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Nanoparticles as Food Additives and their 
Possible Effects on Male Reproductive Systems 
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Abstract

Nanoparticles (NPs) are substances that are used in many fields, especially in 
antimicrobial and food additives. Consumable nanoparticles, also known as 
food nanoparticles, are separated into organic and inorganic nanoparticles. 
Organic NPs can be classified as proteins, carbonates, phospholipids, and lipids, 
while inorganic NPs can be classified as silica (SiO2, E571), zinc oxide (ZnO), 
titanium dioxide (TiO2, E171), iron oxide (Fe2O3, E172), copper (Cu), gold 
(Au, E175) and silver (Ag, E174). Organic nanoparticles are not long lasting 
in the body. However, is it possible to make the same claim about inorganic 
nanoparticles? Inorganic nanoparticles are employed as food additives, vitamin 
supplements, and food packaging in the nutrition of both humans and animals. 
Food nanoparticles that make products brighter, tastier, more shelf-stable, and 
more antimicrobially resistant influence the liver, renal, digestive, respiratory, 
and genital systems once they enter the body. NPs can enter the male genital 
tract, adversely affect the testicles and sperm, and even affect the hypothalamo-
pituitary axis, causing hormonal disorders. The effects of inorganic NPs on testes 
and spermatozoa vary depending on the diameter and composition of this NPS. 
Studies with some inorganic NPs show that low doses have positive effects on 
the antioxidant system and harmful effects occur when their concentrations are 
increased, while some have toxic effects even at very low concentrations. Given 
all of this information, might consumable nanoparticles be one of the causes of 
rising male infertility?  The aim of this review is to explain how nanoparticles 
affect the male genital system and sperm quality and to provide insights into 
whether they might be one of the factors contributing to male infertility.
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1. Introduction

The term “nanotechnology” describes the interdisciplinary research and 
development activities that focus on the creation, design, and characterization 
of nanoscale materials and the systems that are made with these materials. 
Nanotechnology designs and synthesizes artificial structures which called 
nanoparticles (NPs) by processing known molecules with different atoms 
and molecules. Nanoparticles have a changeable surface structure and can 
be produced from a wide range of materials, including metals, proteins, 
polysaccharides, and lipids (Samrot, Sean et al. 2020). With nanotechnology, 
it has become possible to produce materials that are more functional, fast, 
take up less space, consume less energy, are more durable, cheap and have 
extraordinary new properties (Bayda, Adeel et al. 2019). Nanotechnology 
is used in many fields including manufacturing, electronics and computer 
technologies, the medical and health sector, aerospace researches, 
environment and energy, defense industry, biotechnology, agriculture and 
food technologies(Aithal and Aithal 2021) .

Figure 1. Nanoscience and related fields (Bayda, Adeel et al. 2019).
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Nanoparticles (NPs) have various applications such as soil and 
groundwater remediation, air pollution control, drinking and wastewater 
treatment. Iron, silver, manganese, magnesium, aluminum and titanium 
nanomaterials are used in drinking water and wastewater treatment (Van 
Benschoten, Reed et al. 1994, Agrawal and Sahu 2006). Silver nanoparticles 
are mostly used for disinfection in the treatment of drinking water, and 
iron oxide nanoparticles are used to remove arsenic and other dangerous 
heavy metal pollutants from drinking water (Prathna, Sharma et al. 2018). 
Nanotechnology can be widely used in livestock and related enterprises. 
Foods not used for human consumption can be used as animal feed, and this 
includes important issues such as digestibility of feed, improvement of its 
quality and spread of diseases (Scott 2007). In the animal nutrition field of 
nanotechnology, it is mostly aimed at increasing the bioavailability of mineral 
nanoparticles. Nanoparticles are used to increase the rate of absorption in 
terms of specific surface area, surface activity, catalytic and efficiency. Thus, it 
makes it possible to increase the growth performance and utilization rate of 
the consumed feed in animals. Many nano-scale application systems such as 
micelles, liposomes, nano-emulsions, biopolymeric nanoparticles, protein-
carbohydrate nano-scale complexes, solid nano-lipid particles have been 
developed in order to use nutrients effectively in the animal body (Chen, 
Weiss et al. 2006). From another point of view, nanobots that allow the 
study of the nervous system in animals have also been developed (Opara 
2004).

Figure 2. A basic comparison of nanomaterial sizes (Gnach, Lipinski et al. 2015).

Consumable nanoparticles can be classified as organic or inorganic 
nanoparticles (Moradi, Razavi et al. 2022). Organic NPs can be categorized 
as proteins, carbonates, phospholipids, and lipids. On the other hand, 
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inorganic NPs can be classified as silica (SiO2, E571), zinc oxide (ZnO), 
titanium dioxide (TiO2, E171), iron oxide (Fe2O3, E172), copper (Cu), gold 
(Au, E175), and silver (Ag, E174). Organic nanoparticles can be digestable 
in gastrointestinal tract and they are not bio- persistent. Thats why they are 
more less toxic than the inorganic NPs. However, when it comes to inorganic 
nanoparticles both society and the scientific community are concerned about 
the potential risk associated with oral consumption of inorganic NPs (Aisen, 
Medina et al. 2002, Moradi, Razavi et al. 2022). Inorganic nanoparticles are 
implemented in human nutrition as food additives, vitamin supplements, 
and food packaging (Chaudhry, Scotter et al. 2008, Go, Bae et al. 2017). 
Nanoparticles are utilized in food technology to improve health, safety, 
quality, and shelf life. Nanoparticles employed in food technology have 
beneficial effects on the color, smell and flavor of the products. For instance, 
TiO2’s naturally white color makes food appear brighter (Setyawati, 
Zhao et al. 2020) whereas Fe2O3 and ZnO nanoparticles are employed as 
necessary minerals in foods (Voss, Hsiao et al. 2020, Kim, Viswanathan et 
al. 2022). Furthermore, Fe2O3 nanoparticles are employed as food color 
pigments, whereas ZnO nanoparticles are used in sunscreens due to their 
UV radiation protective capabilities.  While SiO2 NPs are used to avoid 
sediment development in beverages like beer and wine(Antony, Sivalingam 
et al. 2015), Ag NPs are used to prevent microbial contamination of foods 
(Wang, Du et al. 2013).

2. Food Nanoparticles in Male Reproductive System

The use of nanoparticles in food and beverages is increasing day by day. 
This increase exposes living organisms to increasing numbers of nanoparticles 
through various factors. Nanotechnological developments expose the male 
reproductive system to nanoparticles (NPs). These NPs are reported to have 
negative consequences on male germ and somatic cells. (Lee 1998, Brohi, 
Wang et al. 2017). The male reproductive system is considered susceptible 
to oxidative stress and inflammation, and both can be used as hallmarks of 
nanoparticle exposure in other organs (Walczak–Jedrzejowska, Wolski et al. 
2013, Azenabor, Ekun et al. 2015). Various nanoparticles induce reactive 
oxygen species (ROS) as one of the main mechanisms of cytotoxicity 
(Risom, Møller et al. 2005). 
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Figure 3. Prooxidant pathway for NP-induced toxicity (Manke, Wang et al. 2013).

It activates transcription factors by affecting intracellular calcium 
concentrations of nanoparticles and modulates cytokine production through 
free radical production. Cells exposed to nanoparticles respond to increased 
oxidative stress with antioxidant defense systems. Transcriptional activation 
of phase II antioxidant enzymes under mild oxidative stress conditions occurs 
via induction of erythroid-derived nuclear factor-like 2 (Nrf2). Moderately, 
the redox-sensitive mitogen-activated protein kinase (MAPK) and nuclear 
factor kappa-light chain enhancer (NF-𝜅B) cascades of activated B cells 
produce a proinflammatory response. In addition, extremely toxic levels 
of oxidative stress lead to mitochondrial membrane damage and cell death 
(Huang, Aronstam et al. 2010). NP is oxidative in nature, inducing its pro-
oxidant effects by reacting with cells and producing intracellular ROS, which 
includes activation of mitochondrial respiration and NADPH-like enzyme 
systems (Driscoll, Howard et al. 2001). The prooxidant effects of NP result 
in the activation of signaling pathways, transcription factors, and cytokine 
cascade contributing to a diverse range of cellular responses (Manke, Wang 
et al. 2013). NP-induced ROS induce changes in homeostatic redox state. 
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NPs activate nuclear factor kappa B (NF-kB) signaling by upregulating the 
transcription of various proinflammatory genes, including tumor necrosis 
factor-a and interleukins (IL)-1, IL-6 and IL-8, followed by severe DNA 
damage and apoptosis (Khanna, Ong et al. 2015).

Table 1. Effects of NPs on the male reproductive system.

Tissue, cell Experimental 
Models

Nanoparticles Authors

Sperm Fish TiO2 and Silver 
NPs

Carvalhais, Oliveira et al. 
(2022)

Testicular tissue Mouse TiO2 and Silver 
NPs

Arslan, Keles et al. (2022)

Sperm Sea urchin ZnO NPs Kukla, Chelomin et al. 
(2022)

Epididymal 
sperm

Dog ZnO NPs Fayez, El Sayed et al. 
(2022)

Testicular tissue Rat ZnO NPs Hong, Shao et al. (2022)

Epididymal 
sperm

Rat Fe2O3 NPs Paskeh, Babaei et al. 
(2022)

Testicular tissue Mice SiO2 NPs Sun, Wang et al. (2022)

Epididymal 
sperm

Mice TiO2 Danafar, Khoradmehr et 
al. (2021)

Sperm Bull Silver-Carbon NPs Yousef, Abdelhamid et al. 
(2021)

Spermatocyte Mouse SiO2 NPs Sang, Liu et al. (2021)

Sperm Rabbit ZnO NPs Halo Jr, Bułka et al. 
(2021)

Sperm Bull ZnO NPs Jahanbin, Yazdanshenas et 
al. (2021)

Sperm Human and Rat CeO2 NPs Cotena, Auffan et al. 
(2020)

Sperm Fish TiO2 NPs Özgür, Ulu et al. (2020)

Sperm Swine Silver NPs Pérez-Duran, Acosta-
Torres et al. (2020)

Spermatogonia Mouse ZnO NPs Pinho, Martins et al. 
(2020)

Sperm Fish SiO2 NPs Özgür, Ulu et al. (2019)

Sperm Human TiO2 NPs Santonastaso, Mottola et 
al. (2019)

Testicular tissue Rat Silver NPs Elsharkawy, Abd El-
Nasser et al. (2019)
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Leydig cells Mouse ZnO NPs Shen, Yang et al. (2019)

Sperm Sea urchin CuO NPs Gallo, Manfra et al. 
(2018)

Spermatogenic 
ephitelium

Rat TiO2 NPs Sharafutdinova, Fedorova 
et al. (2018)

Sperm Buffalo bull Silver NPs and 
Multiwalled 

carbon nanotubes

Sanand, Kumar et al. 
(2018)

Sperm Bull Fe2O3 NPs Caldeira, Paulini et al. 
(2018)

Testicular tissue Mice CeO2 NPs Adebayo, Akinloye et al. 
(2018)

Germ cell line TiO2 NPs Mao, Yao et al. (2017)

Sperm Human Silver NPs Wang, Huang et al. 
(2017)

Epididymal 
sperm

Mice Silica NPs Ren, Zhang et al. (2016)

Epididymal 
sperm

Mice TiO2 NPS Smith, Michael et al. 
(2015)

 Sperm Rabbit Silver NPs Castellini, Ruggeri et al. 
(2014)

Sperm Buffalo TiO2 NPs Pawar and Kaul (2014)

 Sperm Mice Mo NPs Zhai, Zhang et al. (2013)

Sperm Human ZnO NPs Barkhordari, 
Hekmatimoghaddam et 

al. (2013)

Sperm Human Gold and Silver 
NPs

Moretti, Terzuoli et al. 
(2013)

2.1. Titanium Dioxide Nanoparticles

Titanium Dioxide nanoparticles (TiO2) occur naturally as anatase, rutile, 
and brookite. With its white, bright colors, anatase form is utilized as a 
preservative and coating in foods. (Irshad, Nawaz et al. 2021). Although the 
rutile form and the anatase form have similar characteristics, the rutile form 
is lighter and provides anti-corrosion capabilities and UV light protection. 
Brookite form, on the other hand, is a rare form and can transform into rutile 
form at high temperatures due to its unstable structure. (Vijayalakshmi and 
Rajendran 2012). 



20 | Nanoparticles as Food Additives and Their Possible Effects on Male Reproductive Systems

Figure 4. Structure of TiO2 nanoparticles

On the other side, TiO2 is used in infrastructure technologies including 
waterproof clothing, paint, glass coatings, and wallpapers. While it is used 
in agriculture to prevent pollution and pesticide residues, it is also used in 
electrical systems, solar panels, fluorescent lights, and refrigerators. It is used 
in the treatment of cancer and the manufacture of surgical instruments in 
medicine (Irshad, Nawaz et al. 2021). Although TiO2 NPs, which helps 
to acquire a brighter color in meals and is commonly used in the cosmetics 
industry, is classified as a safe nanoparticle, the International Agency for 
Research on Cancer (Tsatsakis, Docea et al.) has warned that it can be 
carcinogenic when inhaled (Hong, Zhao et al. 2015).

TiO2 nanoparticles are synthesized using a variety of techniques. According 
to production methods, it can be divided into two categories: physical/
chemical method and biological method. The physical/chemical method can 
be classified as sol-gel method (Sharma, Sarkar et al. 2020), solvothermal 
method (Ramakrishnan, Natarajan et al. 2018) and hydrothermal method 
(Wang, Haidry et al. 2020). There are many different production techniques 
available when using the biological method. Various microorganisms, plants 
or plant wastes, fungi, and fruit extracts can all be used in this process, 
which is known as “green synthesis” (Singh, Kumar et al. 2019). While the 
chemical method is not preferred because it contains many toxic chemicals 
and can only produce a small number of TiO2 nanoparticles, biological 
methods are far more preferred. As a result, TiO2 nanoparticles, which are 
more easily and safely produced, are among the consumable nanoparticles. 
Many researchers have been studying the effects of TiO2 nanoparticles 
on various tissues and organs, which can enter the body if foods such as 
fruit are eaten without washing. One example is research into the effects 
of TiO2 nanoparticles on the male reproductive system. When the effects 
of these nanoparticles on the male reproductive system were investigated, 
it was discovered that motility decreased, DNA integrity was impaired, 
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DNA damages were observed, genomic stability of sperm decreased, and 
intracellular ROS formation increased in human semen exposed to TiO2 
nanoparticles in vivo (Santonastaso, Mottola et al. 2021). Considering these 
changes in human semen and the damages of TiO2 nanoparticles in vitro, 
their effects in vivo have also been a matter of curiosity. In one of the studies 
based on this curiosity, Hong et al. Administered TiO2 nanoparticles orally 
at doses of 1.25, 2.5 and 5 mg/kg in mice during a period of six months. The 
applications led to the discovery that nanoparticles aggregated in the testis 
and drastically decreased the quality of semen (Hong, Zhao et al. 2015). 
Again, in a study where TiO2 nanoparticles were injected intravenously into 
rats, they were administered at doses of 5, 25, and 50 mg/kg and at a size 
of 21 nm. It has been observed that when TiO2 nanoparticles are used in 
high doses, they accumulate in the testicles, activate the apoptotic enzyme 
caspase-3, and alter spermatological parameters (Meena and Kajal 2015). 
It is quite remarkable that TiO2 nanoparticles taken in increasing doses 
have harmful effects on the male reproductive system. Therefore, Jia et al 
demonstrated that TiO2 nanoparticles taken in the period from the postnatal 
28th day to puberty inhibit the release and conversion of testosterone 
hormone, which is indispensable in the male reproductive system (Jia, Sun 
et al. 2014). The effects of consumable nanoparticles on the environment are 
equally as important as the effects of TiO2 nanoparticles on humans, which 
have been the subject of studies with laboratory animals. It is stated that TiO2 
nanoparticles also damage bull semen, decrease sperm viability, membrane 
integrity and increase DNA damage fragmentation (Pawar and Kaul 2014). 
TiO2 nanoparticles’ effects on the male reproductive system are not limited 
to terrestrial creatures. TiO2 nanoparticles were found to be harmful to both 
Capoe trutta and Sparus aurata sperm (Özgür, Ulu et al. 2018, Carvalhais, 
Oliveira et al. 2022). Application of 400 μg of subcutaneous TiO2 NPs 
(<300 nm diameter) during pregnancy leads to a decrease in the number 
of Sertoli cells and changes in the testicular morphology and changes in the 
seminiferous tubules in male offspring (Takeda, Suzuki et al. 2009). TiO2-
NPs (21 nm in diameter) in testis cause a decrease in the level of antioxidant 
enzymes, an increase in the level of caspase 3, which is one of the apoptosis 
markers, and an increase in the rate of DNA damage (Meena and Kajal 
2015). In addition, microarray analysis produces changes in spermatogenesis 
and gene expression associated with steroid hormones in testes exposed to 
TiO2 NPs (Gao, Ze et al. 2013). It has been reported that TiO2 NPs in mice 
also activate the MAPK signaling pathways (p38, c-Jun N-terminal kinase 
(JNK) and extracellular signal-regulated kinase (ERK)) of testicular tissue 
of mice, leading to male reproductive dysfunction through this pathway (Lu, 
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Ling et al. 2021). TiO2 NPs cause germ cell apoptosis by downregulation 
of Bcl-2, upregulation of Bax, Cleaved Caspase 3 and Cleaved Caspase 9 
(Meng, Li et al. 2022).

2.2. Silver Nanoparticles

Three processes are used to create silver nanoparticles: physical, chemical, 
and biological synthesis. Although the physical method, which uses techniques 
like spark discharge and pyrolysis, is quick and doesn’t require harmful 
chemicals, but it has several disadvantages, including energy consumption, 
the possibility of solvent contamination, and less uniform distribution. 
(Zhang, Liu et al. 2016). Another method, the chemical method, includes 
methods such as cryochemical synthesis (Sergeev, Kasaikin et al. 1999), 
lithography (Hulteen, Treichel et al. 1999) and chemical reduction (Zhang, 
Li et al. 2011). Chemicals used in the synthesis of nanoparticles in the 
chemical method are toxic and harmful. (Mallick, Witcomb et al. 2004). 
As a result, while they are simple and inexpensive to produce, they can be 
harmful to living organisms. (Gurunathan, Han et al. 2015). Despite the 
disadvantages of the physical and chemical method, the biological method 
is a good alternative as it is simple, inexpensive and harmless. Along with 
different biomolecules, bacteria, fungi, and plant extracts are also used in 
the biological synthesis method. As an example of bacterial production, Ag 
nanoparticles in spherical, triangular and hexagonal form can be produced 
from Pseudomonas stutzeri isolated from silver mines in Africa. (Klaus, 
Joerger et al. 1999). In another biological method, Verticilim sp. and Fusarium 
oxysporum can produce 25 nm Ag nanoparticles. (Mukherjee, Ahmad et al. 
2001, Sastry, Ahmad et al. 2003).  

Figure 5. Biological production of silver nanoparticles.
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Ag nanoparticles have found use in many areas such as toys, detergents, 
antibacterial chemicals, cosmetics, etc. Because of its antimicrobial 
properties, it is used in food packaging and as a food additive (Marambio-
Jones and Hoek 2010, Abu-Taweel, Albetran et al. 2021). Antimicrobial 
effects of Ag nanoparticles are size dependent (Morones, Elechiguerra et al. 
2005). When Ag nanoparticles come into contact with bacteria, they stick 
to the cell surface and alter it in various ways. It inhibits the enzymes that 
are part of the cellular respiratory chain, damages the cell membrane by 
forming pits and cracks, and alters the permeability of the cell as a result. 
(Morones, Elechiguerra et al. 2005, Pal, Dutta et al. 2007). In addition 
to these effects, metal ions form oxygen radicals and lead to oxidation of 
cellular structures. (Dastjerdi and Montazer 2010, Sweet and Singleton 
2011). Silver nanoparticles are well known for their excellent antibacterial 
abilities and superior physical properties and are widely used in an 
increasing number of applications, from household disinfectants to medical 
devices and water purifiers. (Yu, Yin et al. 2013). The wide usage area of   
silver nanoparticles also causes increased exposure to it. For this reason, the 
effects of silver nanoparticle exposure on the reproductive systems of living 
things as a result of nano-pollution have also been a matter of interest. The 
effects of Ag nanoparticles, which we are exposed to at every stage of life, 
on the reproductive system are not different from TiO2 nanoparticles. In a 
study, it was revealed that Ag nanoparticles administered intraperitoneally 
at a dose of 40 mg/kg decreased testicular weight in mice, reduced the 
antioxidative defense mechanism, and decreased motility in semen (Abu-
Taweel, Albetran et al. 2021). While oral administration of 5.3 mg/kg 
and 13.4 mg/kg Ag nanoparticles to rats reduced testosterone levels, SOD 
levels, sperm viability, and DNA chromatin integrityi increase MDA levels, 
in electron density in the nucleus and cytoplasm of spermatogonia were 
observed (Elsharkawy, Abd El-Nasser et al. 2019). It was noted that 50 mg/
kg Ag nanoparticles taken orally during the prepubertal period damaged the 
testicular tissue and slowed down reproductive development in addition to 
studies in adult rats (Sleiman, Romano et al. 2013, Mathias, Romano et 
al. 2015). The increase in ROS production by AgNPs stimulates insulin 
receptor substrate-1 (IRS-1), protein kinase B(AKT), mechanistic target 
of rapamycin (mTOR), p53, p21 and caspase 3 as well as SOD and CAT 
activity as defense mechanisms in the cell and preserves DNA integrity 
(Blanco, Tomás-Hernández et al. 2018). Furthermore, AgNPs significantly 
downregulated the hypothalamic–pituitary–gonadal axis (Arisha, Ahmed 
et al. 2019).
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2.3. Zinc Nanoparticles

Along with silicon-based nanoparticles and titanium dioxide nanoparticles 
(TiO2 NPs), zinc oxide nanoparticles (ZnO NPs) are thought to be among 
the three most produced nanoparticles. The production mechanisms of ZnO 
NPs are similar to other nanoparticles, and physical and chemical methods 
are widely used. This methods can be clasifies as chemical precipitation 
(Wang and Muhammed 1999), sol-gel method (Spanhel and Anderson 
1991), solid-state pyrolytic method (Wang, Zhang et al. 2002) and solution 
free mechanochemical method (Shen, Bao et al. 2006). However, the 
environmental pollution problem that has emerged in recent years has led 
researchers to the biological production of ZnO NPs, which is much safer 
for the environment. For this reason, zinc oxide nanoparticles have been 
produced from many plant extracts and green synthesis studies are still 
continuing (Elumalai and Velmurugan 2015). Zinc oxide nanoparticles 
are used in industrial fields such as rubber, paints, coatings and cosmetics 
(Smijs and Pavel 2011). ZnO NPs were first used in the rubber industry 
(Kołodziejczak-Radzimska and Jesionowski 2014, Ruszkiewicz, Pinkas 
et al. 2017). Due to its UV absorption properties, ZnO is also used in 
personal care products such as cosmetics and sunscreen (Newman, Stotland 
et al. 2009). Zinc oxide nanoparticles are the form with low toxicity, which 
effectively overcomes cells and molecules in pathological conditions (Suri, 
Fenniri et al. 2007).

In general knowledge, zinc plays curicial roles in all body tissues such 
as bone, skin, brain and muscle. It is also the main component of various 
enzymatic systems and protein and nucleic acid synthesis mechanisms (Jiang, 
Pi et al. 2018). With so many important roles to play, ZnO NPs with very 
small particle sizes can be easily absorbed from the body. As a result, the 
effects of numerous consumable products and ZnO NPs entering the body 
on cell systems should be thoroughly explained.

ZnO NPs first bind to the cell membrane when they get to the target 
tissues and organs. The intracellular cytoplasmic structure leaks out of 
the cell as a result of ZnO NPs’ damage to the cell membrane, which also 
compromises the integrity of the cell. In addition to the physical damage 
of the cell, ZnO NPs entering the cell damage the electron transport 
chain occurring in the mitochondrial membrane and inhibit respiratory 
dehydrogenase enzymes. ROS are produced when ATPase complexes are 
damaged and appear as H2O2, OH- VE O2

-2. These reactive oxygen species 
disrupt mitochondrial function, cause lipid peroxidation, and damage to 
plasmids and DNA. (Singh, Singh et al. 2018). For all nanomaterials, the 
mechanism shown below acts in a similar way (Figure 6).
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Figure 6. Cellular damage mechanism of ZnO nanoparticles.

This damage caused by high levels of ZnO NPs has drawn the attention 
of researchers, and numerous studies have been done to study the effects of 
ZnO NPs on various tissues and organs. ZnO NPs, which have low toxicity 
under normal conditions, increased sperm motility,  antioxidant enzyme 
activity and mRNA expression level in diabetic rats (Afifi, Almaghrabi et al. 
2015). However, when high-dose exposure occurs, ZnO NPs do not reveal 
such innocent results. YIn a study using high doses of ZnO NPs, different 
concentrations of ZnO NPs (10, 100, 500, and 1000 μg/mL) were reported 
to be cytotoxic at all time periods at the highest dose in human semen 
incubated (45, 90 and 180 min) (Barkhordari, Hekmatimoghaddam et al. 
2013). In foods, ZnO serves as an antimicrobial agent as well as a mineral 
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component. This nanoparticle, which is crucial in preventing microbial 
contamination, endangers both aquatic and terrestrial life. Similar to earlier 
studies, it was found that 350 mg/kg of ZnO nanoparticles caused damage to 
rat testicular tissue, altered epididymal weight, sperm motility, and changed 
hormone levels in a study in which ZnO nanoparticles were given orally to 
adult rats (Hong, Shao et al. 2022). Studies conducted both in vivo and in 
vitro have shown that ZnO nanoparticles have negative effects, including 
harm to testicular tissue and induction of apoptosis and autophagy in mouse 
Leydig cells (Liu, Xu et al. 2016, Shen, Yang et al. 2019, Pinho, Martins 
et al. 2020). ZnO nanoparticles have been shown to be toxic not only in 
laboratory animals, but also in aquatic organisms. One of these studies was 
conducted by Oliviera et al. DNA damage was discovered in the sperm of 
Paracentroutus lividus after 30 minutes of exposure to ZnO nanoparticles 
(Oliviero, Schiavo et al. 2019). ZnO damages the seminiferous epithelium 
in the testis, reduces the semen density in the cauda epididymis and lowers 
the serum testosterone level. In addition, caspase 8, caspase 3, Bax, LC3-II, 
Atg 5, and Beclin 1 levels increase, while Bcl-2 levels decrease (Shen, Yang 
et al. 2019).

2.4. Iron Oxide Nanoparticles

Iron oxide nanoparticles are found in nature as magnetite (Fe3O4), 
maghemite (γ-Fe2O3) and hematite (α-Fe2O3) (Ali, Zafar et al. 2016). The 
forms used in the food industry are maghemite, which has supraparamagnetic 
properties, and hematite, which can be used as a food dye. Maghemite 
nanoparticles, especially thanks to their high magnetic properties, bind to 
unwanted materials in foods and help them to precipitate in the magnetic 
environment and thus to purify foods (Dong, Chen et al. 2022). This process 
of purification allows foods to maintain their original flavor (Schwaminger, 
Fraga-García et al. 2019). In a study using this method, Mierczynska-Vasilev 
et al. succeeded in removing some proteins from wine (Mierczynska-Vasilev, 
Boyer et al. 2017). Maghemite nanoparticles (Fe2O3) are also widely used in 
clinical diagnosis for T2-weighted magnetic resonance imaging (Bansal and 
Bilaspuri) as a contrast agent (Yang, Wang et al. 2022). Fe2O3-NPs is also 
significant for its extensive uses, such as magnetic resonance imaging (Bansal 
and Bilaspuri) (Häfeli, Riffle et al. 2009). α-Fe2O3, which is known by the 
European Union with the code E172, is also used as a colorant in foods 
(Voss, Hsiao et al. 2020). The cytotoxic effect of iron oxide nanoparticles at 
high doses is similar to that of ZnO NPs. For this reason, there is a concern 
that they may have harmful effects on various tissues and organs when 
consumed in large amounts. In a study where this situation was sorely tested, 
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mice given 25 and 50 mg/kg Fe2O3 nanoparticles experienced an increase in 
caspase 3 activity and Bax levels, which led to apoptosis in the testicular 
tissue (Sundarraj, Raghunath et al. 2017). Similar findings were also seen in 
mouse semen, where 40 mg/kg Fe2O3 nanoparticles given intraperitoneally 
for two weeks reduced motility and density (Nasri, Rezai-Zarchi et al. 2015). 
Comparable to terrestrial life, aquatic life experienced similar effects, causing 
destruction to the gonads of Poecilia reticulata (Gonçalves, Dias et al. 2021). 
Oxidative stress has been implicated as a central mechanism for damage 
caused by Fe2O3-NPs. Fe2O3-NPs cause a decrease in body weight, gonodo 
somatic index, sperm motility and viability in mice. In addition, it causes an 
increase in the level of MDA, which is a lipid peroxidation marker, while it 
causes a decrease in the levels of CAT, SOD, GSH and GPx and the relative 
mRNA level (Ahmed, Hussein et al. 2022). Fe2O3 NPs cause significant 
changes in gene expression of mitochondrial transcription factor-A (mtTFA) 
and dissociation protein 2 (UCP 2) in testicles (Younus, Yousef et al. 2020).

2.5. Copper Nanoparticles

Copper Nanoparticles (Cu NPs) are used as antimicrobial and anticancer 
agents along with their use in the textile, electronics and chemical industrie. 
Fertilizers and herbicides containing CuNP are used in various agricultural 
applications (Cometa, Iatta et al. 2013). Cu NPs are used in animal feeds 
because of their good antibacterial and growth promoting effects that reduce 
the incidence of animal diseases (Tamilvanan, Balamurugan et al. 2014). 
CuNPs show their toxic effect by increasing reactive oxygen species (ROS) 
(Lin and Xing 2007). CuNPs decrease sperm quality parameters, male 
hormones, cause testicular damage, increase oxidative stress and apoptosis, 
decrease antioxidant enzymes and germ cell proliferation, and increase 
8-oxoguanine DNA glycosylase-1 (OGG1) and apelin receptor (APJ) 
expression (Nicy, Das et al. 2022). Cu NPs cause testicular damage, decrease 
in sperm quality and fructose content, increase in oxidative stress and sperm 
malformations, and changes in Bax, Beclin, Bcl-2 and p52 expression in 
rats. Cu NPs cause testicular damage, decrease in sperm quality and fructose 
content, increase in oxidative stress and sperm malformations, and changes 
in Bax, Beclin, Bcl-2 and p52 expression in rats (Chen, Wang et al. 2022).

CuO nanoparticles are another type of nanoparticle that can affect an 
aquatic animal’s reproductive system. Gallo et al. discovered that CuO 
nanoparticles increased ROS formation, resulting in a decrease in sperm 
viability and mitochondrial membrane potential in Paracentrotus lividus 
semen (Gallo, Manfra et al. 2018). In a different study, researchers found that 
Cu nanoparticles in Onchorynchus mykiss semen were more harmful than CuO 
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nanoparticles and emphasized that the toxicity or benefit of a nanoparticle 
depended on its particle diameter or its composition (Garncarek, Dziewulska 
et al. 2022). In a study conducted in laboratory animals, Cu nanoparticles 
applied at a dose of 40 mg/kg damaged the rat testicular tissue, causing 
a decrease in sperm viability and an increase in the amount of abnormal 
spermatozoa (Al-Bairuty, Taha et al. 2016).

2.6. Silicon Based Nanoparticles

Silicon is the second most abundant element in the earth’s crust after 
oxygen and is used in agriculture because it is beneficial to plants (Epstein 
1994). Silicon exists in nature as two forms, crystalline and amorphous, with 
the same molecular formula (Chen, Liu et al. 2018). SiO2 nanoparticles are 
used in the fields of industry, biomedicine, food and environmental protection 
due to their properties such as good stability, excellent biocompatibility and 
easy modification (Xu, Wang et al. 2014). 

Figure 7. Nanostructure of Silica nanoparticles.

Silica used in foods is numbered with the code E551 and named 
as synthetic amorphous silica (Sastry, Ahmad et al.). The main usage of 
SAS are in noodles, soups, creams and coffee creamers as an anti caking 
agent (Dekkers, Krystek et al. 2011, Gubala, Giovannini et al. 2020). SiO2 
nanoparticles are used in pharmaceutical applications (Li, Barnes et al. 
2012), medical diagnostics (Chen, Yin et al. 2012), in vivo imaging (Tu, 
Ma et al. 2010). When applied to semen, it reduced motility, viability, and 
DNA integrity; however, when applied to testicular tissue of lab animals, it 
induced apoptosis and oxidative stress-related cellular damage (Barkalina, 
Jones et al. 2015, Azouz, Korany et al. 2022, Sun, Wang et al. 2022). SiO2 
NPs cause histopathological changes in testis (Hassankhani, Esmaeillou et 
al. 2015). SiO2 nanoparticles in water have a negative impact on marine 
organisms’ reproductive systems, with exposure levels of 50 mg/L having 
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toxic effects on rainbow trout sperm (Özgür, Ulu et al. 2019). SiO2 NPs 
increased lipid peroxidation in rat and decreased the activities of antioxidant 
enzymes. SiO2 NPs induced apoptosis, demonstrated by upregulation of Bax 
and caspase 3 and downregulation of Bcl-2, as well as induction of DNA 
damage. SiO2 NPs also caused upregulation of inflammation-related genes 
such as; IL-1β, TNF-α, NF-κB, cyclooxygenase 2 (COX2) (El-Sayed, El-
Demerdash et al. 2021).

2.7. Molybdenum Nanoparticles

Molybdenum is mentioned as an essential trace element for humans and 
microorganisms. However, adverse effects of high molybdenum content in 
the diet on metabolism have been reported (Yang, Cui et al. 2011). Mo 
NPs are used in the electron industry, cutting tools, hard alloys, textiles, 
microelectronic films, coatings, plastics, nanowire and X-ray tubes. However, 
these industrial activities negatively affect the lives of people and animals 
(Chen, Yin et al. 2012, Siddiqui, Saquib et al. 2015). Mo NPs reduce the 
serum testosterone level in rats and cause histopathological changes in the 
testis (Asadi, Mohseni et al. 2017). High dose molybdenum administration 
in rats affected sperm parameters negatively and decreased SOD and GPx 
levels while increasing MDA levels (Zhai, Zhang et al. 2013). In the in vitro 
study, Mo NPs showed cytotoxic effect in mouse spermatogonial stem cell 
line (Braydich-Stolle, Hussain et al. 2005). Molybdenum trioxide (MoO3) 
NPs with high toxicity are mainly used in industry, glass and the production 
of cracking catalysts, hydrogenation catalysts and refractory alloys, and they 
can significantly threaten public health (Gawande, Goswami et al. 2016). In 
a study, it was stated that MoO3 changed the biochemical parameters in the 
blood and caused histological changes in the uterus (Fazelipour, Assadi et al. 
2020). In a study, it was reported that the application of MoO3 anoparticle 
caused the irregularity of spermatogenic cells in the seminiferous tubules 
and a decrease in the number of sperm and sertoli cells (Mirza Mohamadi 
and Sohrabi 2015). 

2.8. Cerium Nanoparticles

Cerium is a member of the lanthanide group and exhibits antioxidant 
properties as well as catalytic properties (Dahle and Arai 2015, Dhall and 
Self 2018). CeO2 NPs are used in various biomedical applications such 
as protection against radiation damage, retinal neurodegeneration, anti-
inflammatory and antioxidant activities (Tarnuzzer, Colon et al. 2005). In 
one study, CeO NPs decreased blood hemoglobin, PCV and RBC count 
compared to controls. Additionally, luteinizing hormone (LH) and follicle 
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stimulating hormones (FSH), prolactin sperm quality parameters were 
significantly reduced in mice (Adebayo, Akinloye et al. 2018). In another 
study, it was stated that CeO2 NPs improved testicular and sperm parameters 
in rats with diabetes (Artimani, Amiri et al. 2018). It was stated that the 
addition of CeO2 NPs to the semen and the uptake of intracellular CeO2 NPs 
did not affect the CASA parameters in the short-term storage of ram semen 
(Falchi, Bogliolo et al. 2016). It was stated that CeO2 NPs improved sperm 
quality in rats treated with malathion (Moridi, Hosseini et al. 2018). CeO2 
NPs applied in the cryopreservation of human semen have been reported to 
improve sperm quality (Hosseinmardi, Siadat et al. 2022). A study in mice 
showed that CeO2 NPs (20 mg/kg and 40 mg/kg) increased the Ce element 
content in the testis, testicular histopathological patterns and sperm DNA 
damage, while decreasing testicular weight, daily sperm production (DSP) 
and sperm motility. A remarkable reduction in testosterone levels and marker 
enzyme activities was noted, with downregulated mRNA expression levels of 
various steroidogenesis genes such as Star, P450scc, P450c17, 3β-Hsd and 
17β-Hsd (Qin, Shen et al. 2019). Another study showed that the tubular 
diameter, epithelial height and spermiogenesis index were significantly 
reduced by CeO2 NPs at 50 and 100 mg/kg doses. Sperm parameters were 
significantly reduced and also the percentages of immature sperm and sperm 
with DNA damage increased significantly compared to control. In addition, 
it was stated that in vitro fertilization and in vitro embryo development rates 
decreased (Hosseinalipour, Karimipour et al. 2021).
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Figure 8. Effects of nanoparticles on male and female reproductive system (Brohi, Wang 
et al. 2017). 

a,198Gold-nanoparticles(Semmler-Behnke, Fertsch et al. 2007); b, black 
carbons(Takahashi and Matsuoka 1981, Kubo-Irie, Oshio et al. 2011); 
c, titanium oxide(Wang, Zhou et al. 2007); d, single-walled carbon 
nanotubes(Sugamata, Ihara et al. 2006, Snyder, Fennell et al. 2015); e, 
platinum(Meng, Yang et al. 2010), f, multi-walled carbon nanotubes(Jackson, 
Vogel et al. 2011); g, cadmium telluride/cadmium sulfide quantum 
dots(Mattison, Plowchalk et al. 1990); h, diesel exhaust(Hamada, Suzaki et 
al. 2003, Hougaard, Jackson et al. 2010, Pietroiusti, Massimiani et al. 2011, 
Jackson, Halappanavar et al. 2013, Kyjovska, Boisen et al. 2013); i, sodium 
chloride-modified silica nanoparticles(Philbrook, Walker et al. 2011); j, 
silicon dioxide(Yoshida, Hiyoshi et al. 2009); k, silica-coated magnetite 
nanoparticles (rhodamine B isothiocyanate)(Bai, Zhang et al. 2010); l, 
metal-free polymethyl methacrylate(Kashiwada 2006); m, carbon(Kubo-
Irie, Oshio et al. 2011); I, intravenous; II, intranasal; III, inhalation; IV, 



32 | Nanoparticles as Food Additives and Their Possible Effects on Male Reproductive Systems

subcutaneous; V, oral exposure; VI, by gavage; VII, intraperitoneal; VIII, 
intragastric. 

3. Conclusion & Future Prospects

Nanoparticles show their effects in the biological process in various ways. 
Basically, the following situations can be mentioned;

- direct association with the cell membrane (Buchman, Hudson-Smith 
et al. 2019), 

- physical effect by removing/destroying the lipid membrane (Tu, Lv et 
al. 2013, Mensch, Hernandez et al. 2017),

- interaction based on electrostatic attraction (Dickson and Koohmaraie 
1989),

- inducing internal signaling pathways that damage the cell (Hussain, 
Garantziotis et al. 2014),

- releasing toxic ions by binding to proteins and enzymes (Bondarenko, 
Ivask et al. 2013),

- effect of metal ions on the phospholipid membrane and genetic material 
(Stohs and Bagchi 1995),

- inhibiting cellular functions (Barras and Fontecave 2011, Macomber 
and Hausinger 2011).

- the occurrence of oxidative stress conditions in which different key 
enzymes such as mononuclear iron proteins can be targeted (Sobota and Imlay 
2011, Anjem and Imlay 2012) and mutation formation in the organism by 
the oxidation of DNA bases and deoxyribose by ROS (Galhardo, Almeida 
et al. 2000, Imlay 2008).

Successful fertilization depends on the healthy production and functioning 
of reproductive cells. The harmful effects of nanoparticles disrupt the 
fertilization process. This situation is summarized in the image below.
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Figure 9. Negative effects of nanoparticles in the fertilization process (Wang, Song et al. 
2018).

Consumable nanoparticles’ benefits in the food industry have led to their 
widespread use, and various nanoparticles are involved in every stage of food 
processing. In vivo and in vitro studies show the effects of these nanoparticles 
on the reproductive system, which have passed many toxicity tests and have 
been approved for use. Toxicological studies on a wide range of animals, from 
laboratory animals to human experiments, aquatic creatures to farm animals, 
reveal that the reproductive toxicities of nanoparticles vary depending on the 
dose of use. The harmful effects of existing nanoparticles occur at high doses 
and frequent exposures. In the light of all this information, when taken in 
high quantities and on a continuous basis, consumable nanoparticles might 
be considered one of the major causes of male infertility.

Further advances in reproductive biotechnology may be possible with 
greater incorporation of nanoparticles into molecular biology techniques. 
Sperm-mediated gene transfer is an application in which nanoparticles can 
be loaded with nucleic acids and proteins (Barkalina, Jones et al. 2014). With 
continued research, it may be discovered that nanoparticles play a much 
more active role in the reproductive system. However, it should be kept in 
mind that some nanoparticles can lead to serious negative consequences due 
to their toxic effects.
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