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Abstract

The study examined the use of explainable artificial intelligence (XAI) 
methods for unmanned aerial vehicles (UAVs). The aim of the study is to 
make the artificial intelligence decision processes in the autonomous systems 
of UAVs more understandable and transparent. This requirement has gained 
importance as UAVs are used in increasingly complex tasks. In order to 
increase the reliability of UAVs especially in areas such as security, military 
operations and agriculture, and to reinforce users’ trust in these systems, the 
integration of XAI methods has become critical.

In the study, both model-based and post-hoc explanation methods were 
used. Model-based methods such as decision trees and explainable neural 
networks were preferred to ensure transparency of UAVs’ decision-making 
processes. Post-hoc methods such as Local Intrepretable Model - Adnogtics 
Explanations (LIME) and SHapley Additive Explanations (SHAP) were 
used to increase the explainability of deep learning models . In the study, 
these techniques were evaluated to understand why UAVs make certain 
decisions in their complex operational processes.

As a result of the study, it was observed that the integration of Explainable 
Artificial Intelligence (XAI) methods into UAV systems made decision 
processes more transparent and thus increased the reliability of UAVs. It 
was emphasized that this transparency, especially in terms of public safety 
and ethical practices, plays a critical role in expanding the use of UAVs and 
making them safer.
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1. INTRODUCTION 

With the rapid development of technology today, the use of Unmanned 
Aerial Vehicles (UAVs) has become widespread. UAVs are frequently used 
in many important areas such as facilitating social life and performing tasks 
that are harmful to human health. One of the most important advantages of 
UAVs is their high success rates in performing tasks. These success rates also 
minimize possible human-related errors.

UAVs in the realized book section A conceptual framework study 
based on academic literature has been carried out on the use of Artificial 
Intelligence (AI) technologies, which are one of the frequently used 
technologies together with AI technologies. The structure of the study has 
been examined by considering the general usage areas and importance of 
UAVs, AI and UAVs, Explainable artificial intelligence (XAI) structure, and 
the use of XAI in UAVs in the introduction section. The second section , 
XAI methods and algorithms, has been discussed under two main headings 
as model-based and post-hoc based methods. Under the title of model-based 
method, decision trees and explainable neural network models have been 
examined. In post-hoc based methods, LIME, SHAP models were discussed 
in detail . In the third part of the study, academic literature-based reviews of 
UAVs’ XAI applications were conducted. In the final stage, the results of the 
study were discussed in detail.

1.1. General Areas of Use and Importance of Unmanned Aerial 
Vehicles (UAVs)

With the advancement of technology, the use of UAVs has also begun 
to be used frequently in social life. UAVs are frequently used especially in 
military and civilian life. ( Thiels et al., 2015). It is possible to define UAVs 
as vehicles that can be remotely controlled and have the ability to perform 
autonomous flight. In addition to their high maneuverability due to their 
small size, their low cost makes the use of UAVs more widespread and 
effective ( Shadiev & Yi , 2023).

of UAVs is in military areas. UAVs have successfully performed many 
tasks such as reconnaissance, surveillance, intelligence gathering and attack 
in military operations. In particular, UAVs are of great importance in terms 
of reducing loss of life and cost effectiveness since they do not require a pilot 
(Santos et al., 2023).

UAVs have a wide range of applications in civilian areas, from agriculture 
to mapping and environmental monitoring. ( Muhmad Kamarulzaman et 
al., 2023). It has been determined that UAVs used in the agricultural sector 
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provide great efficiency in areas such as crop monitoring, spraying and water 
management and reduce the workload of farmers ( Istiak et al., 2023). In 
addition, the use of UAVs in environmental monitoring and natural disaster 
management allows for fast and effective interventions. The rapid data 
collection capacity of UAVs in disasters such as forest fires and floods has 
great advantages in many points such as the importance of saving human lives 
( Devoto et al., 2020). Another area of use of UAVs is cargo transportation 
and logistics. One of the important advantages of UAVs is that they provide 
fast delivery services, especially in regions where road transportation is 
difficult, and are used in vital tasks such as the transportation of emergency 
medical supplies (Çorbacı & Doğan, 2023). As can be understood from the 
examples given above, it is an inevitable fact that UAVs are an important 
technological tool not only for military operations but also in all areas of 
civilian life.

As a result, the advantages offered by UAV technologies in a wide 
range increase the strategic importance of UAVs day by day. The economic 
and operational efficiency provided by UAVs in both military and civilian 
applications causes this technology to become widespread at the global level.

1.2. Artificial Intelligence and UAVs

AI is a branch of science and technology that creates the characteristics 
and abilities of human intelligence through computer programs (PK, 1984). 
AI enables machines to perform human-like tasks by modeling the complex 
functions of the human mind, such as learning, reasoning, problem solving, 
and language understanding.

UAVs have evolved significantly in recent years thanks to the integration 
of AI technologies. Its application to UAVs has increased the ability of these 
vehicles to move autonomously, perceive their environment and adapt to 
dynamic conditions. This integration has allowed UAVs to perform more 
complex and sensitive missions in military, civil and commercial areas ( 
Thiels et al., 2015).

AI’s One of the most obvious examples of its use in UAVs is autonomous 
navigation. While traditional UAV systems are dependent on pre-
programmed routes, AI-supported UAVs can avoid obstacles and reach 
their targets in the most effective way by performing real-time data analysis 
( Talwandi et al., 2024). For example, image processing systems developed 
using deep learning algorithms can It helps them perceive their environment 
better and respond quickly to sudden changes ( Pandey et al., 2024).
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Additionally, AI-based object recognition and tracking systems allow 
UAVs to detect specific objects or people in search and rescue operations or 
security applications ( Devoto et al., 2020 ). This offers great advantages, 
especially in critical missions such as finding missing persons in natural 
disasters or ensuring border security.

Swarm technology is also used in AI It is another important area of use 
in UAVs . Due to AI algorithms, multiple UAVs can act in a coordinated 
manner without a central control mechanism (Campion et al., 2018). This 
technology enables fast and effective scanning of large areas or large-scale 
data collection.

AI technologies with UAVs has significantly expanded the capabilities 
and application areas of these vehicles. AI-supported UAVs are shaping the 
technological developments of the future by offering innovative solutions 
in many areas, from agriculture to logistics, from security to environmental 
monitoring.

1.3. What is Explainable Artificial Intelligence (XAI)?

XAI refers to a set of methods and techniques designed to make the 
decision-making processes of AI systems transparent and understandable to 
humans (Adadi & Berrada , 2018). Unlike traditional “black box” models 
that offer little insight into how inputs are transformed into outputs, XAI 
provides clear explanations of how and why an AI system reached a particular 
decision. The importance of XAI lies in its ability to build trust between 
users and AI systems, facilitate compliance with regulatory standards that 
require accountability, and enable the identification and reduction of biases 
within models ( Gunning et al., 2019). By making AI models interpretable, 
XAI improves ethical decision-making and supports the responsible 
deployment of AI technologies in critical areas such as healthcare, finance, 
and autonomous vehicles ( Doshi-Velez & Kim, 2017).

1.4. XAI’s Importance and Necessity of Use in UAVs

XAI has become increasingly critical in the development and deployment 
of UAVs as these systems grow in complexity and autonomy. UAVs , 
commonly known as drones , have advanced significantly through the 
integration of AI, particularly in the areas of autonomous navigation, 
surveillance, and data analysis ( Floreano & Wood , 2015). However, the 
complexity of AI algorithms often causes them to operate as “black boxes,” 
where decision-making processes are not transparent or easily understood 
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(Lipton, 2018). This lack of transparency raises concerns about safety, 
ethical concerns, and trust among users and regulators.

XAI’s Integrating into UAVs addresses these challenges by making AI 
systems more transparent and interpretable (Keneni, 2018). By providing 
clear explanations of how AI systems reach certain decisions, XAI increases 
the reliability and safety of UAV operations. This transparency is essential 
for operators and stakeholders to trust the actions of UAVs , especially in 
applications involving public safety and security ( Adadi & Berrada , 2018).

Safety is a top concern in UAV operations; failures or errors can lead 
to property damage or loss of life. XAI facilitates the detection of potential 
errors and biases in AI algorithms, contributing to the development of more 
robust and reliable UAV systems (Keneni, 2018). By making decision-
making processes transparent, engineers can more effectively diagnose errors 
and quickly implement corrective measures. This capability is especially 
important in complex environments where UAVs must make instantaneous 
decisions based on real-time data.

Incorporating explainable AI into UAVs is both important and necessary 
for the safe, ethical, and effective deployment of these technologies. XAI 
increases transparency, security, and compliance with regulatory and ethical 
standards—critical factors for the continued growth and acceptance of 
UAV applications. By making AI systems in UAVs understandable, we not 
only improve their functionality, but also build the trust necessary for their 
integration into various aspects of society.

2. EXPLAINABLE ARTIFICIAL INTELLIGENCE METHODS 
AND ALGORITHMS

Internet technology and the ability to make sense of the large data sets that 
increase due to internet technology have been one of the main factors in the 
rapid development of AI technologies. However, investigating the reasons 
for the results obtained from AI training has also been a phenomenon that 
has developed together with AI technologies. For this reason, the concept 
of XAI has emerged as the meaning of the results obtained from AI training. 
XAI is a field of research that aims to make the internal workings and 
decision-making processes of machine learning models understandable to 
humans ( Gunning , 2017).

The history of explainable AI has followed a parallel course with the 
general developments in the field of AI. Since the first AI systems were 
built on symbolic structures and rule-based models, the decision-making 
processes of the models could be easily understood by humans (Russell & 
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Norvig , 2010). Since the internal workings and logic of the systems were 
transparent in this period, explainability became a natural feature. However, 
in the late 1990s and early 2000s, rapid developments in machine learning 
and especially deep learning significantly increased the complexity of AI 
models ( LeCun , Bengio & Hinton , 2015). These models, which showed 
high performance on large data sets, became “black boxes” whose internal 
structures and decision-making mechanisms were difficult to understand by 
humans . This has raised concerns about the reliability and accountability 
of models. Traditional “black box” models, despite their high performance, 
have made it difficult to understand the logic behind their decisions due to 
the complexity they contain ( LeCun , Bengio , & Hinton , 2015). This 
leads to reliability and accountability problems in many fields, especially 
in medicine, finance, and law. Therefore, explainable AI addresses these 
problems by explaining how and why the predictions obtained with models 
reach certain results and can be considered to provide transparency for AI 
technology ( Ribbon , Singh, & Guestrin , 2016). Explainability is an ethical 
and legal obligation, beyond a technical requirement. The European Union’s 
General Data Protection Regulation (GDPR) emphasizes the importance of 
explainability in automated decision-making processes ( Wachter , Mittelstadt 
, & Floridi , 2017). In this context, explainable AI aims to prevent possible 
risks and misunderstandings while increasing the social acceptance of AI 
systems. For this purpose, the US Defense Advanced Research Projects 
Agency (DARPA) first initiated the XAI program in 2016 to encourage 
research in this field ( Gunning , 2017). The program aimed for AI systems 
to both demonstrate high performance and ensure that their decisions were 
understandable by humans. The decisions of AI systems can profoundly 
affect the lives of individuals. For this reason, explainability is considered an 
ethical imperative, beyond being a technical need. For example, in medical 
diagnostic systems, the explainability of decisions ensures that doctors 
and patients trust these decisions ( Doshi-Velez & Kim, 2017). Similarly, 
explainability is of critical importance in financial decision support tools in 
terms of detecting and correcting errors.

2.1. Model-Based Methods

In the field of XAI, model-based methods involve using models that are 
directly understandable and interpretable. Since these models are transparent 
in nature, decision-making processes can be easily followed by humans. 
Examples of model-based methods include models such as decision trees 
and explainable neural networks ( Molnar , 2019 ). The advantage of model-
based methods is that they integrate explainability into the design of the 
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model. However, when working with complex data or high-dimensional 
data sets, their performance may be lower than that of deep learning models, 
so in some cases a balance may need to be established between explainability 
and performance ( Rudin , 2019).

2.1.1. Decision Trees

Decision trees are models that are frequently used in the field of AI 
and machine learning and are naturally explainable due to their internal 
structures. These models perform classification or regression tasks by 
branching the data according to certain features ( Quinlan , 1986). The 
explainability of decision trees stems from the fact that their structures are 
easily understandable by humans; each node and branch explains the logic 
behind the decisions taken by the model ( Hastie , Tibshirani , & Friedman, 
2009). Since decision trees are an internally interpretable model, they can 
be considered a model-based model ( Molnar , 2019). In these models, 
since the decision processes and the features used are clearly visible, it is 
understandable why the model reached a certain conclusion ( Breiman , 
Friedman, Olshen , & Stone, 1984). For example, a decision tree model can 
use features such as income level, credit score, and existing debts to approve 
a customer’s loan application, and the effect of each of these features on 
the decision can be read directly from the structure of the tree ( Rokach & 
Maimon , 2005).

Decision trees are frequently preferred in applications requiring 
explainability in health, finance, marketing and many other areas ( Witten 
, Frank, Hall & Pal, 2016). Especially in sectors where ethical and legal 
regulations are important, it is critical that the models are transparent and 
the justifications for the decisions are understandable ( Murthy , 1998). The 
advantages of decision trees are listed below.

 • Easy Understandability: Decision trees can be understood even by 
non-experts thanks to their visually representable structures ( Quinlan 
, 1986).

 • Feature Selection: It can be easily seen from the structure of the tree 
which features the model attaches more importance to ( Breiman , 
Friedman, Olshen & Stone, 1984).

 • Fast Computation: Decision trees can generally be trained and 
predicted quickly, making them practical when working with large 
data sets ( Witten , Frank, Hall & Pal, 2016).
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In addition to the advantages mentioned above, decision trees also have 
some limitations. In particular, the overfitting problem can cause the model 
to adapt too much to the data it was trained on and to perform poorly 
on new data ( Rudin , 2019 ). Pruning techniques are used to reduce this 
problem ( Hastie , Tibshirani & Friedman, 2009 ). In addition, decision 
trees can have performance problems in complex data structures and high-
dimensional data sets ( Murthy , 1998).

To overcome these limitations, ensemble methods such as Random 
Forests and Gradient Boosting Trees have been developed ( Rokach & 
Maimon , 2005). These methods offer higher accuracy and generalization 
ability by combining multiple decision trees. However, the explainability of 
these ensemble models is lower than a single decision tree ( Molnar , 2019). 
In this case, it may be necessary to use additional techniques and tools for 
explainability ( Breiman , Friedman, Olshen , & Stone, 1984).

2.1.2. Explainable Neural Networks

Explainable neural networks are approaches that prioritize explainability 
when designing the structure of the model and the learning process (Zhang 
& Zhu, 2018). These models aim to present decision-making processes 
and the information they represent internally in a human-understandable 
form. Some approaches aim to increase explainability by simplifying the 
architecture of neural networks or by imposing certain restrictions. For 
example, linear functions are used as activation functions in Linear Neural 
Networks to make the behavior of the model more understandable ( 
Kawaguchi , 2016). In model-based methods, certain layers or activation 
functions of neural networks can be designed with explainability in mind. 
For example, ReLU ( Rectified Linear Unit ) activation function can be 
used instead of more explainable activation functions ( Maas , Hannun & 
Ng, 2013 ). In addition, the explainability of the model is increased by 
showing which features it focuses on with attention mechanisms ( Bahdanau 
, Cho & Bengio , 2015 ). Embedded explanation layers can be added to 
make the information in the neural networks more understandable. These 
layers ensure that the intermediate outputs of the model are interpretable 
by humans ( Alain & Bengio , 2017 ). Prototype-based neural networks 
provide justifications for their decisions using prototype examples for 
each class while classifying ( Li , Liu , Chen & Rudin , 2018). Explainable 
neural networks are frequently used in important fields such as medicine 
and autonomous driving. In the field of medical image analysis, explaining 
why neural networks make a certain diagnosis allows doctors to trust 
these decisions ( Esteva et al., 2017). Similarly, in autonomous vehicles, 
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the explainability of decisions is very important in terms of safety and 
legal responsibilities (Kim & Canny , 2017). Explainable neural networks 
provide reliability and accountability by making the internal workings of 
the models more understandable ( Montavon , Samek & Müller, 2018). 
However, while increasing explainability, the performance of the model 
may be compromised (Chen et al., 2019). Therefore, establishing a balance 
between explainability and performance is also very important.  

2.2. Post-Hoc Methods

Post-hoc methods are one of the important techniques used in the field of 
XAI to explain the decisions and predictions of complex and often difficult-
to-understand models (e.g. deep neural networks). These methods are 
applied after the model has been trained and aim to understand its outputs 
and decision processes without changing the internal structure of the model 
(Lipton, 2016).

Modern machine learning methods, and especially deep learning-
based approaches, are characterized as “black boxes” due to their inherent 
complexity, even though they achieve successful results with high accuracy 
rates ( Guidotti et al., 2018). This reduces the confidence in the results 
obtained from the models and can lead to critical problems, especially in 
fields such as medicine, finance and law ( Doshi-Velez & Kim, 2017). Post-
hoc methods increase the reliability and accountability feature by making 
the decisions of complex models more understandable ( Samek , Wiegand 
& Müller, 2017).

The biggest advantage of post-hoc methods is that they help understand 
the decisions of high-performance but unexplainable models ( Guidotti et 
al., 2018). Since these methods can be applied without changing the internal 
structure of the model, they can be used on existing models without any 
additional effort ( Alvarez -Melis & Jaakkola , 2018). However, post-hoc 
explanations may not always fully reflect the real decision processes of the 
model and can sometimes be misleading ( Rudin , 2019). Therefore, these 
explanations should be interpreted carefully. The LIME and SHAP methods, 
which are frequently used post-hoc methods, are discussed in detail below. 

2.2.1. LIME (Local Interpretable Model - Agnostic Explanations)

As the complexity of AI and machine learning models increases, it becomes 
increasingly difficult to understand the decision-making processes of the 
models ( Samek , Wiegand , & Müller, 2017). In particular, the “black box” 
nature of deep learning models makes it difficult for users and developers 
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to understand how XAI models work and why they make certain decisions 
(Adadi & Berrada , 2018). In this context, the field of XAI has emerged as 
a research area that aims to make the inner workings and decision-making 
mechanisms of AI models compatible with human understanding (Gilpin et 
al., 2018).

LIME method is a prominent technique in the XAI field that can produce 
local explanations independent of the model (Molnar , 2019 ). First developed 
by Ribeiro et al. in 2016, LIME aims to explain the individual predictions 
of any machine learning model using a simple and understandable model ( 
Ribeiro , Singh & Guestrin , 2016 ). This method is an effective tool for 
interpreting the decisions of especially complex and difficult-to-understand 
models.

of LIME starts by creating synthetic data samples around the data point 
of interest ( Garreau & Luxburg , 2020). These synthetic samples are data 
that are similar to the original data point but show variations in certain 
features. The black-box model makes predictions on these synthetic data 
and is trained with a simple model such as linear regression to examine the 
relationship between these predictions and the synthetic data ( Lundberg & 
Lee, 2017). Thus, the trained simple model approximately represents the 
behavior of the black-box model locally and determines the extent to which 
the decision is affected by which features ( Arras et al., 2017).

One of the most important advantages of LIME is that it is model- 
agnostic ( Guidotti et al., 2018). This means that LIME can be used with 
any machine learning model. Therefore, it is effectively used in explaining 
AI models such as deep neural networks, random forests or support vector 
machines ( Ribbon , Singh & Guestrin , 2018).

LIME, which has a wide range of applications, has been successfully 
applied in different areas such as text classification ( Hendricks et al., 2016), 
image recognition ( Selvaraju et al., 2017), medical diagnosis ( Tjoa & Guan 
, 2020) and financial forecasting (Chen et al., 2018). For example, in the 
field of medical diagnosis, LIME can be used to understand how a model 
reveals a certain diagnosis, and thus doctors can better evaluate the model’s 
decisions ( Holzinger et al., 2019). Similarly, in financial forecasting models, 
risk assessment can be made more transparent with LIME ( Bussmann et 
al., 2020).

The explainability of AI models (Miller, 2019). It plays an important 
role in complying with ethical, legal and practical requirements by making 
the decisions of the models more understandable and increasing the trust of 



Mustafa Meliksah Ozmen / Bekir Aksoy | 11

users in these models ( Barredo In the future, with the further development 
of LIME and similar methods, it is expected that AI applications will become 
more transparent and accountable ( Gunning & Aha, 2019).

2.2.2. Shapley Additive exPlanations

Another important method in the field of XAI is SHAP method 
(Lundberg & Lee, 2017). First proposed by Lundberg and Lee in 2017, 
this method aims to calculate the contribution of each feature to the model’s 
prediction in a fair and consistent way (Lundberg & Lee, 2017). The working 
principle of SHAP is based on the Shapley values used in cooperative game 
theory [51,52]. The Shapley value is used to fairly determine the marginal 
contribution of each player to the total gain in a game (Roth, 1988). SHAP 
adapts this concept to AI models and calculates the contribution of each 
feature to the model (Štrumbelj & Kononenko, 2014). In this way, it can 
be understood to what extent which features are effective in the decision-
making process of the model ( Sundararajan & Najmi , 2019).

SHAP method is used to determine the marginal contribution of 
each feature to the model’s prediction by considering all possible feature 
combinations (Janzing, Minorics & Bloebaum, 2020). However, in 
practice, since computing all combinations is computationally costly, SHAP 
calculations are performed with different approximation methods (Chen et 
al., 2018). In particular, its variants such as Kernel SHAP and Tree SHAP 
optimize the calculations for different model types (Lundberg, Erion & Lee, 
2020).

SHAP is that it can provide both local and global explanations (Kumar 
et al., 2020). While local explanations show the contribution of features to 
the model for a single data point, global explanations reveal the behavior 
and trends of the model in general (Lundberg & Lee, 2017). In addition, 
the mathematical foundations of SHAP ensure the consistency and fairness 
of the explanations (Sundararajan, Taly, & Yan, 2017). The SHAP method 
has been applied in different disciplines such as medicine ( Lundberg et al., 
2018), finance (Bussmann et al., 2020), energy (Dong et al., 2019), and 
social sciences (Štrumbelj & Kononenko, 2014). For example, in medical 
diagnostic models, SHAP can identify the factors that contribute most to 
disease risk, which helps in the development of clinical decision support 
systems (Tonekaboni et al., 2019). In financial models, which factors are 
more effective in credit risk assessments can be analyzed with SHAP (Chen 
et al., 2018).
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In conclusion, the SHAP method is a powerful and flexible tool for 
improving the explainability of AI models (Gunning & Aha, 2019). It 
increases the transparency and reliability of models by calculating the 
contribution of features to the model in a fair and consistent manner (Miller, 
2019). In the future, with the further development of SHAP and similar 
methods, it is expected that AI applications will better comply with ethical 
and legal requirements ( Barredo (Arrieta et al., 2020).

3. LITERATURE REVIEW: STUDIES ON THE USE OF XAI 
IN UAVS

In the study titled “Assuring Safe and Efficient Operation of UAV Using 
Explainable Machine Learning” by Alharbi et al. (2023), a demand and 
capacity management system based on explainable machine learning was 
developed to ensure the safe and efficient operation of UAVs. In the study, 
a model was created to predict airspace capacity and determine congestion 
levels to enable UAVs to operate safely in the airspace. The model aimed 
to balance performance and explainability by combining deep learning 
techniques with fuzzy rule-based systems. The system helps UAVs choose 
the most optimal routes by analyzing air traffic. As a result of testing the 
developed system in a simulation environment, an increase of over 23% 
in airspace availability was observed. Additionally, the system’s maximum 
capacity increase was identified as 65%, while the minimum safety gain was 
found to be 35%. The system’s 70% explainability aids UTM (Unmanned 
Traffic Management) authorities in making more effective decisions ( 
Alharbi , Petrunin & Panagiotakopoulos , 2023)

In the study by Ekramul Haque and colleagues, a solution was proposed 
using Zero Trust Architecture (ZTA) and Deep Learning (DL) methods 
to enhance UAV security. The study aimed to detect and classify UAVs 
using radio frequency signals. Moreover, the model’s transparency and 
explainability were ensured using XAI tools such as SHAP and LIME. 
The method achieved an accuracy rate of 84.59% using RF signals. As a 
result, it was demonstrated that ZTA could enhance UAV security, and 
the integration of DL and XAI provided both security and explainability 
(Haque et al., 2024).

In the study by Goyal et al. (2024), an XAI-based security solution 
was developed to enhance the security of 5G-supported UAV networks. 
In the study, network traffic was monitored and analyzed using XAI to 
detect nodes attacking UAV networks. The research results showed that the 
proposed method detected attacking nodes with an accuracy rate of 98.4%. 
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The method performed better compared to AI/DL-based methods. The 
results provide a reliable security solution to enhance data transfer security 
in 5G-based UAV networks (Goyal et al., 2024).

In the study by Zhu et al. (2024), an XAI-based edge computing framework 
was developed to monitor the safety of UAVs during air surveillance in 
extreme conditions and to process large-scale image data. In the study, an 
alert system was designed using the random forest algorithm to monitor 
drone health and identify security concerns, and a MapReduce-based image 
processing module was proposed for large-scale image classification and 
object detection. The research increased the transparency of traditional AI 
systems using SHAP and provided an effective mechanism for monitoring 
the operational safety of drones. Experimental results show that the model 
achieved high accuracy (99.21%) in drone health monitoring and object 
detection (Zhu et al., 2024).

In the study by Javeed et al. (2024), an Intrusion Detection System 
(IDS) for UAVs was developed. The system was designed using advanced 
deep learning techniques to defend UAVs against cyber threats. The method 
employed the Hierarchical Attention-based Long Short-Term Memory 
(H-LSTM) architecture, which can model complex temporal dependencies 
in UAV data. The H-LSTM architecture was effective in detecting short-
term anomalies and long-term deviations, and explainability was provided 
through the SHAP mechanism. SHAP values made it possible to understand 
the decisions of the IDS transparently, enabling security analysts to explain 
the system’s decisions. Experiments were conducted using the N-BaIoT 
dataset, and the proposed system achieved high accuracy and low false 
positive rates in threat detection. The study provided an explainable and 
efficient cybersecurity solution to enhance UAV security (Javeed et al., 
2024).

In the study by Hong and Yoo (2024), a model was developed to detect 
multiple attacks on the Control Area Network (CAN) protocol of UAVs. 
In the study, a heterogeneous model capable of detecting multiple types 
of attacks simultaneously was proposed, and explainability was provided 
using the SHAP method. The model was used to detect attacks such as DoS 
and GPS signal spoofing. In the study, feature importance measures were 
used to distinguish between attack and normal data, thereby improving the 
model’s accuracy. Experimental results showed that the model was successful 
in detecting attacks with an accuracy rate of 97% (Hong & Yoo , 2024).

In the study by Souripalli et al. (2024), a model was developed for the 
autonomous navigation of UAVs in dense fog environments using the 
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Explainable Deep Reinforcement Learning (DRL) method. In the study, 
Twin Delayed DDPG (TD3) and Proximal Policy Optimization (PPO) 
algorithms were trained in the AirSim simulation environment, and an 
image adaptation module optimizing navigation in foggy environments 
was integrated. Image adaptation used a deep learning-based defogging 
technique to recover image details lost due to fog. The TD3 algorithm 
performed better than the PPO algorithm, with a high success rate (77%) 
and a low collision rate (16%). Additionally, the explainability of the 
model was ensured using SHAP and LIME. Thus, the transparency of the 
model’s decision-making processes was increased, and it was observed that 
performance in foggy environments was significantly improved ( Sayed , 
Souripalli & Chiddarwar , 2024).

4. CONCLUSION

Nowadays, the concept of AI, which is one of the concepts that entered 
our lives with the Industry 4.0 revolution, is. AI is frequently used in 
many areas such as health, agriculture, security and engineering. With the 
development of AI technologies , the reliability and transparency of the 
results obtained from AI models are very important in critically important 
cases such as medicine and security. In the study, a conceptual study was 
carried out on UAV technologies, which is one of the areas where AI 
technologies are frequently used. In the study, a study was carried out on 
the use of XAI methods, which are a frequently used method in determining 
the reliability and transparency of UAV and AI .

integrated use of AI technologies has become increasingly important, 
especially as autonomy and complexity increase. The use of AI in UAVs 
provides great advantages in critical areas such as autonomous navigation, 
environmental perception and data analysis. However, with this integration, 
transparency and security issues have also come to the fore. XAI plays a critical 
role in making the decision-making processes of AI systems understandable 
by addressing reliability and transparency issues. The reliability of UAVs is 
particularly important in terms of public safety and ethical applications. XAI 
Its use in UAVs increases operators’ confidence in these vehicles, while also 
facilitating the fulfillment of regulatory requirements and the establishment 
of social acceptance. Therefore, XAI stands out as an important technological 
development that will contribute to the safer, more accountable and 
widespread use of UAV technologies in the future. The study was carried 
out using UAV and XAI methods based on academic literature, and a 
conceptual study was carried out for applications.
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