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Homothetic Motions With Dual Bicomplex Numbers in Dual 4-Space 

Faik Babadağ 

Abstract 

In this paper, we define a dual matrix for dual bicomplex numbers in 
dual 4-space. By using this new dual matrix, we define a new dual 
motion and it is proven that this dual motion is homothetic. We 
provide some theorems for dual velocities, dual pole points, and dual 
pole curves for this one parameter dual homothetic motion. Moreover, 
we demonstrate that the motion described by the regular order n dual 
curve has only one acceleration center of order (n-1) at every t-instant 
after defining dual accelerations. 

1. Introduction 

In 1873, Clifford defined dual numbers and were used at the beginning of 

the twentieth century by the German mathematician Eduard Study, who 

used them to represent the dual angle which measures the relative position 

of two skew lines in space (Guggenheimer, 1963; Kotelnikov, 1895; Study, 

1901). In the following years, dual numbers are used in the investigation of 

instantaneous screw axes with the help of dual transformations. The Italian 

mathematician Gerolamo Cardano first gave complex numbers while trying 

to solve a simpler state of the cubic equation. After, Leonard Euler illustrated 

the complex numbers as points with rectangular coordinates by using the 

notation i12 = −1. Bicomplex numbers were defined in 1892 to improve the 

properties of algebra. As a result of the research, it was included in an article 

by Corrado Segre. Here bicomplex numbers are considered as tricomplex 
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numbers. Rochon and Tremblay presented a study titled "II. The Hilbert 

Space," which was based on bicomplex quantum mechanics and then, 

Rochon and Shapiro gave algebraic properties of bicomplex and hyperbolic 

numbers (Rochon et al. 2004, 2006; Price,1991). This study presents 

bicomplex (hyperbolic) numbers from several perspectives on Hilbert Space 

in quantum physics. Any set of bicomplex numbers can be given by 

𝒞𝒞2 = {𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏 𝑖𝑖1 + 𝑐𝑐 𝑖𝑖2 +  𝑑𝑑𝑖𝑖3} 

 

where 𝑎𝑎 , 𝑏𝑏 , 𝑐𝑐 , 𝑑𝑑 ∈ ℝ , the imaginary units 𝑖𝑖1,  𝑖𝑖2 and 𝑖𝑖3 are governed by the 

rules: 

𝑖𝑖1
2 = 𝑖𝑖2

2 = −1, 𝑖𝑖1𝑖𝑖2 = 𝑖𝑖2𝑖𝑖1 = 1. 

A dual bicomplex number is defined as a dual complex number depending 

on four units 

�̃�𝐴 =  �̃�𝑎0 + �̃�𝑎1𝑖𝑖1 + �̃�𝑎2𝑖𝑖2 + �̃�𝑎3𝑖𝑖3                                                     

                
= (𝑎𝑎0 + 𝑎𝑎0

∗ 𝜀𝜀) + (𝑎𝑎1 + 𝑎𝑎1
∗ 𝜀𝜀)𝑖𝑖1 + (𝑎𝑎2 + 𝑎𝑎2

∗ 𝜀𝜀)𝑖𝑖2 + (𝑎𝑎3 + 𝑎𝑎3
∗ 𝜀𝜀)𝑖𝑖3 

 

where 𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3 are the imaginary units and ε is the dual unit which satisfy 

the conditions 

𝑖𝑖1
2 = 𝑖𝑖2

2 = −1, 𝑖𝑖1𝑖𝑖2 = 𝑖𝑖2𝑖𝑖1 = 𝑖𝑖3 and 𝜀𝜀2=0.  

The set of all dual bicomplex number is defined by 

ℂ2
𝔻𝔻 = {�̃�𝐴 ∣ �̃�𝐴 = �̃�𝑎0 + �̃�𝑎1𝑖𝑖1 + �̃�𝑎2𝑖𝑖2 + �̃�𝑎3𝑖𝑖3: �̃�𝑎0−3 ∈ 𝔻𝔻}. 
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Proposition 1. Let �̃�𝐴 and �̃�𝐵 be dual bicomplex numbers, then their addition 

and multiplication are 

�̃�𝐴 + �̃�𝐵 = (�̃�𝑎0 + �̃�𝑏0) + (�̃�𝑎1 + �̃�𝑏1)𝑖𝑖1 + (�̃�𝑎2 + �̃�𝑏2)𝑖𝑖2 + (�̃�𝑎3 + �̃�𝑏3)𝑖𝑖3 

and 

�̃�𝐴�̃�𝐵 = (�̃�𝑎0 + �̃�𝑎1𝑖𝑖1 + �̃�𝑎2𝑖𝑖2 + �̃�𝑎3𝑖𝑖3)(�̃�𝑏0 + �̃�𝑏1𝑖𝑖1 + 𝑖𝑖2�̃�𝑏2 + 𝑖𝑖3�̃�𝑏3)                  

                 
= (�̃�𝑎0�̃�𝑏0 − �̃�𝑎1�̃�𝑏1 − �̃�𝑎2�̃�𝑏2 + �̃�𝑎3�̃�𝑏3) + (�̃�𝑎0�̃�𝑏1 + �̃�𝑎1�̃�𝑏0 − �̃�𝑎2�̃�𝑏3 − �̃�𝑎3�̃�𝑏2)𝑖𝑖1 

 

                      +(�̃�𝑎0�̃�𝑏2 − �̃�𝑎2�̃�𝑏0 + �̃�𝑎3�̃�𝑏1 − �̃�𝑎1�̃�𝑏3)𝑖𝑖2

+ (�̃�𝑎0�̃�𝑏3 + �̃�𝑎3�̃�𝑏0 + �̃�𝑎1�̃�𝑏2 + �̃�𝑎2�̃�𝑏1)𝑖𝑖3 

 

According to the imaginary units𝑖𝑖1,  𝑖𝑖2 and 𝑖𝑖3, the conjugates and norms of 

the dual bicomplex number �̃�𝐴 , are 

�̃�𝐴𝒊𝒊1 = �̃�𝑎0 − �̃�𝑎1𝑖𝑖1 + �̃�𝑎3𝑖𝑖2 − �̃�𝑎3𝑖𝑖3 

𝐴𝐴 ̃�̃�𝐴𝒊𝒊1 = �̃�𝑎0
2 + �̃�𝑎1

2 − �̃�𝑎2
2 − �̃�𝑎3

2 + 2𝑖𝑖2(�̃�𝑎0�̃�𝑎2 + �̃�𝑎1�̃�𝑎3) 

 

 �̃�𝐴𝒊𝒊2 = �̃�𝑎0 + �̃�𝑎1𝑖𝑖1 − �̃�𝑎3𝑖𝑖2 − �̃�𝑎3𝑖𝑖3 

𝐴𝐴 ̃�̃�𝐴𝒊𝒊2 = �̃�𝑎0
2 − �̃�𝑎1

2 + �̃�𝑎2
2 − �̃�𝑎3

2 + 2𝑖𝑖2(�̃�𝑎0�̃�𝑎1 + �̃�𝑎2�̃�𝑎3) 

 

�̃�𝐴𝒊𝒊3 = �̃�𝑎0 − �̃�𝑎1𝑖𝑖1 − �̃�𝑎3𝑖𝑖2 + �̃�𝑎3𝑖𝑖3 

𝐴𝐴 ̃�̃�𝐴𝒊𝒊3 = �̃�𝑎0
2 + �̃�𝑎1

2 + �̃�𝑎2
2 + �̃�𝑎3

2 + 2𝑖𝑖2(�̃�𝑎0�̃�𝑎3 − �̃�𝑎1�̃�𝑎2) 

 

and 
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‖�̃�𝐴‖𝒊𝒊1
= �̃�𝑎0

2 + �̃�𝑎1
2 − �̃�𝑎2

2 − �̃�𝑎3
2  

 ‖�̃�𝐴‖𝒊𝒊2
= �̃�𝑎0

2 − �̃�𝑎1
2 + �̃�𝑎2

2 − �̃�𝑎3
2  

‖�̃�𝐴‖𝒊𝒊3
= �̃�𝑎0

2 + �̃�𝑎1
2 + �̃�𝑎2

2 + �̃�𝑎3
2  

The system ℂ2
𝔻𝔻 is a commutative algebra. It is referred as the dual bicomplex 

number algebra shown with ℂ2
𝔻𝔻, briefly one of the bases of this algebra is 

{1, 𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3} and the dimension is 4. It is possible to give the production 

similar to Hamilton operators which has defined (Agrawal, 1987; 

Hacısalihoglu, 1980,1983; Yayli Y,1995). 

𝜙𝜙: �̃�𝐴 = �̃�𝑎0 + �̃�𝑎1𝑖𝑖1 + �̃�𝑎2𝑖𝑖2 + �̃�𝑎3𝑖𝑖3 ∈ ℂ2
𝔻𝔻 → 𝜙𝜙(�̃�𝐴) = [

�̃�𝑎0 −�̃�𝑎1
�̃�𝑎1    �̃�𝑎0

−�̃�𝑎2 �̃�𝑎3
−�̃�𝑎3 −�̃�𝑎2

�̃�𝑎2 −�̃�𝑎3
�̃�𝑎3    �̃�𝑎2

   �̃�𝑎0 −�̃�𝑎1
�̃�𝑎1     �̃�𝑎0

] 
 

ℂ2
𝔻𝔻 is algebraically isomorphic to the matrix algebra 

 

ℛ = 𝜙𝜙(�̃�𝐴) = {[
�̃�𝑎0 −�̃�𝑎1
�̃�𝑎1    �̃�𝑎0

−�̃�𝑎2 �̃�𝑎3
−�̃�𝑎3 −�̃�𝑎2

�̃�𝑎2 −�̃�𝑎3
�̃�𝑎3    �̃�𝑎2

   �̃�𝑎0 −�̃�𝑎1
�̃�𝑎1     �̃�𝑎0

] ∶  �̃�𝑎0, �̃�𝑎1,  �̃�𝑎2,  �̃�𝑎3 ∈ 𝔻𝔻} 

 

and ϕ(�̃�𝐴) is a faithful real matrix representation of ℛ. In this paper, we 

give a dual matrix which is similar to Hamilton operators for dual 

bicomplex numbers in dual 4-space. Thanks to this new dual matrix, we 

define a new dual motion and it is proven that this dual motion is 

homothetic. We provide some theorems for dual velocities, dual pole 
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and ϕ(�̃�𝐴) is a faithful real matrix representation of ℛ. In this paper, we 

give a dual matrix which is similar to Hamilton operators for dual 

bicomplex numbers in dual 4-space. Thanks to this new dual matrix, we 

define a new dual motion and it is proven that this dual motion is 

homothetic. We provide some theorems for dual velocities, dual pole 

points, and dual pole curves for this one parameter dual homothetic 

motion. Moreover, we demonstrate that the motion described by the 

regular order 𝑛𝑛 dual curve has only one acceleration center of order (𝑛𝑛 − 1) 

at every t-instant after defining dual accelerations 

2. Homothetic Motions in dual 4-space 

Definition 1. Let ℳand 𝒮𝒮3 be a dual hypersurface and unit dual sphere, 

respectively, as following, 

ℳ = {γ = (γ0, γ1, γ2, γ3) ∣ γ0γ3 − γ1γ2 = 0},                     

                 𝒮𝒮3

= {γ = (γ0, γ1, γ2, γ3) ∣ γ0
2 + γ1

2 + γ2
2 + γ3

2 = 1}                            
 

From definition (1), let us consider the following dual curve: 

If 𝛾𝛾 : 𝐼𝐼 ⊂ 𝑅𝑅 → ℳ ⊂ 𝔻𝔻4 given by     

    𝑡𝑡 → 𝛾𝛾(𝑡𝑡) = 𝛾𝛾0(𝑡𝑡) + 𝛾𝛾1(𝑡𝑡)𝑖𝑖1 + 𝛾𝛾2(𝑡𝑡)𝑖𝑖2 + 𝛾𝛾3(𝑡𝑡)𝑖𝑖3                                               

= (𝑎𝑎0(𝑡𝑡) + 𝜀𝜀𝑎𝑎0
∗(𝑡𝑡)) + (𝑎𝑎1(𝑡𝑡) + 𝜀𝜀𝑎𝑎1

∗(𝑡𝑡))𝑖𝑖1 + (𝑎𝑎2(𝑡𝑡) + 𝜀𝜀𝑎𝑎2
∗(𝑡𝑡))𝑖𝑖2 + (𝑎𝑎3(𝑡𝑡) + 𝜀𝜀𝑎𝑎3

∗(𝑡𝑡))𝑖𝑖3 

= (𝑎𝑎0(𝑡𝑡) + 𝑎𝑎1(𝑡𝑡)𝑖𝑖1 + 𝑎𝑎2(𝑡𝑡)𝑖𝑖2 + 𝑎𝑎3(𝑡𝑡)𝑖𝑖3) + 𝜀𝜀(𝑎𝑎0
∗(𝑡𝑡) + 𝑎𝑎1(𝑡𝑡)∗𝑖𝑖1 + 𝑎𝑎2

∗(𝑡𝑡)𝑖𝑖2 + 𝑎𝑎3
∗(𝑡𝑡)𝑖𝑖3) 

                      = �⃗⃗�𝔸 + 𝜀𝜀�⃗⃗�𝔸 ∗ 

for every 𝑡𝑡 ∈ 𝐼𝐼. We suppose that the curve 𝛾𝛾(𝑡𝑡) is differentiable dual regular 

curve of order 𝑛𝑛. The operator 𝒫𝒫 = ℛ+ = ℛ− = ℛ, corresponding to 𝛾𝛾(𝑡𝑡), 
is defined by the following dual matrix: 
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ℛ = [
𝛾𝛾0 −𝛾𝛾1 −𝛾𝛾2      𝛾𝛾3
𝛾𝛾1  𝛾𝛾0 −𝛾𝛾3    −𝛾𝛾2
𝛾𝛾2
𝛾𝛾3

−𝛾𝛾3
   𝛾𝛾2

    𝛾𝛾0   −𝛾𝛾1
     𝛾𝛾1      𝛾𝛾0

] (1) 

Let  ‖𝛾𝛾′(𝑡𝑡)‖ = 1, 𝛾𝛾(𝑡𝑡) be a unit velocity dual curve. If 𝛾𝛾(𝑡𝑡) does not pass 

through the orijin, and 𝛾𝛾(𝑡𝑡) ≠ 0, from Equality (1), the matrix can be 

represent as 

𝒫𝒫 = 𝜆𝜆 𝒬𝒬, (2) 

𝒫𝒫 = 𝜆𝜆
[
 
 
 𝛾𝛾0/𝜆𝜆 −𝛾𝛾1/𝜆𝜆 −𝛾𝛾2/𝜆𝜆      𝛾𝛾3/𝜆𝜆
𝛾𝛾1/𝜆𝜆  𝛾𝛾0/𝜆𝜆 −𝛾𝛾3/𝜆𝜆    −𝛾𝛾2/𝜆𝜆
𝛾𝛾2/𝜆𝜆
𝛾𝛾3/𝜆𝜆

−𝛾𝛾3/𝜆𝜆
   𝛾𝛾2/𝜆𝜆

     𝛾𝛾0/𝜆𝜆   −𝛾𝛾1/𝜆𝜆
      𝛾𝛾1/𝜆𝜆      𝛾𝛾0/𝜆𝜆]

 
 
 
 

 

 

and 

𝜆𝜆: 𝐼𝐼 ⊂ ℝ → 𝔻𝔻
𝑡𝑡 → 𝜆𝜆(𝑡𝑡) =∥ 𝛾𝛾(𝑡𝑡) ∥= √|𝛾𝛾0

2(𝑡𝑡) + 𝛾𝛾1
2(𝑡𝑡) + 𝛾𝛾2

2(𝑡𝑡) + 𝛾𝛾3
2(𝑡𝑡)| and 𝛾𝛾(𝑡𝑡) ≠ 0. 

Theorem 1. From Equalities (1) and (2), the matrix 𝒬𝒬 is dual orthogonal 

matrix in 𝔻𝔻4. 

Proof. Let  𝛾𝛾0(𝑡𝑡)𝛾𝛾3(𝑡𝑡) − 𝛾𝛾1(𝑡𝑡)𝛾𝛾2(𝑡𝑡) = 0. In Equality 𝒫𝒫 = 𝜆𝜆𝒬𝒬, the matrix 𝒬𝒬 

has been shown by 𝒬𝒬𝑇𝑇 𝒬𝒬 = 𝐼𝐼4 where, the matrix 𝒬𝒬 is dual orthogonal 

matrix and 𝑑𝑑𝑑𝑑𝑡𝑡𝒬𝒬 = 1. 
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ℛ = [
𝛾𝛾0 −𝛾𝛾1 −𝛾𝛾2      𝛾𝛾3
𝛾𝛾1  𝛾𝛾0 −𝛾𝛾3    −𝛾𝛾2
𝛾𝛾2
𝛾𝛾3

−𝛾𝛾3
   𝛾𝛾2

    𝛾𝛾0   −𝛾𝛾1
     𝛾𝛾1      𝛾𝛾0

] (1) 

Let  ‖𝛾𝛾′(𝑡𝑡)‖ = 1, 𝛾𝛾(𝑡𝑡) be a unit velocity dual curve. If 𝛾𝛾(𝑡𝑡) does not pass 

through the orijin, and 𝛾𝛾(𝑡𝑡) ≠ 0, from Equality (1), the matrix can be 

represent as 

𝒫𝒫 = 𝜆𝜆 𝒬𝒬, (2) 

𝒫𝒫 = 𝜆𝜆
[
 
 
 𝛾𝛾0/𝜆𝜆 −𝛾𝛾1/𝜆𝜆 −𝛾𝛾2/𝜆𝜆      𝛾𝛾3/𝜆𝜆
𝛾𝛾1/𝜆𝜆  𝛾𝛾0/𝜆𝜆 −𝛾𝛾3/𝜆𝜆    −𝛾𝛾2/𝜆𝜆
𝛾𝛾2/𝜆𝜆
𝛾𝛾3/𝜆𝜆

−𝛾𝛾3/𝜆𝜆
   𝛾𝛾2/𝜆𝜆

     𝛾𝛾0/𝜆𝜆   −𝛾𝛾1/𝜆𝜆
      𝛾𝛾1/𝜆𝜆      𝛾𝛾0/𝜆𝜆]

 
 
 
 

 

 

and 

𝜆𝜆: 𝐼𝐼 ⊂ ℝ → 𝔻𝔻
𝑡𝑡 → 𝜆𝜆(𝑡𝑡) =∥ 𝛾𝛾(𝑡𝑡) ∥= √|𝛾𝛾0

2(𝑡𝑡) + 𝛾𝛾1
2(𝑡𝑡) + 𝛾𝛾2

2(𝑡𝑡) + 𝛾𝛾3
2(𝑡𝑡)| and 𝛾𝛾(𝑡𝑡) ≠ 0. 

Theorem 1. From Equalities (1) and (2), the matrix 𝒬𝒬 is dual orthogonal 

matrix in 𝔻𝔻4. 

Proof. Let  𝛾𝛾0(𝑡𝑡)𝛾𝛾3(𝑡𝑡) − 𝛾𝛾1(𝑡𝑡)𝛾𝛾2(𝑡𝑡) = 0. In Equality 𝒫𝒫 = 𝜆𝜆𝒬𝒬, the matrix 𝒬𝒬 

has been shown by 𝒬𝒬𝑇𝑇 𝒬𝒬 = 𝐼𝐼4 where, the matrix 𝒬𝒬 is dual orthogonal 

matrix and 𝑑𝑑𝑑𝑑𝑡𝑡𝒬𝒬 = 1. 

3. A dual motion with one parameter in dual 4-space 

Let the fixed space and the motinal space be, respectively, 𝒦𝒦0 and 𝒦𝒦. In 

this case, one-parametric motion of 𝒦𝒦0 with respect to 𝒦𝒦 will be denoted 

by 𝒦𝒦0/𝒦𝒦. This motion can be expressed by 

[𝒳𝒳1 ] = [λ𝒬𝒬 𝒞𝒞
0 1] [

𝒳𝒳0
1 ] (3) 

or equivalently 

𝒳𝒳 = λ𝒬𝒬𝒳𝒳0 + 𝒞𝒞 (4) 

where, 𝒳𝒳 and 𝒳𝒳0 represent position vectors of any point, respectively, in 𝒦𝒦 

and 𝒦𝒦0, and 𝒞𝒞 represent any translation vector. 

Definition 2. In dual 4-space, the one-parameter dual homothetic motion 

of a body is generated by the transformation given in Equalities (3) and 

(4). Here λ is called the homothetic scale, which is a dual scalar matrix, 𝒬𝒬 

is an 4 × 4 dual orthogonal matrix, 𝒳𝒳0 and 𝒞𝒞 are 4 × 1 dual matrices, and 

𝒬𝒬, 𝒞𝒞, and λ are of class 𝒞𝒞n. In order not to encounter the case of affine 

transformation we suppose that 

𝜆𝜆(𝑡𝑡) = ℎ(𝑡𝑡) + 𝜀𝜀ℎ∗(𝑡𝑡) ≠ constant, 𝜆𝜆(𝑡𝑡) ≠ 0 

and to prevent the cases of pure rotation and pure translation we also 

suppose that 

λ̇𝒞𝒞 + λ�̇�𝒞 ≠ 0, �̇�𝒞 ≠ 0 

Corollary 1.  In dual space 𝛾𝛾(𝑡𝑡) ∈ 𝔻𝔻4, The homothetic motions are 

regular and has only one instantaneous rotation centre at all time 𝑡𝑡 . 
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Theorem 3.  The motion defined by Equality (3) is a dual homothetic 

motion with one parameter. 

Proof. The matrix determined by the equation in Equality (3) is a dual 

homothetic motion with one parameter, where 𝒬𝒬 ∈ SO(4).  

Theorem 4.  Let 𝛾𝛾(𝑡𝑡) be a unit velocity curve and �̇�𝛾(𝑡𝑡) ∈ ℳ then the 

derivation operator �̇�𝒫 of 𝒫𝒫 is dual orthogonal matrix in 𝔻𝔻4. 

Proof. Since 𝛾𝛾(𝑡𝑡) is a dual unit velocity curve, 

�̇�𝛾02(𝑡𝑡) + �̇�𝛾12(𝑡𝑡) + �̇�𝛾22(𝑡𝑡) + �̇�𝛾32(𝑡𝑡) = 1 

and �̇�𝛾(𝑡𝑡) ∈ ℳ, then 

�̇�𝛾0(𝑡𝑡)�̇�𝛾3(𝑡𝑡) − �̇�𝛾1(𝑡𝑡)�̇�𝛾2(𝑡𝑡) = 0. 

Thus, �̇�𝒫�̇�𝒫𝑇𝑇 = �̇�𝒫𝑇𝑇�̇�𝒫 and 𝑑𝑑𝑑𝑑𝑡𝑡�̇�𝒫 = 1.  

Theorem 5.  If 𝛾𝛾(𝑡𝑡) is a dual spherical curve on ℳ, then the motion is 

rotatin motion. 

Proof. Since 𝛾𝛾(𝑡𝑡) is a dual spherical curve on �̇�𝛾02(𝑡𝑡) + �̇�𝛾12(𝑡𝑡) + �̇�𝛾22(𝑡𝑡) +
�̇�𝛾32(𝑡𝑡) = 1 and  

𝒫𝒫𝒫𝒫𝑇𝑇 = 𝒫𝒫𝑇𝑇𝒫𝒫, 𝒫𝒫 is a dual orthogonal matrix and 𝑑𝑑𝑑𝑑𝑡𝑡𝒫𝒫 = 1. Thus 𝒫𝒫 is a 

dual rotating matrix in dual space 𝔻𝔻4 also, the value of det�̇�𝒫 is independent 

of 𝜆𝜆. 

4. Dual velocities, dual pole points and dual pole curves 

 From Equality (3) we obtain 
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dual rotating matrix in dual space 𝔻𝔻4 also, the value of det�̇�𝒫 is independent 

of 𝜆𝜆. 

4. Dual velocities, dual pole points and dual pole curves 

 From Equality (3) we obtain 

𝒳𝒳 = 𝒫𝒫𝒳𝒳0 + 𝒞𝒞 (5) 

then 

𝒳𝒳0 = −𝒫𝒫−1(𝒳𝒳 − 𝒞𝒞). 

If we let 𝒞𝒞′ = 𝒫𝒫−1𝒞𝒞, Then (λ−1 = 1
λ I, λT = λ) cause 

𝒳𝒳0 = 𝒫𝒫−1𝒳𝒳 + �̇�𝒞 (6) 

Equalities (5) and (6) are coordinate transformations between the fixed 

and moving dual spaces. Differentiating Equality (6) with respect to t we 

get 

�̇�𝒳 = �̇�𝒫𝒳𝒳0 + �̇�𝒞 + �̇�𝒳0 + 𝒫𝒫𝒳𝒳0̇  

where 𝒫𝒫𝒳𝒳0̇  is the dual relative velocity, �̇�𝒫𝒳𝒳0 + �̇�𝒞 is the dual sliding 

velocity, and �̇�𝒳 is the dual absolute velocity of point �̇�𝒳0. In this case the 

following theorem can be given. 

Theorem 6. For dual homothetic motion with one parameter in dual 4-

space, the dual absolute velocity vector of a moving system of point �̇�𝒳0 at 

that time 𝑡𝑡 is the sum of the dual sliding velocity and dual relative velocity 

of �̇�𝒳0. 

To find the pole point, we have to solve the equation 

�̇�𝒫𝒳𝒳0 + �̇�𝒞 = 0. 

Any solution of above equation is a dual pole point of the dual motion at 

that 𝑡𝑡 - instant, which is the only solution. In that case the following 

theorem can be given. 
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Theorem 7. In 𝒦𝒦0, if 𝛾𝛾(𝑡𝑡) is a dual unit velocity curve and �̇�𝛾(𝑡𝑡) ∈ ℳ , 

then the dual pole point corresponding to each 𝑡𝑡-instant is the rotation by 

�̇�𝒫 of the dual speed vector �̇�𝒞 of the translation vector at that moment. 

Proof. Since the matrix �̇�𝒫 is dual orthogonal, then the matrix �̇�𝒫T is dual 

orthogonal. Thus it makes a dual rotation.  

5. Dual accelerations and dual acceleration centers 

Definition 3. The set of the zeros of dual sliding acceleration of order n is 

defined the dual acceleration centre of order (𝑛𝑛 − 1). By the above 

definition, we have to solve the solution of the equation  

𝒫𝒫(𝑛𝑛)𝒳𝒳0 + 𝒞𝒞(𝑛𝑛) = ∑ (𝑛𝑛
𝑘𝑘) 𝜆𝜆(𝑛𝑛−𝑘𝑘)𝒬𝒬(𝑛𝑛)𝒳𝒳0 + 𝒞𝒞(𝑛𝑛) = 0

𝑛𝑛

𝑘𝑘=𝑜𝑜
 (9) 

where 𝒫𝒫(𝑛𝑛) = 𝑑𝑑𝑛𝑛𝒫𝒫
𝑑𝑑𝑡𝑡𝑛𝑛   and 𝒞𝒞(𝑛𝑛) = 𝑑𝑑𝑛𝑛𝒞𝒞

𝑑𝑑𝑡𝑡𝑛𝑛. We know that 𝛾𝛾(𝑡𝑡) is a regular curve of 

order 𝑛𝑛 and 

 𝛾𝛾(𝑛𝑛) ∈ ℳ. Then we have 𝛾𝛾0
(𝑛𝑛)𝛾𝛾3

(𝑛𝑛) + 𝛾𝛾1
(𝑛𝑛)𝛾𝛾2

(𝑛𝑛) = 0. Thus, 

(𝛾𝛾0
(𝑛𝑛))

2
+ (𝛾𝛾1

(𝑛𝑛))
2

+ (𝛾𝛾2
(𝑛𝑛))

2
+ (𝛾𝛾3

(𝑛𝑛))
2

≠ 0 

Also, we have 

𝑑𝑑𝑑𝑑𝑡𝑡𝒫𝒫(𝑛𝑛) = ((𝛾𝛾0
(𝑛𝑛))

2
+ (𝛾𝛾1

(𝑛𝑛))
2

+ (𝛾𝛾2
(𝑛𝑛))

2
+ (𝛾𝛾3

(𝑛𝑛))
2

)
2

≠ 0. 

Thus matrix 𝒫𝒫(n) has an inverse and by Equality (9), the dual acceleration 

centre of order 

 (𝑛𝑛 − 1) at every 𝑡𝑡-instant, is 



11

Theorem 7. In 𝒦𝒦0, if 𝛾𝛾(𝑡𝑡) is a dual unit velocity curve and �̇�𝛾(𝑡𝑡) ∈ ℳ , 

then the dual pole point corresponding to each 𝑡𝑡-instant is the rotation by 

�̇�𝒫 of the dual speed vector �̇�𝒞 of the translation vector at that moment. 

Proof. Since the matrix �̇�𝒫 is dual orthogonal, then the matrix �̇�𝒫T is dual 

orthogonal. Thus it makes a dual rotation.  

5. Dual accelerations and dual acceleration centers 

Definition 3. The set of the zeros of dual sliding acceleration of order n is 

defined the dual acceleration centre of order (𝑛𝑛 − 1). By the above 

definition, we have to solve the solution of the equation  

𝒫𝒫(𝑛𝑛)𝒳𝒳0 + 𝒞𝒞(𝑛𝑛) = ∑ (𝑛𝑛
𝑘𝑘) 𝜆𝜆(𝑛𝑛−𝑘𝑘)𝒬𝒬(𝑛𝑛)𝒳𝒳0 + 𝒞𝒞(𝑛𝑛) = 0

𝑛𝑛

𝑘𝑘=𝑜𝑜
 (9) 

where 𝒫𝒫(𝑛𝑛) = 𝑑𝑑𝑛𝑛𝒫𝒫
𝑑𝑑𝑡𝑡𝑛𝑛   and 𝒞𝒞(𝑛𝑛) = 𝑑𝑑𝑛𝑛𝒞𝒞

𝑑𝑑𝑡𝑡𝑛𝑛. We know that 𝛾𝛾(𝑡𝑡) is a regular curve of 

order 𝑛𝑛 and 

 𝛾𝛾(𝑛𝑛) ∈ ℳ. Then we have 𝛾𝛾0
(𝑛𝑛)𝛾𝛾3

(𝑛𝑛) + 𝛾𝛾1
(𝑛𝑛)𝛾𝛾2

(𝑛𝑛) = 0. Thus, 

(𝛾𝛾0
(𝑛𝑛))

2
+ (𝛾𝛾1

(𝑛𝑛))
2

+ (𝛾𝛾2
(𝑛𝑛))

2
+ (𝛾𝛾3

(𝑛𝑛))
2

≠ 0 

Also, we have 

𝑑𝑑𝑑𝑑𝑡𝑡𝒫𝒫(𝑛𝑛) = ((𝛾𝛾0
(𝑛𝑛))

2
+ (𝛾𝛾1

(𝑛𝑛))
2

+ (𝛾𝛾2
(𝑛𝑛))

2
+ (𝛾𝛾3

(𝑛𝑛))
2

)
2

≠ 0. 

Thus matrix 𝒫𝒫(n) has an inverse and by Equality (9), the dual acceleration 

centre of order 

 (𝑛𝑛 − 1) at every 𝑡𝑡-instant, is 

𝒳𝒳0 = [𝒫𝒫(𝑛𝑛)]−1[−𝒫𝒫(n)]. 

Example 1. Let γ: I ⊂ R → ℳ ⊂ 𝔻𝔻4 be a dual curve given by  

𝛾𝛾(𝑡𝑡) = 1
√2 (cost, sint, cos𝑡𝑡, sin𝑡𝑡 ). Note that 𝛾𝛾(𝑡𝑡) ∈  𝒮𝒮3 and since ‖γ̇(t)‖ = 1, 

then 𝛾𝛾(𝑡𝑡) is a unit velocity curve. Moreover,  

 �̇�𝛾(𝑡𝑡), �̈�𝛾(𝑡𝑡), , , 𝛾𝛾(𝑛𝑛)(𝑡𝑡)  ∈ ℳ. 

Thus 𝛾𝛾(𝑡𝑡) satisfies all conditions of the above theorems. 
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