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Abstract 

In the realm of geometric algebra and robotics, understanding the 
mathematical structures that describe motion is paramount. In Euclidean 
space, dual quaternions have emerged as a powerful tool for representing 
rigid body motions, encapsulating both rotation and translation in a compact, 
efficient manner. This elegance extends into the Lorentzian space, where dual 
split quaternions serve a similar role, adapting to the unique geometric 
properties of spacetime. This paper delves into the theory and application of 
dual split quaternions in representing line symmetric motions within Lorentz 
space, illustrating their utility and elegance in handling complex motion 
representations.  

1. Introduction 

Quaternions and dual quaternions have become indispensable tools in 
the representation and manipulation of movements within Euclidean spaces, 
particularly because of their robustness and efficiency in handling complex 
spatial transformations. These mathematical constructs are especially useful in 
areas such as robotics, computer graphics, aerospace, and virtual reality, where 
precise control over motion, rotation, translation, and screw movements is 
crucial. To fully appreciate the utility and the underlying principles of 
quaternions and dual quaternions, a deep dive into some foundational concepts 
and applications is essential. For detailed information, we refer the reader to  
(Bottema & Roth, 1990; Hanson, 2005;  Ward, 1997; Altmann, 1986; Blaschke, 
1960; Borel, 1908; Clifford, 1871). Let's expand on the basic notions used in the 
paper. 

𝐴𝐴 = 𝑎𝑎 + 𝜀𝜀𝑎𝑎∗ 

is a dual number where 𝑎𝑎 and 𝑎𝑎∗ are real numbers and 
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𝜀𝜀² = 0, 𝜀𝜀 ≠ 0, 0𝜀𝜀 = 𝜀𝜀0 = 0, 1𝜀𝜀 = 𝜀𝜀1 = 𝜀𝜀, 𝜀𝜀𝜀𝜀 = 𝜀𝜀𝜀𝜀. 

𝑞𝑞 = 𝑎𝑎0 + 𝑎𝑎1𝜀𝜀 + 𝑎𝑎2𝑗𝑗 + 𝑎𝑎3𝑘𝑘 is a split quaternion. Here 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2  and 𝑎𝑎3 are real 
numbers, and 

𝜀𝜀2 = −1, 𝑗𝑗2 = 𝑘𝑘2 = 𝜀𝜀𝑗𝑗𝑘𝑘 = 1                               
𝜀𝜀𝑗𝑗 = −𝑗𝑗𝜀𝜀 = 𝑘𝑘, 𝑗𝑗𝑘𝑘 = −𝑘𝑘𝑗𝑗 = −𝜀𝜀, 𝑘𝑘𝜀𝜀 = −𝜀𝜀𝑘𝑘 = 𝑗𝑗. 

 �̂�𝑞 = �̂�𝑎0 + �̂�𝑎1𝜀𝜀 + �̂�𝑎2𝑗𝑗 + �̂�𝑎3𝑘𝑘  is a dual split quaternion where �̂�𝑎0, �̂�𝑎1, �̂�𝑎2 and �̂�𝑎3 
are dual numbers. Hence, �̂�𝑞 can be written as 

�̂�𝑞 = 𝑞𝑞 + 𝜀𝜀𝑞𝑞∗ 

where 𝑞𝑞 = 𝑎𝑎0 + 𝑎𝑎1𝜀𝜀 + 𝑎𝑎2𝑗𝑗 + 𝑎𝑎3𝑘𝑘 and 𝑞𝑞∗ = 𝑎𝑎0
∗ + 𝑎𝑎1

∗𝜀𝜀 + 𝑎𝑎2
∗𝑗𝑗 + 𝑎𝑎3

∗𝑘𝑘  are split 
quaternions. 

The dual split quaternion multiplication is defined as 

�̂�𝑞1�̂�𝑞2 = (𝑞𝑞1𝑞𝑞2, 𝑞𝑞1𝑞𝑞2
∗ + 𝑞𝑞1

∗𝑞𝑞2) 

where �̂�𝑞1 = 𝑞𝑞1 + 𝜀𝜀𝑞𝑞1
∗ and �̂�𝑞2 = 𝑞𝑞2 + 𝜀𝜀𝑞𝑞2

∗ are dual split quaternions. 
Furthermore, the division �̂�𝑞1

�̂�𝑞2
 is 

(�̂�𝑞1/�̂�𝑞2) = (𝑞𝑞₁ + 𝜀𝜀𝑞𝑞1
∗)/(𝑞𝑞₂ + 𝜀𝜀𝑞𝑞2

∗) = (𝑞𝑞₁/𝑞𝑞₂) + 𝜀𝜀(𝑞𝑞1
∗𝑞𝑞₂ − 𝑞𝑞₁𝑞𝑞2

∗)/(𝑞𝑞₂²) 

where �̂�𝑞2 ≠ 0. 

Additionally, 

|�̂�𝑞|2 = �̂�𝑞�̂�𝑞 = (𝑞𝑞 + 𝜀𝜀𝑞𝑞∗)(𝑞𝑞‾ + 𝜀𝜀𝑞𝑞‾∗) = 𝑞𝑞𝑞𝑞‾ + 𝜀𝜀(𝑞𝑞𝑞𝑞‾∗ + 𝑞𝑞∗𝑞𝑞‾)
= (𝑎𝑎0

2 + 𝑎𝑎1
2 − 𝑎𝑎2

2 − 𝑎𝑎3
2) + 2𝜀𝜀(𝑎𝑎0𝑎𝑎0

∗ + 𝑎𝑎1𝑎𝑎1
∗ − 𝑎𝑎2𝑎𝑎2

∗ − 𝑎𝑎3𝑎𝑎3
∗)

= (𝑎𝑎0
2 + 2𝜀𝜀𝑎𝑎0𝑎𝑎0

∗) + (𝑎𝑎1
2 + 2𝜀𝜀𝑎𝑎1𝑎𝑎1

∗) − (𝑎𝑎2
2 + 2𝜀𝜀𝑎𝑎2𝑎𝑎2

∗)
− (𝑎𝑎3

2 + 2𝜀𝜀𝑎𝑎3𝑎𝑎3
∗) = �̂�𝑎0

2 + �̂�𝑎1
2 − �̂�𝑎2

2 − �̂�𝑎3
2 

and |�̂�𝑞| = √|�̂�𝑎0
2 + �̂�𝑎1

2 − �̂�𝑎2
2 − �̂�𝑎3

2| is the norm of �̂�𝑞 where �̂�𝑎0 = 𝑎𝑎0 + 𝜀𝜀𝑎𝑎0
∗ , �̂�𝑎1 =

𝑎𝑎1 + 𝜀𝜀𝑎𝑎1
∗, �̂�𝑎2 = 𝑎𝑎2 + 𝜀𝜀𝑎𝑎2

∗  and �̂�𝑎3 = 𝑎𝑎3 + 𝜀𝜀𝑎𝑎3
∗  are dual numbers. If |�̂�𝑞| = 1 then 

�̂�𝑞 is a unit dual split quaternion. Besides, inverse of �̂�𝑞 is 

�̂�𝑞−1 = �̂�𝑞
|�̂�𝑞|2 

where �̂�𝑞 = �̂�𝑎0 − �̂�𝑎1𝜀𝜀 − �̂�𝑎2𝑗𝑗 − �̂�𝑎3𝑘𝑘 and |�̂�𝑞| ≠ 0 (Kula & Yaylı, 2006; Akyar, 
2008; Atasoy et al., 2017). 
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and |�̂�𝑞| = √|�̂�𝑎0
2 + �̂�𝑎1

2 − �̂�𝑎2
2 − �̂�𝑎3

2| is the norm of �̂�𝑞 where �̂�𝑎0 = 𝑎𝑎0 + 𝜀𝜀𝑎𝑎0
∗ , �̂�𝑎1 =

𝑎𝑎1 + 𝜀𝜀𝑎𝑎1
∗, �̂�𝑎2 = 𝑎𝑎2 + 𝜀𝜀𝑎𝑎2

∗  and �̂�𝑎3 = 𝑎𝑎3 + 𝜀𝜀𝑎𝑎3
∗  are dual numbers. If |�̂�𝑞| = 1 then 

�̂�𝑞 is a unit dual split quaternion. Besides, inverse of �̂�𝑞 is 

�̂�𝑞−1 = �̂�𝑞
|�̂�𝑞|2 

where �̂�𝑞 = �̂�𝑎0 − �̂�𝑎1𝜀𝜀 − �̂�𝑎2𝑗𝑗 − �̂�𝑎3𝑘𝑘 and |�̂�𝑞| ≠ 0 (Kula & Yaylı, 2006; Akyar, 
2008; Atasoy et al., 2017). 

2. Preliminaries 

A dual split quaternion �̂�𝑞 = �̂�𝑎0 + �̂�𝑎1𝑖𝑖 + �̂�𝑎2𝑗𝑗 + �̂�𝑎3𝑘𝑘 = 𝑞𝑞 + 𝜀𝜀𝑞𝑞∗ with 𝑞𝑞 =
𝑎𝑎0 + 𝑎𝑎1𝑖𝑖 + 𝑎𝑎2𝑗𝑗 + 𝑎𝑎3𝑘𝑘 and 𝑞𝑞∗ = 𝑎𝑎0∗ + 𝑎𝑎1∗𝑖𝑖 + 𝑎𝑎2∗𝑗𝑗 + 𝑎𝑎3∗𝑘𝑘 split quaternion 
components is spacelike (if 𝐼𝐼𝑞𝑞 < 0), timelike (if 𝐼𝐼𝑞𝑞 > 0) or lightlike (if 𝐼𝐼𝑞𝑞 = 0) 
where 𝐼𝐼𝑞𝑞 = 𝑎𝑎02 + 𝑎𝑎12 − 𝑎𝑎22 − 𝑎𝑎32. As you can see, 𝑞𝑞 is the decisive part. 

2.1. Polar form for dual split quaternions 

Let’s take any dual split quaternion �̂�𝑞. Its polar forms are as follows. 

i) If �̂�𝑞 is spacelike dual split quaternion then 

�̂�𝑞 = |�̂�𝑞|(sinh�̂�𝜃 + �̂�𝜇cosh𝜃𝜃) 

where sinh𝜃𝜃 = �̂�𝑎0
|�̂�𝑞| , cosh𝜃𝜃 =

√−�̂�𝑎12+�̂�𝑎22+�̂�𝑎32

|�̂�𝑞| , 𝜃𝜃 = 𝜃𝜃 + 𝜀𝜀𝜃𝜃∗ dual angle and �̂�𝜇 =
�̂�𝑎1𝑖𝑖+�̂�𝑎2𝑗𝑗+�̂�𝑎3𝑘𝑘

√−�̂�𝑎12+�̂�𝑎22+�̂�𝑎32
 is spacelike unit vector. 

ii) If �̂�𝑞 is timelike dual split quaternion with spacelike vector part then 

�̂�𝑞 = |�̂�𝑞|(cosh𝜃𝜃 + �̂�𝜇sinh𝜃𝜃) 

where cosh𝜃𝜃 = �̂�𝑎0
|�̂�𝑞| , sinh�̂�𝜃 =

√−�̂�𝑎12+�̂�𝑎22+�̂�𝑎32

|�̂�𝑞| , 𝜃𝜃 = 𝜃𝜃 + 𝜀𝜀𝜃𝜃∗ dual angle and �̂�𝜇 =
�̂�𝑎1𝑖𝑖+�̂�𝑎2𝑗𝑗+�̂�𝑎3𝑘𝑘

√−�̂�𝑎12+�̂�𝑎22+�̂�𝑎32
is spacelike unit vector. 

iii) If �̂�𝑞 is timelike dual split quaternion with timelike vector part then 

�̂�𝑞 = |�̂�𝑞|(cos𝜃𝜃 + �̂�𝜇sin�̂�𝜃) 

where cos𝜃𝜃 = �̂�𝑎0
|�̂�𝑞| , sin𝜃𝜃 =

√�̂�𝑎12−�̂�𝑎22−�̂�𝑎32

|�̂�𝑞| , �̂�𝜇 = �̂�𝑎1𝑖𝑖+�̂�𝑎2𝑗𝑗+�̂�𝑎3𝑘𝑘

√�̂�𝑎12−�̂�𝑎22−�̂�𝑎32
 is spacelike unit vector 

and �̂�𝜇2 = �̂�𝜇�̂�𝜇 = −1. 

iv) If �̂�𝑞 is unit dual split quaternion with lightlike dual split vector part 
then 

�̂�𝑞 = 1 + �̂�𝜇 

where �̂�𝜇 is lightlike (null) dual split vector. 𝜃𝜃 = 𝜃𝜃 + 𝜀𝜀𝜃𝜃∗ is a dual angle and it 
makes rotation as 𝜃𝜃 and translation as 𝜃𝜃∗ about the dual axis �̂�𝜇, where 

cos𝜃𝜃 = cos𝜃𝜃 − 𝜀𝜀𝜃𝜃∗sin𝜃𝜃



90 | Quaternion-Based Analysis of Line-Symmetric Motions in Lorentzian Space

sin�̂�𝜃 = sin𝜃𝜃 + 𝜀𝜀𝜃𝜃∗cos𝜃𝜃
cosh𝜃𝜃 = cosh𝜃𝜃 + 𝜀𝜀𝜃𝜃∗sinh𝜃𝜃
sinh�̂�𝜃 = sinh𝜃𝜃 + 𝜀𝜀𝜃𝜃∗cosh𝜃𝜃 

For detailed information, see (Hanson, 2005; Akyar, 2008, Özdemir & Ergin, 
2006; Atasoy et all., 2017). 

2.2. Cross product and inner product in Lorentzian space 

The equality 

𝑢𝑢 ×
𝐿𝐿
𝑣𝑣 = |

−𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3
𝑦𝑦1 𝑦𝑦2 𝑦𝑦3

| = (𝑥𝑥3𝑦𝑦2 − 𝑥𝑥2𝑦𝑦3, 𝑥𝑥3𝑦𝑦1 − 𝑥𝑥1𝑦𝑦3, 𝑥𝑥1𝑦𝑦2 − 𝑥𝑥2𝑦𝑦1) 

is Lorentzian cross product and the equality 

< 𝑢𝑢, 𝑣𝑣 >
𝐿𝐿
= −𝑥𝑥1𝑦𝑦1 + 𝑥𝑥2𝑦𝑦2 + 𝑥𝑥3𝑦𝑦3 

is Lorentzian inner product where 𝑢𝑢 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) and 𝑣𝑣 = (𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3) are two 
vectors in Lorentz space. 

In Lorentz space, for vectors 𝑢𝑢 and 𝑣𝑣: 

i) 𝑢𝑢 ×𝐿𝐿 𝑣𝑣 is a spacelike vector if 𝑢𝑢 and 𝑣𝑣 are timelike vectors. Equalities 

< 𝑢𝑢, 𝑣𝑣 >
𝐿𝐿
= −‖𝑢𝑢‖‖𝑣𝑣‖cosh𝜃𝜃 

and 

‖𝑢𝑢 ×
𝐿𝐿
𝑣𝑣‖ = ‖𝑢𝑢‖‖𝑣𝑣‖sinh𝜃𝜃 

are written where 𝜃𝜃 is the hyperbolic angle between 𝑢𝑢 and 𝑣𝑣. 

ii) 𝑢𝑢 ×𝐿𝐿 𝑣𝑣 is timelike if 𝑢𝑢 and 𝑣𝑣 are spacelike vectors satisfying the 
inequality  |< 𝑢𝑢, 𝑣𝑣 >𝐿𝐿| < ‖𝑢𝑢‖‖𝑣𝑣‖. Equalities 

< 𝑢𝑢, 𝑣𝑣 >
𝐿𝐿
= ‖𝑢𝑢‖‖𝑣𝑣‖cos𝜃𝜃 

and 

‖𝑢𝑢 ×𝐿𝐿 𝑣𝑣‖ = ‖𝑢𝑢‖‖𝑣𝑣‖sin𝜃𝜃 

are written where 𝜃𝜃 is the angle between 𝑢𝑢 and 𝑣𝑣. 

iii) 𝑢𝑢 ×𝐿𝐿 𝑣𝑣 is spacelike if 𝑢𝑢 and 𝑣𝑣 are spacelike vectors satisfying the 
inequality |< 𝑢𝑢, 𝑣𝑣 >𝐿𝐿| < ‖𝑢𝑢‖‖𝑣𝑣‖. Equalities 

< 𝑢𝑢, 𝑣𝑣 >
𝐿𝐿
= −‖𝑢𝑢‖‖𝑣𝑣‖cosh𝜃𝜃 
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sin�̂�𝜃 = sin𝜃𝜃 + 𝜀𝜀𝜃𝜃∗cos𝜃𝜃
cosh𝜃𝜃 = cosh𝜃𝜃 + 𝜀𝜀𝜃𝜃∗sinh𝜃𝜃
sinh�̂�𝜃 = sinh𝜃𝜃 + 𝜀𝜀𝜃𝜃∗cosh𝜃𝜃 

For detailed information, see (Hanson, 2005; Akyar, 2008, Özdemir & Ergin, 
2006; Atasoy et all., 2017). 

2.2. Cross product and inner product in Lorentzian space 

The equality 

𝑢𝑢 ×
𝐿𝐿
𝑣𝑣 = |

−𝑖𝑖 𝑗𝑗 𝑘𝑘
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3
𝑦𝑦1 𝑦𝑦2 𝑦𝑦3

| = (𝑥𝑥3𝑦𝑦2 − 𝑥𝑥2𝑦𝑦3, 𝑥𝑥3𝑦𝑦1 − 𝑥𝑥1𝑦𝑦3, 𝑥𝑥1𝑦𝑦2 − 𝑥𝑥2𝑦𝑦1) 

is Lorentzian cross product and the equality 

< 𝑢𝑢, 𝑣𝑣 >
𝐿𝐿
= −𝑥𝑥1𝑦𝑦1 + 𝑥𝑥2𝑦𝑦2 + 𝑥𝑥3𝑦𝑦3 

is Lorentzian inner product where 𝑢𝑢 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) and 𝑣𝑣 = (𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3) are two 
vectors in Lorentz space. 

In Lorentz space, for vectors 𝑢𝑢 and 𝑣𝑣: 

i) 𝑢𝑢 ×𝐿𝐿 𝑣𝑣 is a spacelike vector if 𝑢𝑢 and 𝑣𝑣 are timelike vectors. Equalities 

< 𝑢𝑢, 𝑣𝑣 >
𝐿𝐿
= −‖𝑢𝑢‖‖𝑣𝑣‖cosh𝜃𝜃 

and 

‖𝑢𝑢 ×
𝐿𝐿
𝑣𝑣‖ = ‖𝑢𝑢‖‖𝑣𝑣‖sinh𝜃𝜃 

are written where 𝜃𝜃 is the hyperbolic angle between 𝑢𝑢 and 𝑣𝑣. 

ii) 𝑢𝑢 ×𝐿𝐿 𝑣𝑣 is timelike if 𝑢𝑢 and 𝑣𝑣 are spacelike vectors satisfying the 
inequality  |< 𝑢𝑢, 𝑣𝑣 >𝐿𝐿| < ‖𝑢𝑢‖‖𝑣𝑣‖. Equalities 

< 𝑢𝑢, 𝑣𝑣 >
𝐿𝐿
= ‖𝑢𝑢‖‖𝑣𝑣‖cos𝜃𝜃 

and 

‖𝑢𝑢 ×𝐿𝐿 𝑣𝑣‖ = ‖𝑢𝑢‖‖𝑣𝑣‖sin𝜃𝜃 

are written where 𝜃𝜃 is the angle between 𝑢𝑢 and 𝑣𝑣. 

iii) 𝑢𝑢 ×𝐿𝐿 𝑣𝑣 is spacelike if 𝑢𝑢 and 𝑣𝑣 are spacelike vectors satisfying the 
inequality |< 𝑢𝑢, 𝑣𝑣 >𝐿𝐿| < ‖𝑢𝑢‖‖𝑣𝑣‖. Equalities 

< 𝑢𝑢, 𝑣𝑣 >
𝐿𝐿
= −‖𝑢𝑢‖‖𝑣𝑣‖cosh𝜃𝜃 

and 

‖𝑢𝑢 ×𝐿𝐿 𝑣𝑣‖ = ‖𝑢𝑢‖‖𝑣𝑣‖sinh𝜃𝜃 

are written where 𝜃𝜃 is the hyperbolic angle between 𝑢𝑢 and 𝑣𝑣. 

iv) 𝑢𝑢 ×𝐿𝐿 𝑣𝑣 is lightlike if 𝑢𝑢 and 𝑣𝑣 are spacelike vectors satisfying the 
equality |< 𝑢𝑢, 𝑣𝑣 >𝐿𝐿| = ‖𝑢𝑢‖‖𝑣𝑣‖. For detailed information, see (Inoguchi, 1998; 
Özdemir & Ergin, 2006; Kula & Yaylı, 2006, 2007).   

3. Rigid transformation in Lorentzian space 

A dual split quaternion representing a rigid transformation in Lorentz 
space is written as 

𝑔𝑔 = 𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟 

where 𝑟𝑟 is a split quaternion and 𝜀𝜀 is a pure split quaternion. Here, 𝑟𝑟 represent a 
rotation and 𝜀𝜀 = 𝜀𝜀𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑦𝑦𝑗𝑗 + 𝜀𝜀𝑧𝑧𝑘𝑘 represent a translation. Any point in Lorentz 
space is represented as 

�̂�𝑝 = 1 + 𝜀𝜀𝑝𝑝 

with the help of dual split quaternion, where 𝑝𝑝 is pure split quaternion 
corresponding to this point. If 𝑝𝑝 timelike, spacelike or lightlike respectively than 
�̂�𝑝 timelike, spacelike or lightlike. In Lorentz space, the action of a rigid 
transformation on a point is given by 

�̂�𝑝′ = (𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟) �̂�𝑝 (𝑟𝑟‾ −

1
2 𝜀𝜀𝑟𝑟‾𝜀𝜀). 

That is 

�̂�𝑝′ = (𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟) (1 + 𝜀𝜀𝑝𝑝) (𝑟𝑟‾ − 1

2 𝜀𝜀𝑟𝑟‾𝜀𝜀)

= 𝑟𝑟𝑟𝑟‾ + 𝜀𝜀 (𝑟𝑟𝑝𝑝𝑟𝑟‾ + 1
2 𝑟𝑟𝑟𝑟‾𝜀𝜀 +

1
2 𝜀𝜀𝑟𝑟𝑟𝑟‾)

= 1 + 𝜀𝜀(𝑟𝑟𝑝𝑝𝑟𝑟‾ + 𝜀𝜀). 

Suppose 𝑣𝑣 is a unit vector and 𝑝𝑝 is a point in Lorentz space, then a line 
in the direction of 𝑣𝑣 and passing through the point 𝑝𝑝 can be given with equality 

𝑙𝑙 = 𝑣𝑣 + 𝜀𝜀𝑝𝑝 ×𝐿𝐿 𝑣𝑣 

as in real space. 

Notice that, as with the pure rotations, 𝑔𝑔 and −𝑔𝑔 represent the same 
rigid transformation in Lorentz space. 
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The effect of a rigid transformation 𝑔𝑔 in Lorentz space is given by 

𝑙𝑙′ = 𝑔𝑔𝑙𝑙𝑔𝑔‾ 

on a line 𝑙𝑙. That is, if 𝑔𝑔 = 𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟 then 𝑔𝑔‾ = 𝑟𝑟‾ − 1

2 𝜀𝜀𝑟𝑟‾𝜀𝜀 (Bottema & Roth, 1990). 
It can be seen that 𝑟𝑟 is determinative about character of 𝑔𝑔. 

Polar forms of 𝑔𝑔 are as follows: 

i) If 𝑟𝑟 is a spacelike split quaternion then 𝑔𝑔 = 𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟 = �̂�𝑎0 + �̂�𝑎1𝑖𝑖 +

�̂�𝑎2𝑗𝑗 + �̂�𝑎3𝑘𝑘 is spacelike dual split quaternion. 𝑔𝑔 can be written in the form 

𝑔𝑔 = |𝑔𝑔|(𝑠𝑠𝑖𝑖𝑠𝑠ℎ𝜃𝜃 + �̂�𝜇𝑐𝑐𝑐𝑐𝑠𝑠ℎ𝜃𝜃) = 𝑠𝑠𝑖𝑖𝑠𝑠ℎ𝜃𝜃 + �̂�𝜇𝑐𝑐𝑐𝑐𝑠𝑠ℎ𝜃𝜃 

where |𝑔𝑔| = 1, 𝑠𝑠𝑖𝑖𝑠𝑠ℎ𝜃𝜃 = �̂�𝑎₀
|𝑞𝑞|, cosh𝜃𝜃 =

√−�̂�𝑎1
2+�̂�𝑎2

2+�̂�𝑎3
2

|�̂�𝑞| , 𝜃𝜃 = 𝜃𝜃 + 𝜀𝜀𝜃𝜃∗ dual angle and 

�̂�𝜇 = �̂�𝑎1𝑖𝑖+�̂�𝑎2𝑗𝑗+�̂�𝑎3𝑘𝑘

√−�̂�𝑎1
2+�̂�𝑎2

2+�̂�𝑎3
2
 is a spacelike unit vector. 𝑔𝑔 makes rotation about the dual axis 

�̂�𝜇 as 2𝜃𝜃 and makes translation as 2𝜃𝜃∗. 

Therefore, a action of 𝜃𝜃 dual angle about such a 𝑙𝑙 = 𝑣𝑣 + 𝜀𝜀𝜀𝜀 ×𝐿𝐿 𝑣𝑣 spacelike line 
in Lorentz space is given by the dual split quaternion 

𝑔𝑔 = sinh (�̂�𝜃
2) + cosh (�̂�𝜃

2) 𝑙𝑙 = (𝑠𝑠𝑖𝑖𝑠𝑠ℎ �̂�𝜃
2 + 𝑐𝑐𝑐𝑐𝑠𝑠ℎ �̂�𝜃

2 𝑣𝑣) + 𝜀𝜀𝑐𝑐𝑐𝑐𝑠𝑠 ℎ �̂�𝜃
2 (𝜀𝜀 × 𝑣𝑣). 

𝑔𝑔 is spacelike dual split quaternion with spacelike vector part. 

To see this, notice that the rotational part of this transformation is simply 

the split quaternion 

𝑟𝑟 = 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝜃𝜃
2 + 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝜃𝜃

2 (vxi + vyj + vzk) 

as above. If the line passes through the origin, that is if 𝜀𝜀 = 0 then we are done, 
otherwise we can produce the rotation about the line by first translating it to the 
origin, rotating and then translating back. Thus, we can write that 

𝑔𝑔 = (1 + 1
2 𝜀𝜀𝜀𝜀) 𝑟𝑟 (1 − 1

2 𝜀𝜀𝜀𝜀) = 𝑟𝑟 + 1
2 𝜀𝜀(𝜀𝜀𝑟𝑟 − 𝑟𝑟𝜀𝜀). 

Finally, a simple computation confirms that the quaternion 1
2 (𝜀𝜀𝑟𝑟 − 𝑟𝑟𝜀𝜀) 

corresponds to the vector cosℎ �̂�𝜃
2 𝜀𝜀 × 𝑣𝑣. 

ii) If 𝑟𝑟 timelike split quaternion with spacelike vector part then 
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The effect of a rigid transformation 𝑔𝑔 in Lorentz space is given by 

𝑙𝑙′ = 𝑔𝑔𝑙𝑙𝑔𝑔‾ 

on a line 𝑙𝑙. That is, if 𝑔𝑔 = 𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟 then 𝑔𝑔‾ = 𝑟𝑟‾ − 1

2 𝜀𝜀𝑟𝑟‾𝜀𝜀 (Bottema & Roth, 1990). 
It can be seen that 𝑟𝑟 is determinative about character of 𝑔𝑔. 

Polar forms of 𝑔𝑔 are as follows: 

i) If 𝑟𝑟 is a spacelike split quaternion then 𝑔𝑔 = 𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟 = �̂�𝑎0 + �̂�𝑎1𝑖𝑖 +

�̂�𝑎2𝑗𝑗 + �̂�𝑎3𝑘𝑘 is spacelike dual split quaternion. 𝑔𝑔 can be written in the form 

𝑔𝑔 = |𝑔𝑔|(𝑠𝑠𝑖𝑖𝑠𝑠ℎ𝜃𝜃 + �̂�𝜇𝑐𝑐𝑐𝑐𝑠𝑠ℎ𝜃𝜃) = 𝑠𝑠𝑖𝑖𝑠𝑠ℎ𝜃𝜃 + �̂�𝜇𝑐𝑐𝑐𝑐𝑠𝑠ℎ𝜃𝜃 

where |𝑔𝑔| = 1, 𝑠𝑠𝑖𝑖𝑠𝑠ℎ𝜃𝜃 = �̂�𝑎₀
|𝑞𝑞|, cosh𝜃𝜃 =

√−�̂�𝑎1
2+�̂�𝑎2

2+�̂�𝑎3
2

|�̂�𝑞| , 𝜃𝜃 = 𝜃𝜃 + 𝜀𝜀𝜃𝜃∗ dual angle and 

�̂�𝜇 = �̂�𝑎1𝑖𝑖+�̂�𝑎2𝑗𝑗+�̂�𝑎3𝑘𝑘

√−�̂�𝑎1
2+�̂�𝑎2

2+�̂�𝑎3
2
 is a spacelike unit vector. 𝑔𝑔 makes rotation about the dual axis 

�̂�𝜇 as 2𝜃𝜃 and makes translation as 2𝜃𝜃∗. 

Therefore, a action of 𝜃𝜃 dual angle about such a 𝑙𝑙 = 𝑣𝑣 + 𝜀𝜀𝜀𝜀 ×𝐿𝐿 𝑣𝑣 spacelike line 
in Lorentz space is given by the dual split quaternion 

𝑔𝑔 = sinh (�̂�𝜃
2) + cosh (�̂�𝜃

2) 𝑙𝑙 = (𝑠𝑠𝑖𝑖𝑠𝑠ℎ �̂�𝜃
2 + 𝑐𝑐𝑐𝑐𝑠𝑠ℎ �̂�𝜃

2 𝑣𝑣) + 𝜀𝜀𝑐𝑐𝑐𝑐𝑠𝑠 ℎ �̂�𝜃
2 (𝜀𝜀 × 𝑣𝑣). 

𝑔𝑔 is spacelike dual split quaternion with spacelike vector part. 

To see this, notice that the rotational part of this transformation is simply 

the split quaternion 

𝑟𝑟 = 𝑠𝑠𝑖𝑖𝑠𝑠ℎ 𝜃𝜃
2 + 𝑐𝑐𝑐𝑐𝑠𝑠ℎ 𝜃𝜃

2 (vxi + vyj + vzk) 

as above. If the line passes through the origin, that is if 𝜀𝜀 = 0 then we are done, 
otherwise we can produce the rotation about the line by first translating it to the 
origin, rotating and then translating back. Thus, we can write that 

𝑔𝑔 = (1 + 1
2 𝜀𝜀𝜀𝜀) 𝑟𝑟 (1 − 1

2 𝜀𝜀𝜀𝜀) = 𝑟𝑟 + 1
2 𝜀𝜀(𝜀𝜀𝑟𝑟 − 𝑟𝑟𝜀𝜀). 

Finally, a simple computation confirms that the quaternion 1
2 (𝜀𝜀𝑟𝑟 − 𝑟𝑟𝜀𝜀) 

corresponds to the vector cosℎ �̂�𝜃
2 𝜀𝜀 × 𝑣𝑣. 

ii) If 𝑟𝑟 timelike split quaternion with spacelike vector part then 

𝑔𝑔 = 𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟 = �̂�𝑎0 + �̂�𝑎1𝑖𝑖 + �̂�𝑎2𝑗𝑗 + �̂�𝑎3𝑘𝑘 

timelike dual split quaternion with spacelike vector part. 𝑔𝑔 can be written in the 
form 

𝑔𝑔 = |𝑔𝑔|(𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝜃𝜃 + �̂�𝜇𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝜃𝜃) = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝜃𝜃 + �̂�𝜇𝑐𝑐𝑖𝑖𝑠𝑠ℎ𝜃𝜃 

where |𝑔𝑔| = 1, 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝜃𝜃 = �̂�𝑎₀
|𝑞𝑞|, sinh�̂�𝜃 =

√−�̂�𝑎1
2+�̂�𝑎2

2+�̂�𝑎3
2

|�̂�𝑞| , 𝜃𝜃 = 𝜃𝜃 + 𝜀𝜀𝜃𝜃∗ dual açı and 

�̂�𝜇 = (�̂�𝑎₁𝑖𝑖+�̂�𝑎₂𝑗𝑗+�̂�𝑎₃𝑘𝑘)
√−�̂�𝑎₁²+�̂�𝑎₂²+�̂�𝑎₃²

 is a spacelike unit vector. 𝑔𝑔 makes rotation about the dual axis 

�̂�𝜇 as 2𝜃𝜃 and makes translation as 2𝜃𝜃∗. 

Therefore, a action of 𝜃𝜃 dual angle about such a 𝑙𝑙 = 𝑣𝑣 + 𝜀𝜀𝜀𝜀 ×𝐿𝐿 𝑣𝑣 
spacelike line in Lorentz space is given by the dual split quaternion 

𝑔𝑔 = cosh (𝜃𝜃
2) + 𝑐𝑐𝑖𝑖𝑠𝑠ℎ (𝜃𝜃

2) 𝑙𝑙 = (𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝜃𝜃
2 + 𝑐𝑐𝑖𝑖𝑠𝑠ℎ 𝜃𝜃

2 𝑣𝑣) + 𝜀𝜀𝑐𝑐𝑖𝑖𝑠𝑠 ℎ 𝜃𝜃
2 (𝜀𝜀 × 𝑣𝑣) 

𝑔𝑔 is timelike dual split quaternion with spacelike vector part. 

To see this, notice that the rotational part of this transformation is simply 

the quaternion, 

𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝜃𝜃
2 + 𝑐𝑐𝑖𝑖𝑠𝑠ℎ 𝜃𝜃

2 (vxi + vyj + vzk) 

above. If the line passes through the origin, that is if 𝜀𝜀 = 0 then we are done, 
otherwise we can produce the rotation about the line by first translating it to the 
origin, rotating and then translating back. We can write that 

𝑔𝑔 = (1 + 1
2 𝜀𝜀𝜀𝜀) 𝑟𝑟 (1 − 1

2 𝜀𝜀𝜀𝜀) = 𝑟𝑟 + 1
2 𝜀𝜀(𝜀𝜀𝑟𝑟 − 𝑟𝑟𝜀𝜀). 

Thus, a simple computation confirms that the quaternion 1
2 (𝜀𝜀𝑟𝑟 − 𝑟𝑟𝜀𝜀) 

corresponds to the vector sinh �̂�𝜃
2 𝜀𝜀 × 𝑣𝑣. 

iii) If 𝑟𝑟 timelike split quaternion with timelike vector part then 𝑔𝑔 = 𝑟𝑟 +
1
2 𝜀𝜀𝜀𝜀𝑟𝑟 = �̂�𝑎0 + �̂�𝑎1𝑖𝑖 + �̂�𝑎2𝑗𝑗 + �̂�𝑎3𝑘𝑘, timelike dual split quaternion with timelike 
vector part. 𝑔𝑔 can be written in the form 

𝑔𝑔 = |𝑔𝑔|(cos𝜃𝜃 + �̂�𝜇sin�̂�𝜃) = cos𝜃𝜃 + �̂�𝜇sin𝜃𝜃 
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where |𝑔𝑔| = 1, 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 = �̂�𝑎₀
|𝑞𝑞|, sin𝜃𝜃 =

√−�̂�𝑎1
2+�̂�𝑎2

2+�̂�𝑎3
2

|�̂�𝑞| , 𝜃𝜃 = 𝜃𝜃 + 𝜀𝜀𝜃𝜃∗ dual angle and 

�̂�𝜇 = (�̂�𝑎₁𝑖𝑖+�̂�𝑎₂𝑗𝑗+�̂�𝑎₃𝑘𝑘)
√�̂�𝑎₁²−�̂�𝑎₂²+�̂�𝑎₃²

 is a timelike unit vector. 𝑔𝑔 makes rotation about the dual axis 

�̂�𝜇 as 2𝜃𝜃 and makes translation as 2𝜃𝜃∗. 

Therefore, a action of 𝜃𝜃 dual angle about such a 𝑙𝑙 = 𝑣𝑣 + 𝜀𝜀𝜀𝜀 ×𝐿𝐿 𝑣𝑣 spacelike line 
in Lorentz space is given by the dual split quaternion 

𝑔𝑔 = cos (𝜃𝜃
2) + 𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃

2) 𝑙𝑙 = (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
2 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃

2 𝑣𝑣) + 𝜀𝜀𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃
2 (𝜀𝜀 × 𝑣𝑣) 

𝑔𝑔 is timelike dual split quaternion with timelike vector part. 

To see this, notice that the rotational part of this transformation is simply 
the quaternion, 𝑟𝑟 = cos �̂�𝜃

2 + sin �̂�𝜃
2 (𝑣𝑣𝑥𝑥𝑠𝑠 + 𝑣𝑣𝑦𝑦𝑗𝑗 + 𝑣𝑣𝑧𝑧𝑘𝑘) as above. If the line passes 

through the origin, that is if 𝜀𝜀 = 0 then we are done, otherwise we can produce 
the rotation about the line by first translating it to the origin, rotating and then 
translating back. We can write that 

𝑔𝑔 = (1 + 1
2 𝜀𝜀𝜀𝜀) 𝑟𝑟 (1 − 1

2 𝜀𝜀𝜀𝜀) = 𝑟𝑟 + 1
2 𝜀𝜀(𝜀𝜀𝑟𝑟 − 𝑟𝑟𝜀𝜀). 

So, a simple computation confirms that the quaternion 1
2 (𝜀𝜀𝑟𝑟 − 𝑟𝑟𝜀𝜀) corresponds 

to the vector sin �̂�𝜃
2 𝜀𝜀 ×𝐿𝐿 𝑣𝑣. 

iv) If 𝑟𝑟 lightlike split quaternion then 𝑔𝑔 = 𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟 = �̂�𝑎0 + �̂�𝑎1𝑠𝑠 +

�̂�𝑎2𝑗𝑗 + �̂�𝑎3𝑘𝑘, lightlike dual split quaternion. 𝑔𝑔 can be written in the form 

𝑔𝑔 = 1 + �̂�𝑢 

where �̂�𝑢 is a lightlike (null) dual split vector. 𝑔𝑔 doesn’t makes rotation and 
translation (Selig & Husty, 2011; Hanson, 2005; Atasoy et al., 2017). 

Notice that not all dual split quaternions represent rigid transformations. A dual 
split quaternion 𝑔𝑔 is a rigid transformation where 

𝑔𝑔𝑔𝑔‾ = 1. 

This is easily checked using the form 𝑔𝑔 = 𝑟𝑟 + (1/2)𝜀𝜀𝜀𝜀𝑟𝑟 given above and 
remembering that the rotation 𝑟𝑟 satisfies 𝑟𝑟𝑟𝑟‾ = 1 and since the translation 𝜀𝜀 is a 
pure split quaternion 𝜀𝜀‾ = −𝜀𝜀 (Selig & Husty, 2011). 
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iv) If 𝑟𝑟 lightlike split quaternion then 𝑔𝑔 = 𝑟𝑟 + 1
2 𝜀𝜀𝜀𝜀𝑟𝑟 = �̂�𝑎0 + �̂�𝑎1𝑠𝑠 +

�̂�𝑎2𝑗𝑗 + �̂�𝑎3𝑘𝑘, lightlike dual split quaternion. 𝑔𝑔 can be written in the form 

𝑔𝑔 = 1 + �̂�𝑢 

where �̂�𝑢 is a lightlike (null) dual split vector. 𝑔𝑔 doesn’t makes rotation and 
translation (Selig & Husty, 2011; Hanson, 2005; Atasoy et al., 2017). 

Notice that not all dual split quaternions represent rigid transformations. A dual 
split quaternion 𝑔𝑔 is a rigid transformation where 

𝑔𝑔𝑔𝑔‾ = 1. 

This is easily checked using the form 𝑔𝑔 = 𝑟𝑟 + (1/2)𝜀𝜀𝜀𝜀𝑟𝑟 given above and 
remembering that the rotation 𝑟𝑟 satisfies 𝑟𝑟𝑟𝑟‾ = 1 and since the translation 𝜀𝜀 is a 
pure split quaternion 𝜀𝜀‾ = −𝜀𝜀 (Selig & Husty, 2011). 

4. Half-turn in Lorentzian space 

A half-turn is a rotation by 𝜋𝜋 radians angle about some line in Euclidean 
space. In Lorentz space, half-turns can be represented by dual split quaternions 
of the form = (�̂�𝑎1𝑖𝑖 + �̂�𝑎2𝑗𝑗 + �̂�𝑎3𝑘𝑘) + 𝜀𝜀(�̂�𝑐1𝑖𝑖 + �̂�𝑐2𝑗𝑗 + �̂�𝑐3𝑘𝑘) . They can be thought of 
as reflections in the line. 

The actions of the group by conjugation and adjoint preserve the set of 
half-turns. That is, for any group element ℎ and half-turn 𝑙𝑙 the conjugation ℎ𝑙𝑙ℎ‾ =
𝑙𝑙′is another half-turn. To see this notice that these lines are the dual equivalent 
of the pure split quaternions, that is 𝑙𝑙‾ = −𝑙𝑙 for half-turns. Moreover, in Lorentz 
space, the half-turns are the only dual split quaternions that satisfy this relation. 
Now the split quaternion conjugate of ℎ𝑙𝑙ℎ‾ = 𝑙𝑙′ is 

(𝑙𝑙′) = (ℎ𝑙𝑙ℎ‾) = (ℎ‾) 𝑙𝑙‾ℎ‾ = −ℎ𝑙𝑙ℎ‾ = −𝑙𝑙′. 

A rigid transformation 𝑔𝑔 can be written as the product of two half-turns. 
For example, consider a finite screw motion about the 𝑧𝑧-axis in Lorentz space, 
this can be written as the timelike dual split quaternion with spacelike vector part 

𝑔𝑔 = cosh (𝜃𝜃
2) + �̂�𝜇 sinh (𝜃𝜃

2) = cosh (𝜃𝜃
2 + 𝜀𝜀 𝑑𝑑

2) + 𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘ℎ(𝜃𝜃
2 + 𝜀𝜀 𝑑𝑑

2)

= 𝑐𝑐𝑐𝑐𝑘𝑘ℎ 𝜃𝜃
2 + 𝜀𝜀 𝑑𝑑

2 𝑘𝑘𝑖𝑖𝑘𝑘ℎ 𝜃𝜃
2 + 𝑘𝑘(𝑘𝑘𝑖𝑖𝑘𝑘ℎ 𝜃𝜃

2 + 𝜀𝜀 𝑑𝑑
2 𝑐𝑐𝑐𝑐𝑘𝑘ℎ 𝜃𝜃

2)

= (𝑐𝑐𝑐𝑐𝑘𝑘ℎ 𝜃𝜃
2 + 𝑘𝑘𝑖𝑖𝑘𝑘ℎ 𝜃𝜃

2 𝑘𝑘) + 𝜀𝜀(𝑑𝑑
2 𝑘𝑘𝑖𝑖𝑘𝑘 ℎ 𝜃𝜃

2 + 𝑑𝑑
2 𝑐𝑐𝑐𝑐𝑘𝑘ℎ 𝜃𝜃

2 𝑘𝑘) 

where 𝜃𝜃 = 𝜃𝜃 + 𝜀𝜀𝑑𝑑, �̂�𝜇 = 𝑘𝑘 + 𝜀𝜀(0 ×𝐿𝐿 𝑘𝑘) = 𝑘𝑘, cosh𝜃𝜃 = cosh𝜃𝜃 + 𝜀𝜀𝜃𝜃∗sinh𝜃𝜃, and 
sinh�̂�𝜃 = sinh𝜃𝜃 + 𝜀𝜀𝜃𝜃∗cosh𝜃𝜃. 

It is easy to see that this can be decomposed as 𝑔𝑔 = 𝑙𝑙1𝑙𝑙2 where the two 
half-turns are, 

𝑙𝑙1 = 𝑖𝑖 

and 

𝑙𝑙2 = (−cosℎ 𝜃𝜃
2 𝑖𝑖 + sinℎ 𝜃𝜃

2 𝑗𝑗) + 𝜀𝜀 (−𝑑𝑑
2 sinℎ 𝜃𝜃

2 𝑖𝑖 + 𝑑𝑑
2 cosℎ 𝜃𝜃

2 𝑗𝑗). 

There are many other possible solutions if 𝑔𝑔0 is any transformation 
which commutes with 𝑔𝑔, that is any other screw motion with the same axis as 𝑔𝑔, 
then since 𝑔𝑔𝑔𝑔0 = 𝑔𝑔0𝑔𝑔, 

𝑔𝑔 = 𝑙𝑙1
′ 𝑙𝑙2

′  
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where 𝑙𝑙1′ = 𝑔𝑔0𝑙𝑙1𝑔𝑔0
_

and 𝑙𝑙2′ = 𝑔𝑔0𝑙𝑙2𝑔𝑔0
_
. Notice that the axes of the factors, 𝑙𝑙1 and 

𝑙𝑙2 are perpendicular to the axis of the original screw transformation. Such that, 

⟨𝑖𝑖, 𝑘𝑘⟩ = 0 

and 

< (−cos ℎ 𝜃𝜃2 𝑖𝑖 sin ℎ
𝜃𝜃
2 𝑗𝑗) + 𝜀𝜀(−𝑑𝑑

2 sin ℎ
𝜃𝜃
2 𝑖𝑖 +

𝑑𝑑
2 cos ℎ

𝜃𝜃
2 𝑗𝑗), 𝑘𝑘 >= 0 

The angle between the lines is half the rotation angle of the transformation and 
the perpendicular distance between the lines is half the translation along the axis 
of the screw (Selig & Husty, 2011). 

5. Line-Symmetric Motions in Lorentzian Space 

In Lorentz space, line symmetric motions are defined as follows: take a 
ruled surface 𝑙𝑙(𝜇𝜇) and a fixed coordinate frame, now a line symmetric motion is 
given by reflecting the fixed frame in consecutive generating lines of the ruled 
surface, to give a 1-parameter family of frames. 

This can be seen as a curve by choosing a starting line in the ruled 
surface and 𝑙𝑙0 = 𝑙𝑙(0). Now the rigid motion from the frame given by this line to 
any subsequent line will be 

𝑔𝑔(𝜇𝜇)𝑙𝑙0 = 𝑙𝑙(𝜇𝜇) 

𝑔𝑔(𝜇𝜇) = 𝑙𝑙(𝜇𝜇)𝑙𝑙0−1 = −𝑙𝑙(𝜇𝜇)𝑙𝑙0 

since half-turns are self-inverse where 𝑙𝑙₀⁻¹ = 𝑙𝑙₀̅
|𝑙𝑙₀|² = −𝑙𝑙₀. 

It can be seen that such a curve will satisfy the relation: 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 = −𝑙𝑙(𝜇𝜇) 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + 𝑙𝑙(𝜇𝜇) = 0 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + 𝑔𝑔(𝜇𝜇)𝑙𝑙0 = 0 

and 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + (𝑔𝑔(𝜇𝜇)𝑙𝑙0−1) = 0 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + (𝑙𝑙0−1)𝑔𝑔‾(𝜇𝜇) = 0 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + (−𝑙𝑙0)𝑔𝑔‾(𝜇𝜇) = 0 
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𝑔𝑔(𝜇𝜇) = 𝑙𝑙(𝜇𝜇)𝑙𝑙0−1 = −𝑙𝑙(𝜇𝜇)𝑙𝑙0 

since half-turns are self-inverse where 𝑙𝑙₀⁻¹ = 𝑙𝑙₀̅
|𝑙𝑙₀|² = −𝑙𝑙₀. 

It can be seen that such a curve will satisfy the relation: 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 = −𝑙𝑙(𝜇𝜇) 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + 𝑙𝑙(𝜇𝜇) = 0 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + 𝑔𝑔(𝜇𝜇)𝑙𝑙0 = 0 

and 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + (𝑔𝑔(𝜇𝜇)𝑙𝑙0−1) = 0 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + (𝑙𝑙0−1)𝑔𝑔‾(𝜇𝜇) = 0 

𝑔𝑔(𝜇𝜇)𝑙𝑙0−1 + (−𝑙𝑙0)𝑔𝑔‾(𝜇𝜇) = 0 

𝑔𝑔(𝜇𝜇)𝑙𝑙0
−1 + 𝑙𝑙0𝑔𝑔‾(𝜇𝜇) = 0 

since any line satisfies 𝑙𝑙‾ = −𝑙𝑙 and 𝑙𝑙2 is a dual number. On the other hand, 
suppose that 𝑔𝑔(𝜇𝜇) is a curve which satisfies the above equation for some line 𝑙𝑙0, 
then 

𝑔𝑔(𝜇𝜇)𝑙𝑙0 = 𝑙𝑙0𝑔𝑔‾(𝜇𝜇) 

and hence 

(𝑔𝑔(𝜇𝜇)𝑙𝑙0) = −𝑙𝑙0𝑔𝑔‾(𝜇𝜇) = −(𝑔𝑔(𝜇𝜇)𝑙𝑙0). 

So (𝑔𝑔(𝜇𝜇)𝑙𝑙0) is a line for every 𝜇𝜇 and the motion is line symmetric. 

A motion which doesn’t pass through the identity might still be line 
symmetric, the motion can always be translated to a path through the identity, 
that is the motion may have the form 𝑔𝑔(𝜇𝜇) = 𝑙𝑙(𝜇𝜇)𝑙𝑙0𝑔𝑔0 where 𝑔𝑔0 is some fixed 
group element. Such a path will clearly satisfy the equation, 

𝑔𝑔(𝜇𝜇)𝛾𝛾‾0 + 𝛾𝛾0𝑔𝑔‾(𝜇𝜇) = 0 

where 𝛾𝛾0 = 𝑙𝑙0𝑔𝑔0. 

The line symmetric motions can be characterized in another way. If the 
motion 𝑔𝑔(𝜇𝜇) can be factored into a product of two half-turns one of which is 
fixed then the screw axis of 𝑔𝑔(𝜇𝜇) will meet the fixed line at right-angles. Hence 
the axes of all finite displacements constituting the motion will lie in the 
congruence of lines meeting and perpendicular to a fixed line. In fact it can be 
seen that the ruled surface formed by the screw axes of the motion will form a 
right conoid. 

These two characterizations are, of course, equivalent. To see this first 
recall that two lines 𝑙𝑙1 and 𝑙𝑙2 will intersect and be perpendicular if and only if 
they satisfy 𝑙𝑙1𝑙𝑙‾2 + 𝑙𝑙2𝑙𝑙‾1 = 0 (Selig & Husty, 2011). 

Now, if the axis of the motion 𝑙𝑙 is intersecting and perpendicular to a 
line 𝑙𝑙0 then clearly 𝑔𝑔(𝜇𝜇)𝑙𝑙0

−1 + 𝑙𝑙0𝑔𝑔‾(𝜇𝜇) = 0 is satisfied. On the other hand if 
 𝑔𝑔(𝜇𝜇)𝑙𝑙0

−1 + 𝑙𝑙0𝑔𝑔‾(𝜇𝜇) = 0 is satisfied then either the lines are intersecting and 
perpendicular or 𝜃𝜃 = 0, that is the motion is a pure translation. 

This second condition leads to a small but useful result, that a motion 
about a fixed axis is always line symmetric. This is easily seen since any line 
coincident and perpendicular to the fixed axis of the motion can be taken as 𝑙𝑙0. 

For example, now, let give a motion is given as an example of a line 
symmetric motion. Here this will be verified using the methods developed 
above. Writing this motion, as a dual quaternion we have, 
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𝑔𝑔(𝜃𝜃) = (cosh 𝜃𝜃
2 + 𝑘𝑘sinh 𝜃𝜃

2) + 𝜀𝜀 (sinh 𝜃𝜃
2 + 𝑘𝑘cosh 𝜃𝜃

2) 

The axis of this motion is always the 𝑧𝑧-axis. This must be a line symmetric 
motion. Also we can see that any line perpendicular to the 𝑧𝑧 -axis, for example, 

𝑙𝑙0 = 𝑖𝑖 

this gives a parameterization of the ruled surface as, 

𝑙𝑙(𝜃𝜃)   =  𝑔𝑔(𝜃𝜃)𝑙𝑙₀ = [(𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝜃𝜃
2 + 𝑘𝑘𝑐𝑐𝑖𝑖𝑛𝑛 ℎ 𝜃𝜃

2) + 𝜀𝜀(𝑐𝑐𝑖𝑖𝑛𝑛 ℎ 𝜃𝜃
2 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 ℎ 𝜃𝜃

2)]𝑖𝑖

 =  (𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝜃𝜃
2 𝑖𝑖 + 𝑗𝑗𝑐𝑐𝑖𝑖𝑛𝑛 ℎ 𝜃𝜃

2) + 𝜀𝜀(𝑐𝑐𝑖𝑖𝑛𝑛 ℎ 𝜃𝜃
2 𝑖𝑖 + 𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐 ℎ 𝜃𝜃

2)

If 𝜃𝜃 = 0 then 𝑙𝑙(0) = 𝑔𝑔(0)𝑙𝑙0 = (cosh0𝑖𝑖 + 𝑗𝑗sinh0) + 𝜀𝜀(sinh0𝑖𝑖 + 𝑗𝑗cosh0) =
𝑖𝑖 + 𝜀𝜀𝑗𝑗 (Selig & Husty, 2011; Akyar, 2008; Atasoy et al., 2017). 

In conclusion, the exploration of line-symmetric motions within 
Lorentzian space through the lens of quaternion algebra offers significant 
insights and advancements in understanding the complex behaviors and 
properties of objects under relativistic motion. By leveraging the mathematical 
robustness and computational efficiency of quaternions, this analysis has 
illuminated the nuanced ways in which objects exhibit symmetry and undergo 
transformations within the context of special relativity. 

Quaternion algebra, with its capacity to encode rotations and Lorentz 
boosts in a compact and intuitive manner, provides a powerful tool for 
dissecting and reinterpreting the geometric and algebraic properties of 
Lorentzian space. This study has demonstrated that quaternions not only 
simplify the mathematical treatment of line-symmetric motions but also 
enhance our conceptual grasp of such phenomena, making intricate relativistic 
effects more accessible and understandable. 

  



Ali Atasoy | 99

𝑔𝑔(𝜃𝜃) = (cosh 𝜃𝜃
2 + 𝑘𝑘sinh 𝜃𝜃

2) + 𝜀𝜀 (sinh 𝜃𝜃
2 + 𝑘𝑘cosh 𝜃𝜃
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2 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 ℎ 𝜃𝜃
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If 𝜃𝜃 = 0 then 𝑙𝑙(0) = 𝑔𝑔(0)𝑙𝑙0 = (cosh0𝑖𝑖 + 𝑗𝑗sinh0) + 𝜀𝜀(sinh0𝑖𝑖 + 𝑗𝑗cosh0) =
𝑖𝑖 + 𝜀𝜀𝑗𝑗 (Selig & Husty, 2011; Akyar, 2008; Atasoy et al., 2017). 

In conclusion, the exploration of line-symmetric motions within 
Lorentzian space through the lens of quaternion algebra offers significant 
insights and advancements in understanding the complex behaviors and 
properties of objects under relativistic motion. By leveraging the mathematical 
robustness and computational efficiency of quaternions, this analysis has 
illuminated the nuanced ways in which objects exhibit symmetry and undergo 
transformations within the context of special relativity. 

Quaternion algebra, with its capacity to encode rotations and Lorentz 
boosts in a compact and intuitive manner, provides a powerful tool for 
dissecting and reinterpreting the geometric and algebraic properties of 
Lorentzian space. This study has demonstrated that quaternions not only 
simplify the mathematical treatment of line-symmetric motions but also 
enhance our conceptual grasp of such phenomena, making intricate relativistic 
effects more accessible and understandable. 
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