000), Andersen 
et al. (2002) propose a jump-diffusion model endowed with the Poisson 
distribution that is derived by time-varying intensity. Moreover, in one of 
the recent empirical studies on the time-varying jump intensity, Danis et al. 
(2015) estimate a Dynamic Conditional Jump Model for Mexico, Indonesia, 
South Korea, and Turkey. Their findings indicate that the jump intensity is 
significantly linked to the past intensity. In our study, for Borsa Istanbul 
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100 (BIST100 hereafter) index, we estimate a time-varying jump intensity, 
which is decomposed into deterministic and stochastic parts. 

In our estimation procedure, we follow a two-step procedure. In the 
first stage, we employ a jump detection method to identify the location 
and the number of the intraday/intra-seance jumps. This method is based 
on wavelet theory. In the second stage, we estimate an inhomogeneous 
dynamic count regression model, which consists of both deterministic and 
stochastic components. Our methodology differs from the existing jump 
intensity literature in two crucial ways. First, for estimating the number of 
jumps, we rely on the wavelet methods, which have become a preferred 
tool in the finance literature (see, Gençay et al. (2001); Misiti et al. (2013); 
Rua and Nunes (2009)). This method has two critical advantages over the 
other jump detection techniques in the literature. First, Xue et al. (2014) 
claim that wavelets can decompose noisy financial data into different 
time-scale components, which can be utilized to distinguish jumps from 
continuous price changes and microstructure effects. Second, Fan and Wang 
(2007) argue that the estimation of the integrated volatility with wavelets 
can improve the efficiency of the estimation of jump size. Furthermore, we 
investigate the diurnal patters of the jump intensity by adding séance, policy 
day, and year dummies. To the best of our knowledge, this is the first study 
that examines diurnal jump dynamics for the Turkish financial system. 

Additional to the technical novelty of the paper, we aim to answer three 
basic questions regarding the jump dynamics in the BIST 100 stock exchange. 
These are 1) Is there any year effect?; 2) Is there any séance effect?; and 3) 
Is there any impact of policy announcements on the jump dynamics? All 
these three questions can be examined in the deterministic part of the jump 
intensity. Moreover, we also investigate the stochastic patterns, which link the 
past intensity and number of jumps to current jump intensity. Our method 
does not aim a forecasting exercise for the jump dynamics. Nevertheless, 
the current toolsets allow us to predict future jump rates and we leave the 
forecast performance of our approach to a future study. 

Our result demonstrates that the jumps in the BIST 100 index exhibit 
diurnal patterns. Notably, we find that the morning seances are more 
nonresilient to the jumps than the afternoon séance. Moreover, we can 
observe the policy announcements are mostly ineffective to trigger extreme 
price movements. Finally, our findings indicate that in the year 2018, jump 
intensity was lower relative to other years in our sample.

The rest of the article is organized as follows. In section 2, we describe the 
two-stage estimation methodology and introduce the data characteristics. 
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Section 3 presents the estimation results. Finally, in Section 4, we discuss our 
findings and conclude the paper.

2. Methodology and Data

In this study, we combine two major toolsets of financial econometrics. 
On the one hand, we utilize the first toolset to detect the location and the 
number of jumps within a given time interval in the stock price series of the 
BIST 100 index. This detection technique is built on the wavelet theory, 
and we mostly follow Xue et al.’s (2014) wavelet-based jump detection test. 
In this test, a practitioner can both detect the presence and the location of 
the jumps, thus we can construct a counting process based on this testing 
framework. On the other hand, we model the number of jumps in a trading 
season as a nonhomogeneous counting process with deterministic terms. 
This type of model is also known as the Generalized Linear Model (GLM) or 
Integer-valued Generalized Autoregressive Conditional Heteroscedasticity 
model (IN-GARCH). To estimate the model, we utilize the R package 
“tscount,” written by Liboshcik et al. (2015).

2.1. Wavelet-Based Jump Detection Test

This section follows mostly from Xue et al. (2014). In this paper, the 
authors propose a jump detection method, which relies on the wavelet 
transform of the observed stock price series3. Let the  be the 
sequence of the logarithm of the observed stock price for BIST 100, where 

 is the number of observation in the  subsample for each  
for some positive integer . Since our objective is to investigate the jump 
intensity dynamics through time, we require to divide the sample into equal-
length intervals and constitute a times series of jump counts. 

To apply the jump detection test, we need to extract the high-frequency 
component with wavelet filters. Wavelet filters are useful in decomposing 
a time series data into its short- and long-run components through the use 
of wavelet coeffiecients that are constructed based on wavelet filters. In the 
detection of jumps we utilize the short-run wavelet coefficient (the noise 
component). To this end, we define the vector  as the high 
pass wavelet filter with filter length . This filter length defines the lag-
length that needs to be colved in the original data. That is, we convolve 
the vector h with  and obtain the first level wavelet short-run coefficients 

 for the  subsample as

3 A comprehensive introduction to wavelet analysis is given in Xue et al. (2014). We refer the 
readers to this study for excellent guide for the wavelet analysis.
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,

which is the short-run (noise) component. Second, we compute the 
recursive variance at time , for each , as

 . 

 
In the computation of the recursive variance, we lose the first two 
observations. Third, we define the test statistic for the presence of jumps for 
each  as

. 

Xue et al. (2014) shows that under the null of no jump at period  

, where  for  and  is Brownian motion,  

is a fixed constant that depends on the high pass filter . Finally, we reject the 

null of no jump if  for each , where 

 is the  quantile of . Overall, after constructing the 

noise component, we aim to capture the extreme/singular values throught 

the test aforementioned test statistics. 

The above testing procedure, in turn, gives us the information on whether 
there is a jump at time . Accordingly, we can count the number of times that 
we reject the null hypothesis for the subsample period. We denote the total 
number of the estimated jumps as  for each . As a result, we 
obtain a sequence of the counting process .

2.2. Estimating Nonhomogeneous Count Process Model

The next stage of our methodology is to fit a nonhomogeneous count 
process, which can be estimated by the method described in Section 2.1. 
In the estimation procedure, we assume that the counting process  has a 
discrete distribution conditional on the deterministic terms denoted by the 

 dimensional vector process , the past values of  and the past jump 
intensity, which we define as . Formally, we can write  
where  is the information set that contains the past information about 

 and  up to ,  is a distribution function, which can be selected as 
some famous example such as Poisson and Negative binomial distributions, 
and  is the vector of unknown parameters. We can further decompose the 
jump intensity parameter at subsample  as , where  is the 
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stochastic part of the conditional mean of  Under this specification, we 
define the dynamics that govern the jump intensity  under INGARCH(p,q) 
with deterministic components as

(1)

where  and  are the lag length of autoregressive and moving average 
terms, respectively.

In another alternative specification, we may omit the deterministic part 
 from . However, the model we employ is more 

flexible, and our estimation exercise demonstrates more consistent results 
under the model (1). To predict the conditional mean process , we need 
to estimate the unknown population parameters collected in the vector 

. For this purpose, we first write the log-
likelihood as 

(2)

 
where we define the vector of the observed jump counts as . 
Maximizing the log-likelihood in Equation (2) with respect to  yields the 
(conditional) maximum likelihood (CML) estimates of the model. We denote 
the estimated parameter values as . Given these estimated parameters, we 
can calculate the asymptotic variance of  as follows,

Using these objects obtained from CML estimation, Fokianos and Fried 
(2010) show that 

.

We use the above result to construct confidence levels for our estimates.
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2.3. Data

In our analysis, we utilize Borsa Istanbul 100 (BIST 100) Index dataset 
acquired from the official Borsa Istanbul database. This high-frequency 
dataset includes observations minutely for the BIST 100 index closing price, 
which dates from 1 April 2016 to 31 January 2019. For jump detection 
exercise, we divide each day into two sessions, namely, morning and 
afternoon. The morning session is between 10:00:00 and 13:00:00, and 
the afternoon session is between 14:00:00 and 17:00:00. We choose such 
a division because of two reasons. First, we aim to analyze whether there 
is an intensity difference between two trading sessions of a day. Second, 
there is almost no price volatility between 13:00:00 and 14:00:00. This 
situation renders some problems in jump detection. After clearing missing 
observation and non-trading periods, we have 1421 sessions; thus, we set 

. In each trading session, we have 180 minutes. A summary of 
statistics of the high-frequency data is provided in Table 1. 

Table 1. Return Statistics for High-Frequency (Minutely) BIST100 Returns 

Overall 2016 2017 2018 2019

Mean -0.00012 -0.00013 0.00000 -0.00027 0.00043

Std. Dev. 0.01941 0.01706 0.01537 0.02409 0.01999

Median 0.00031 0.00020 0.00033 0.00033 0.00109

Kurtosis 32.03097 16.32362 17.11742 32.17472 5.68634

Skewness -0.81413 -0.12264 -0.44415 -1.03542 -0.31216

Minimum -0.61333 -0.24140 -0.34890 -0.61333 -0.12153

Maximum 0.40839 0.36062 0.36814 0.40839 0.11615

Sample Size 256376 67093 91132 90209 7942

Note: Std. Dev. is the abbreviation for the standard deviation of the returns. 

From Table 1, we observe that the return levels are negatively skewed and 
posses fat tails given the high kurtosis levels. Thus, the existence of jumps 
in BIST 100 is a no-surprize event as might be expected from the indices of 
emerging market economies. The mean return levels are the worst in 2018, 
then followed by the year 2016. In those years the standard deviation of 
returns are somewhat higher, though in 2019 (a year with positive mean 
return) the standard deviation is higher than that in 2016. 

Additionally, we investigate the effect of session differences and policy 
announcements of the Central Bank of the Republic of Turkey (CBRT). We 
utilize a dummy variable framework. In total, we use five dummy variables. 
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Accordingly, the first two dummy variables of deterministic component  
are for the sessions and the policy announcement of CBRT. The first one is 

denoted as and  if it is the morning session and  

otherwise. The second variable is the policy dummy, which is represented as 

 and  if the day of session  is a policy announcement day 

for the CBRT. With this dummy, we try to investigate whether there is a 
jump intensity difference between policy and non-policy days. Furthermore, 
we also add year dummies to understand whether there is any shift in 
jump dynamics throughout the years. These dummies are represented with 

,  and  for the years 2017, 2018, and 2019, 

respectively. As a result, the base year is 2016. In this case, the coefficient 
vector of the deterministic terms becomes , where  is 
the coefficient of .

3. Results

In our empirical exercise, we consider the jumps that are detected with 
the help of the least symmetric wavelets of length 8 (sym8). Xue et al. 
(2014) recommend this filter in their methodology; thus, we follow their 
recommendation. Nonetheless, we also present results with other filters for 
robustness checks. 

3.1. Descriptive Statistics for the Estimated Jump Dynamics

First, we apply the methods in Section 2.1 to estimate the number of 
jumps by using the sym8 filter. As we described in Section 2.1, we divide 
the trading day into morning and afternoon sessions. Within each session, 
we apply the jump test to minutely data. Accordingly, for each data point, 
we check the rejection decision by using a significance level of 0.05%. Next, 
we count the number of times we reject the null hypothesis of no jump. This 
number, which is denoted as  at session  gives us the number of jumps 
in that session. In Figure 1, we can observe the evolution of  for each year, 
which contains different number of observations. Moreover, in Figure 1 the 
red lines demonstrate the mean of  for each year. While the mean jump 
numbers is close to 8, we can observe serial correlations between consecutive 
observations. Such correlations then suggest the dependence of future jumps 
to their historical values. 
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Figure 1. Estimated # of Jumps with sym8 Filter

To analyze the jump dynamics further, we present basic statistics for 
the series . These statistics are given in Table 2. From this table, we can 
see few basic patterns. As previously noted, the mean jumps are very close 
to 8. In effect, they tend to be slightly above in years 2016, 2017 and 
2019. However, th number of jumps drops to around 7 in the year 2018. 
Furthermore, the median of the jump counts is around 6.5, but again in 
2018, it is less suggesting more tanquile periods for BIST 100 in that year. 
Besides, the year 2017 contains larger number of jumps. Nonetheless, this 
information may be misleading since we have fewer observations for the 
years 2016 and 2019 than we do for 2017 and 2018.

Table 2. Basic Descriptive Statistics for the Number of Jumps Series

 Overall 2016 2017 2018 2019

Mean 7.9099 8.3952 8.3525 7.0840 8.1136

Standard Error 0.1612 0.3334 0.2741 0.2519 0.9226

Median 6 7 6 5 6.5

Kurtosis 1.2243 1.5740 0.3083 2.1927 0.3020

Skewness 1.2624 1.2765 1.0439 1.5206 1.0207

Minimum 2 2 2 2 2

Maximum 37 37 29 31 24

Sum 11240 3123 4218 3542 357

Count 1421 372 505 500 44
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These results shed some light on the jump dynamics in BIST 100. One of 
the important patterns is the instability of the jump dynamics. To illustrate 
this formally, we apply a regression-based technique on . This regression 
method is presented in Section 2.2.

3.2. Estimation Results of the Inhomogeneous Count Process

As we discuss in Section 2.2, the inhomogeneous count models are 
excellent tools in explaining the serial linkages between the consecutive 
realization of a counting process. Additionally, the setup, which we utilized, 
also allows us to decompose the stochastic and deterministic parts of the 
counting process. 

In this section, we work on the number of jump series that is obtained 
with the sym8 based jump detection algorithm. After obtaining the counting 
process, we utilize the regression model in Equation (1). In this regression 
model, we utilize the negative binomial distribution for since its alternative 
Poisson Process does not generate sensible results. It also causes the MLE 
algorithm to suffer convergence problems. Another issue in the estimation 
is the selection of the link function . We choose , since a 
linear link function also suffers convergence problems. Finally, we need to 
choose the lag lengths  and . We employ a Bayesian information criteria-
based selection, which points an  with the log link function. 
We demonstrate these results in Table 3.
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Table 3. Estimation Results of INGARCH(1,2) Model with Least Symmetric 8 Filter

Coefficient Estimate CI(lower) CI(upper)

2.2223***
1.64356 2.801

(0.2953)

0.0799**
0.00819 0.15159

(0.0366)

-0.0679*
-0.14538 0.00967

(0.0396)

-0.6298***
-0.81943 -0.44023

(0.0967)

0.4145**
0.095 0.73396

(0.163)

-0.0179
-0.19786 0.16208

(0.0918)

0.0177
-0.06979 0.10514

(0.0446)

-0.1224***
-0.21424 -0.03051

(0.0469)

0.0219
-0.18212 0.22585

(0.1041)
***: significant at 0.01, **: significant at 0.05, *: significant at 
0.1. The parenthesis is for the standard deviation of the coefficient 
estimates. CI stands for 95% confidence interval. 

In Table 3, we observe that the intercept term is significant at the 
0.01 level. This implies that the mean of the jump count is approximately 
9.22 (= e2.223) when all other variables have no effect. When we check the 
other deterministic terms, we see that only the coefficients of the morning 
session dummy and the year 2018 dummy statistically significant at the 
0.05 significance level. Notably, the outcome regarding the 2018 dummy 
is not surprising after the results we obtain in Section 3.1. Both analyses 
indicate that in the year 2018, jump intensity drops by approximately 1 
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unit. Moreover, it is interesting that the intercept term of the morning 
session is approximately 1.5. This situation implies that the risk of extreme 
price movements is higher in the morning sessions than they are in the 
afternoon sessions. Another crucial result is the insignificance and negativity 
of the policy day dummy. Even though the coefficient of this dummy is 
insignificant, its negative value may indicate less risky stock behavior on the 
policy days. Finally, the insignificance of the coefficients   indicates that 
there is no jump intensity difference among the years, excluding the year 
2018. The finding is interesting because 2018 is a year when the drops in 
BIST 100 is substantial. Yet, the number of jumps did not differ significantly 
from the other years. Thus, the decline in 2018 follow no less discontinuous 
path than it does in other years. 

Next, we examine the stochastic part of the jump intensity dynamics. 
Both AR(1) and MA(1) coefficients are significant at the 0.05 significance 
level, but the MA(2) coefficient is significant only at the 0.1 significance 
level. Additionally, we observe a negative and high-valued AR(1) coefficient. 
This type of dynamic leads to a zig-zag pattern in the stochastic component 
of the jump intensity. The following figure demonstrates the evolution of the 
jump intensity estimate . 
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Figure 2. Evolution of Jump Intensity Estimate

In Figure 2, we can see the impact of negative AR coefficient. The other 
important feature of the estimated jump intensity is the level shift observed 
in the year 2018. 
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3.3. The Results with the Other Filters

In this section, we repeat the same procedures in Sections 3.1 and 3.2 by 
using different wavelet filters. In our list, we have ‘Haar’ and Daubechies 8, 
which are also frequently utilized filters in wavelet literature (see, Xue et al. 
(2014)). We first investigate Table 3, which depicts the results with the Haar 
filter. In this case, we have a few differences from the previously presented 
results. First, the coefficients of the MA terms are insignificant, while the 
significant AR coefficient has the same sign as the sym8 case. Second, the 
policy day dummy is negative and significant unlike the sym8 model. The 
last difference emerges about the coefficient of the year 2017 dummy, which 
is significant in this case. However, its coefficient has a small value. 

In Tables 4 and 5, we observe the results from the Daubechies 8 wavelet 
filter, which shares the same filter length as sym8. These results are closer to 
the findings with the sym8 filter. However, there is one distinction worth 
noting: the AR coefficient is positive but insignificant. The other coefficients 
seem to have similar patterns as in the sym8 case.
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Table 4. Estimation Results of INGARCH(1,2) Model with Haar Filter

Coefficient Estimate CI(lower) CI(upper)

2.9117***
2.4337 3.3897

(0.2439)

-0.0115
-0.0663 0.0433

(0.028)

0.0288
-0.0275 0.085

(0.0287)

-0.8182***
-0.8647 -0.7717

(0.0237)

0.683***
0.3717 0.9943

(0.1588)

-0.2977***
-0.4984 -0.097

(0.1024)

-0.1341***
-0.2272 -0.0409

(0.0475)

-0.2894***
-0.387 -0.1917

(0.0498)

-0.1496
-0.3697 0.0705

(0.1123)

***: significant at 0.01, **: significant at 0.05, *: significant at 
0.1. The parenthesis is for the standard deviation of the coefficient 
estimates. CI stands for 95% confidence interval. 
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Table 5. Estimation Results of INGARCH(1,2) Model with Daubechies 8 Filter

Coefficient Estimate CI(lower) CI(upper)

2.43942*** 0.9556 3.9233

(0.7571)

0.04075 -0.0162 0.0976

(0.029)

-0.09065*** -0.1505 -0.0308

(0.0305)

0.03983 -0.5184 0.5981

(0.2848)

0.36728*** 0.1807 0.5539

(0.0952)

-0.12471 -0.3113 0.0619

(0.0952)

0.00243 -0.0858 0.0906

(0.045)

-0.17652*** -0.3041 -0.0489

(0.0651)

-0.01711 -0.2239 0.1897

(0.1055)

***: significant at 0.01, **: significant at 0.05, *: significant at 
0.1. The parenthesis is for the standard deviation of the coefficient 
estimates. CI stands for 95% confidence interval. 
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4. Conclusion and Discussion

This paper concerns the time-varying jump intensity in BIST 100 stock 
exchange. We adopt a two-stage algorithm to estimate the jump intensity 
parameter of a negative binomial distribution. Our methodology combines 
two modern techniques of the literature, which are the wavelet theory 
and the inhomogenous counting process. The wavelet theory helps us to 
identify the number of jumps, which is a counting process. Then, we apply 
an INGARCH(p,q) model to reveal the time-varying arrival rate of this 
counting process.

Our results indicate that there is a significant link between the past and 
current jump intensity parameters. Moreover, the séance is significantly 
pronounced by the model. In particular, the morning sessions in BIST 100 
contains more jumps than afternoon seances. However, the impact of the 
policy announcement seems to be weak or negative. This situation may 
appear because the traders avoid executing extreme actions before the policy 
announcement. Finally, the year effect is sounder for the year 2018 than 
the other years in our sample. We observe a drop in the level of the jump 
intensity in the year 2018.

Furthermore, our findings may attract attention to the behavioral aspects 
of the diurnal patterns that we found in this paper. Another future extension 
can be examining more diurnal or calendar effects in the jump dynamics. 
The authors are investigating these issues for future work.
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