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Preface

In today’s world, where industrial production processes are rapidly 
digitalizing and being reshaped by intelligent systems, predictive maintenance 
systems have become not merely an option but an indispensable component 
of competitive manufacturing. This book addresses the transformation from 
traditional maintenance approaches to AI supported autonomous systems 
through a scientifically grounded and application-oriented perspective.

Throughout the book, a wide range of topics is covered from the 
fundamental principles of predictive maintenance to data analytics, machine 
learning algorithms, digital twins, explainable AI (XAI), hybrid models, 
sustainability, and sectoral applications. Each chapter has been structured to 
respond to the needs of both academic and industrial readers, supported by 
up-to-date literature.

The aim of this work is not only to provide in-depth knowledge on 
predictive maintenance but also to serve as a guiding resource for engineers, 
researchers, and decision-makers who wish to explore and develop the 
maintenance strategies of the future.

With the light of science, in pursuit of more reliable, efficient, and 
sustainable production systems…

Asst. Prof. Dr. Mehmet Ali GUVENC

Iskenderun Technical University

Department of Aerospace Engineering
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CHAPTER 1

1. Introduction

1.1. The Increasing Importance of Maintenance in Industry

Since the Industrial Revolution, the fundamental goal of production 
systems has been to achieve maximum efficiency, minimum cost, and 
operational continuity. In achieving these objectives, the functionality of 
machinery and production lines plays a critical role. As production systems 
have grown more complex, with expanding machinery fleets and increased 
product variety, the importance of maintenance activities has likewise 
escalated. Particularly in recent decades, technological advancements have 
necessitated a shift in the concept of maintenance from a reactive practice 
addressing breakdowns to a holistic asset management process [1].

The primary aim of industrial maintenance is to minimize interruptions in 
production processes, extend the lifespan of machinery, enhance workplace 
safety, and optimize operational costs. Any downtime in production directly 
leads to a loss of output and indirectly causes customer dissatisfaction, market 
share reduction, and damage to brand reputation. Therefore, maintenance 
processes have evolved from being merely a technical necessity to becoming 
a strategic element of competitive advantage [2].

This is especially evident in high-competition sectors such as automotive, 
aerospace, energy, and heavy industry, where the economic impacts of 
unplanned downtimes are significantly amplified. Various studies indicate 
that unexpected machine failures in manufacturing facilities can account for 
between 5% and 20% of total production costs. This figure tends to increase 
as production lines become more complex. Hence, maintenance management 
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is of critical importance not only from an engineering perspective but also 
from a business management standpoint [3].

In traditional corrective maintenance approaches, interventions occur 
after machinery fails, leading to disruptions in production and increased 
repair costs. Today, however, maintenance activities have adopted a more 
proactive structure, aiming to detect potential issues before they lead 
to failure and to implement preventive measures. In this context, proper 
planning and effective management of maintenance operations have become 
essential parameters that directly affect business profitability [4].

Another factor elevating the importance of maintenance in industry is its 
role in occupational safety and environmental protection. Faulty machines 
not only result in production losses but also pose significant risks to worker 
safety and environmental integrity. In facilities dealing with hazardous 
chemicals, extreme temperatures, or high pressures, failure to maintain 
systems adequately may result in fatal accidents or severe environmental 
disasters. Therefore, regular and effective maintenance practices are of vital 
importance for both occupational health and environmental sustainability 
[5].

Moreover, the modern concept of maintenance extends beyond the 
preservation of physical machinery. It also encompasses the protection of 
digital systems, software, and data infrastructure. With Industry 4.0 and 
the advent of digitalization, production systems have become increasingly 
dependent on information technologies. As a result, maintenance processes 
must now address cybersecurity, data integrity, and system integration 
concerns. Figure 1 illustrates the multifaceted impacts of maintenance [6].
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Figure 1. Unveiling the Multifacated Role of Maintenance

As a result, the concept of maintenance today is no longer merely 
a technical support service; it has evolved into a strategic management 
function that ensures production continuity, enhances occupational safety, 
fulfills environmental responsibilities, and directly influences an enterprise’s 
competitive strength. The importance of investments in maintenance 
activities across all industrial sectors is becoming increasingly recognized, 
positioning maintenance as a critical factor in ensuring the long-term success 
and sustainability of organizations [7].

1.2. The Transformation of Maintenance with Industry 4.0

Each industrial revolution has led to profound changes in production 
methods. From the First Industrial Revolution, marked by the integration 
of steam power into manufacturing, to the Second, which enabled mass 
production through electricity; and following the Third Industrial 
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Revolution, where automation systems entered production lines, we are 
now experiencing the era of Industry 4.0, characterized by the digitalization 
of manufacturing processes and the intelligent interconnectivity of systems. 
This new industrial paradigm has not only revolutionized production 
techniques but also fundamentally transformed maintenance strategies [8].

The core components of Industry 4.0 include advanced technologies 
such as the Internet of Things (IoT), Big Data analytics, Artificial 
Intelligence (AI), Cloud Computing, Cyber-Physical Systems (CPS), and 
Augmented Reality (AR). These technologies have enabled real-time data 
exchange among production lines, machines, and equipment, fostering the 
development of more flexible, transparent, and optimized manufacturing 
environments [9].

This digital transformation has had a direct and significant impact on 
maintenance practices. Traditionally, maintenance was largely based on 
preventive actions conducted at regular intervals or corrective measures taken 
after a failure. However, with Industry 4.0, these conventional approaches 
have been increasingly replaced by Condition Based Maintenance (CBM) 
and, most notably, Predictive Maintenance (PdM). Today, machines are 
no longer checked solely at fixed intervals; instead, they are continuously 
monitored and assessed in real time through data analytics [9].

Industry 4.0 has reshaped maintenance into a data-driven and proactive 
process. Data from machine sensors—such as temperature, vibration, 
sound, and current—are continuously collected and processed through big 
data infrastructures. This enables the detection of anomalies, estimation of 
Remaining Useful Life (RUL), and other analytical assessments that support 
maintenance decision-making. As a result, potential failures can be predicted 
before they occur, maintenance activities can be optimally scheduled, and 
unplanned downtimes can be effectively prevented. Figure 2 illustrate that 
the revolution of maintenance [10].



Mehmet Ali Guvenc | 5

Figure 2. Industry 4.0 Maintenance Revolution

Digital Twin technology also plays a pivotal role in this transformation. 
Digital twins are exact virtual replicas of physical machines that simulate 
performance, wear conditions, and potential failures in a virtual environment 
using real-time operational data from the actual equipment. This allows for 
the creation of virtual maintenance scenarios, facilitates risk analysis, and 
enables more accurate maintenance planning [11].

Another significant advantage offered by Industry 4.0 is the facilitation of 
automation in maintenance processes. For instance, when the temperature 
of a machine exceeds a predefined threshold, the system can automatically 
generate a maintenance request, order the necessary spare parts, and notify 
the maintenance team. Such autonomous maintenance systems reduce the 
need for human intervention, minimize error rates, and significantly shorten 
response times [12].

However, this transformation driven by Industry 4.0 also introduces 
new challenges. Issues such as data security, system integration, data quality, 
and employees’ digital competencies have become critical factors that must 
be addressed carefully during the digitalization of maintenance processes. 
Additionally, the implementation and management of these new systems 
often require additional costs and organizational restructuring [13].

In summary, with the advent of Industry 4.0, the concept of maintenance 
has evolved far beyond its traditional scope, becoming data-driven, proactive, 
intelligent, and autonomous. This transformation not only prevents failures 
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but also enhances operational efficiency, reduces production costs, and 
provides a competitive edge. Today, any organization aiming to develop 
a successful maintenance strategy must effectively leverage Industry 4.0 
technologies and the opportunities they offer [14].

1.3. Definition and Strength of Predictive Maintenance

Predictive Maintenance (PdM) is a data-driven maintenance strategy 
designed to detect potential equipment failures before they occur, thus 
enabling proactive intervention in industrial and service systems. Unlike 
traditional maintenance approaches which rely on scheduled inspections or 
post-failure repairs PdM enables maintenance planning based on the real-
time condition of the equipment. As a result, operational disruptions are 
minimized, and maintenance costs can be significantly reduced [15].

The fundamental principle of predictive maintenance lies in the 
continuous monitoring and acquisition of various physical parameters—such 
as vibration, temperature, acoustic signals, electric current, and lubricant 
contamination—through embedded sensors during machine operation. 
These large volumes of data are processed using advanced analytics and 
machine learning algorithms. By analyzing the collected data, it becomes 
possible to identify anomalies, wear patterns, or trends that may lead to 
failure. Accordingly, maintenance activities are scheduled at the most 
optimal time—immediately before a failure occurs—thereby avoiding both 
unscheduled downtimes and unnecessary servicing [16].

One of the key strengths of PdM lies in its ability to ensure operational 
continuity. In conventional preventive maintenance, actions are taken based 
on operating hours or calendar intervals, even if the equipment is still 
functioning properly. This can lead to inefficient use of time and resources. 
In contrast, predictive maintenance responds to actual equipment needs, 
initiating interventions only when they are truly necessary. This approach 
not only optimizes maintenance expenditures but also extends equipment 
lifespan [17].

Another critical advantage of PdM is its support for data-driven decision-
making. The integration of Artificial Intelligence (AI) and Machine 
Learning (ML) techniques empowers systems to learn from historical data, 
forecast potential failures, estimate Remaining Useful Life (RUL), and even 
determine the most suitable time for maintenance. As a result, maintenance 
operations become more systematic, predictive, and grounded in scientific 
analysis [15].
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Predictive maintenance is widely adopted across diverse industrial 
domains. In the automotive sector, it enhances production line efficiency; 
in the aerospace industry, it ensures flight safety; and in the energy sector, it 
guarantees the reliable operation of turbines, generators, and transformers. 
Additionally, PdM has gained traction in defense, construction, mining, and 
agriculture sectors [18].

Recent advancements in Digital Twin technology have further 
empowered PdM applications. Digital twins replicate the physical behavior 
of equipment in a virtual environment by integrating real-time sensor data, 
allowing for the simulation of future performance and early detection of 
possible failures. This capability enhances the precision of maintenance 
planning and significantly boosts system reliability [18].

To implement predictive maintenance effectively, several prerequisites 
must be met: appropriate sensor selection, acquisition of high-quality data, 
accurate data analysis, and the translation of analytical results into actionable 
maintenance decisions. Moreover, maintenance engineers and operators 
must receive adequate training, and organizational culture must adapt to 
accommodate this technological transformation [17].

In conclusion, predictive maintenance is no longer merely a maintenance 
strategy; it has become a strategic management tool that drives the 
digitalization of production systems and the evolution of intelligent decision-
making frameworks. To enhance competitiveness, reduce costs, and achieve 
sustainable manufacturing, investment in PdM technologies has become an 
indispensable requirement for modern enterprises [14].

1.4. The Role of Information Technologies, Artificial Intelligence, 
and IoT

The influence of Industry 4.0 has transformed production systems 
far beyond the integration of physical equipment. The incorporation of 
digital technologies—such as Information Technologies (IT), Artificial 
Intelligence (AI), and the Internet of Things (IoT)—has introduced a 
new dimension to industrial processes. This digital transformation has also 
reshaped maintenance operations, making them more intelligent, predictive, 
and optimized. In particular, Predictive Maintenance (PdM) has evolved 
significantly thanks to the synergies created by IT, AI, and IoT [19].

Information technologies form the backbone of the digitalization of 
maintenance activities. In contemporary manufacturing systems, machines, 
robots, sensors, and control units constantly generate vast amounts of 
operational data. Processing, storing, and analyzing this data effectively 
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requires robust IT infrastructures. Technologies such as cloud computing, 
big data analytics, and edge computing enable real-time data acquisition 
from the field and rapid processing on centralized platforms or local servers. 
As a result, maintenance teams gain continuous access to accurate and up-
to-date information on equipment health [19].

AI and machine learning techniques play a critical role in transforming 
raw data into actionable insights. By identifying patterns within large and 
complex datasets, AI systems can forecast potential equipment failures. 
Techniques such as supervised learning, unsupervised learning, deep 
learning, and time-series analysis help uncover performance trends and 
detect anomalies. For example, the deviation between a motor’s normal 
vibration pattern and that of a malfunctioning state can be learned by AI 
models to trigger early warnings [20].

Among the most frequently utilized AI techniques in predictive 
maintenance are Support Vector Machines (SVM), Random Forests, 
Decision Trees, k-Nearest Neighbors (k-NN), and Artificial Neural 
Networks (ANN). Moreover, advanced deep learning architectures such 
as Long Short-Term Memory (LSTM) networks have demonstrated high 
predictive accuracy in estimating Remaining Useful Life (RUL), particularly 
in time-series applications [21].

IoT technologies have made it possible to monitor maintenance 
conditions in real time, continuously, and remotely. Through IoT, machines, 
sensors, and control systems can interconnect via the internet, providing 
uninterrupted data flows to central platforms. For instance, data such as 
temperature, vibration, and humidity can be collected from every unit in a 
production line and instantly analyzed to detect anomalies. This significantly 
reduces the need for manual inspections and facilitates faster, data-driven 
maintenance decisions [21].

Furthermore, IoT platforms enable machine-to-machine (M2M) 
communication, supporting the development of autonomous maintenance 
systems. For example, if a machine exceeds a predefined threshold value, the 
system can automatically generate a maintenance request, order necessary 
spare parts, and notify maintenance personnel—initiating and managing 
maintenance operations without human intervention [17].

The integration of IT, AI, and IoT not only enhances the effectiveness 
of maintenance operations but also contributes to improved overall 
efficiency and competitiveness of enterprises. This convergence brings 
multidimensional benefits such as reducing system failures, improving 
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workplace safety, optimizing production scheduling, and minimizing energy 
consumption [17].

In summary, without the convergence of information technologies, 
artificial intelligence, and IoT, it would be impossible for modern predictive 
maintenance systems to function effectively. As these technologies continue to 
advance, the evolution of maintenance into fully autonomous, self-learning, 
and self-optimizing systems appears not only possible but inevitable [17].

1.5. Purpose and Scope of the Book

The primary aim of this book is to provide a comprehensive examination 
of Predictive Maintenance (PdM) approaches, which are increasingly 
employed in industrial and service sectors to ensure production continuity, 
optimize costs, and enhance equipment reliability. In an era marked by 
rapid technological advancement and the transformative impact of the 
Industry 4.0 revolution, maintenance strategies have evolved beyond 
conventional paradigms toward more intelligent, data-driven, and 
predictive methodologies. Understanding and effectively implementing this 
transformation requires a consolidated, literature-backed, and application-
oriented academic resource—this book has been meticulously prepared to 
fulfill that very need.

Predictive maintenance is far more than a simple maintenance method; 
it spans a broad spectrum of technologies, from data acquisition systems 
to machine learning algorithms, and from IoT infrastructures to digital 
twin simulations. Recognizing this breadth, the book not only delivers 
theoretical insights but also delves into real-world industrial applications, 
current scientific research, and emerging trends. In doing so, it seeks to 
bridge the knowledge gap in both academia and industry.

Another key objective of this book is to emphasize that predictive 
maintenance is not solely an engineering discipline but also a strategic tool 
for business management. Modern maintenance practices are no longer 
limited to fault correction; they are directly linked to enhancing production 
efficiency, ensuring occupational safety, minimizing environmental impact, 
and achieving sustainability goals. Accordingly, the effective design and 
technological empowerment of maintenance strategies play a vital role in 
the long-term success of enterprises.

This book is designed to appeal to a broad audience. Its primary 
readership includes graduate students in Mechanical Engineering, 
Industrial Engineering, Electrical and Electronics Engineering, and 
Computer Engineering; researchers working on predictive maintenance, 
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artificial intelligence applications, and IoT integration; as well as industrial 
professionals responsible for managing production and maintenance 
processes.

The structure of the book follows a systematic framework. The opening 
chapter explores the historical evolution of maintenance and its growing 
importance in modern industry, followed by an analysis of how maintenance 
strategies have been transformed in the context of Industry 4.0. The second 
chapter introduces various types of maintenance and presents a comparative 
analysis based on their application domains. Chapter three provides an in-
depth discussion of predictive maintenance fundamentals, including sensor 
technologies, data collection techniques, and machine condition monitoring 
methods.

Chapter four examines the impact of artificial intelligence and machine 
learning techniques on predictive maintenance, along with practical case 
studies. Chapter five focuses on the integration of IoT and condition 
monitoring systems into maintenance processes. Chapter six reviews recent 
academic studies and highlights potential future research directions. The 
final chapter summarizes the key findings of the book and offers concrete 
recommendations for both academia and industry.

In conclusion, this book aims not only to teach the core principles of 
predictive maintenance but also to enable readers to understand the complex 
dynamics of modern production systems, develop data-driven thinking skills, 
and grasp how emerging technologies can be integrated into maintenance 
processes. In this regard, the book is positioned as an indispensable reference 
for anyone aiming to achieve sustainable success in today’s rapidly evolving 
manufacturing environment.
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CHAPTER 2

2. Types of Maintenance and Application

2.1. Corrective Maintenance

Corrective maintenance refers to interventions carried out on machinery 
and equipment after a failure or performance degradation has occurred. In 
other words, it encompasses repair actions performed when a machine halts 
unexpectedly or an unforeseen malfunction arises. This form of maintenance 
is one of the most fundamental and earliest approaches within maintenance 
strategies [22].

The core principle of corrective maintenance is to operate equipment 
throughout its life cycle without scheduled maintenance, intervening only 
after a failure has taken place. This strategy is generally preferred for non-
critical assets, where the cost of failure is low or preventive maintenance is 
economically unjustifiable due to high implementation costs. For instance, 
a low-cost air compressor used in a small workshop might be run until it 
breaks down and then replaced [22].

However, corrective maintenance comes with significant drawbacks. 
Chief among them are unplanned failures that lead to sudden production 
stoppages and substantial losses in output. Such unexpected downtimes can 
delay customer deliveries, result in order cancellations, and ultimately harm 
the reputation of the enterprise. Additionally, post-failure repair activities 
often incur higher costs. Collateral damage to surrounding components, 
extended repair durations, and associated labor losses are typical consequences 
[23].

Another critical downside of corrective maintenance is its potential 
impact on workplace safety. Sudden failures, particularly in heavy industrial 
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environments, can pose serious safety hazards to personnel. For example, the 
unexpected shutdown of a motor in a production line may trigger cascading 
mechanical failures and workplace accidents. Therefore, when opting for a 
corrective maintenance strategy, factors such as equipment criticality, failure 
risks, and safety implications must be carefully assessed [23].

In industrial settings, corrective maintenance should be reserved for 
specific conditions, such as:

• The cost of equipment failure is relatively low.

• Spare parts and repair services are readily and rapidly accessible.

• Failures do not cause severe disruptions or safety hazards in the pro-
duction process.

• The equipment is non-critical to overall operations.

For example, corrective maintenance may be a viable strategy for systems 
like desktop printers or standalone air conditioning units commonly used in 
office environments. Conversely, it is not suitable as a primary strategy for 
mission-critical systems such as power plants, aviation equipment, or large-
scale production lines [23].

Contemporary maintenance management frameworks do not treat 
corrective maintenance as a standalone strategy but rather integrate it 
into a broader, mixed-method approach. For instance, while corrective 
maintenance may be applied to lower-priority systems, preventive or 
predictive maintenance is typically implemented for high-criticality assets. 
These hybrid strategies are essential for maintaining cost-effectiveness and 
optimizing resource utilization [22].

In conclusion, although corrective maintenance may offer a cost-effective 
option under certain circumstances, it is insufficient as a sole strategy for 
modern manufacturing systems that demand high reliability, operational 
safety, and continuous production. In today’s industrial landscape, where 
unplanned downtimes can be exceedingly costly, corrective maintenance 
should be employed judiciously and as part of a holistic maintenance 
management philosophy [23].

2.2. Preventive Maintenance

Preventive Maintenance (PM) refers to scheduled maintenance activities 
carried out at predefined intervals with the objective of preventing anticipated 
failures in machines and equipment before they occur. The primary aim 
of this strategy is to ensure operational continuity, minimize production 
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downtime, and reduce long-term maintenance costs. In sectors where 
operational reliability and safety are paramount—such as critical production 
lines, power plants, transportation infrastructure, and aviation—preventive 
maintenance constitutes an indispensable practice [24].

Preventive maintenance is typically scheduled based on manufacturers’ 
recommendations, including operating hours, usage cycles, or calendar 
intervals. For instance, lubricating a conveyor belt every 1,000 operating 
hours, conducting general inspections of a motor every six months, or 
replacing hydraulic filters annually are all examples of preventive maintenance 
practices. These measures help prevent failures and ensure that equipment 
continues to operate at optimal performance levels [24].

One of the most significant advantages of preventive maintenance 
is its capacity to substantially reduce the risk of unplanned downtimes. 
Unexpected failures often lead to major interruptions in production and 
considerable financial losses. Through regular inspections and maintenance, 
early signs of wear and deterioration can be detected, thereby avoiding large-
scale breakdowns. Moreover, preventive maintenance extends equipment 
lifespan, enhances performance, and supports energy efficiency [25].

However, preventive maintenance is not without its limitations. Strictly 
time- or usage-based schedules do not always provide the most efficient 
solutions. In some instances, interventions may be carried out even though 
the equipment has not reached a failure point, resulting in unnecessary 
component replacements and labor expenditures. This can, over time, lead 
to increased maintenance costs. Furthermore, since failure behaviors vary 
across different equipment, calendar-based strategies may not always yield 
effective outcomes [25].

To ensure the effectiveness of a preventive maintenance strategy, a 
detailed planning process that considers equipment usage conditions, 
historical failure records, and operating environments is essential. Advanced 
maintenance methodologies such as Risk-Based Maintenance (RBM) and 
Reliability-Centered Maintenance (RCM) can enhance the implementation 
of preventive maintenance by introducing a more analytical and prioritized 
approach [24].

Preventive maintenance is not limited to mechanical systems; it also plays 
a crucial role in software updates, security checks, and database management 
in IT systems. With the digitization of production systems under Industry 
4.0, the need for regular maintenance of software infrastructure has become 
just as important as that of hardware systems [24].
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Numerous industrial applications exemplify the successful implementation 
of preventive maintenance. In the aviation sector, for instance, aircraft 
engines are subjected to comprehensive inspections after a defined number 
of flight hours or cycles. Brake systems in trains are replaced at specific 
mileage intervals, and power plant turbines undergo periodic maintenance. 
These practices uphold high standards of safety and reliability [25].

In conclusion, preventive maintenance is a critical strategy for preserving 
production continuity, enhancing workplace safety, controlling costs, and 
maximizing equipment life. However, the effectiveness of a preventive 
maintenance program depends heavily on the characteristics of the equipment, 
operational risks, and the organization’s overall maintenance culture. A 
successful preventive maintenance strategy must therefore integrate technical 
expertise, meticulous planning, data analysis, and continuous improvement 
practices [24].

2.3. Predictive Maintenance

Predictive Maintenance (PdM) represents one of the most advanced 
maintenance strategies tailored to the evolving dynamics of modern 
manufacturing and service industries. The primary objective of PdM is to 
accurately predict equipment failures before they occur, perform maintenance 
only when it is truly necessary, and thereby minimize unplanned downtimes, 
production losses, and maintenance costs. By shifting maintenance 
management from a reactive approach to a proactive and predictive model, 
PdM has revolutionized operational efficiency in production systems [1].

The concept of predictive maintenance first gained attention in the 
mid-20th century with the development of early diagnostic techniques 
such as vibration analysis and oil monitoring. However, the true potential 
of PdM emerged with advances in sensor technologies, big data analytics, 
and the integration of artificial intelligence (AI) into production systems. 
Today, PdM is no longer limited to physical measurements; it is supported 
by a complex information infrastructure involving multidimensional data 
analysis, machine learning algorithms, and real-time monitoring systems 
[1].

In practice, predictive maintenance systems are built on three core 
components: data acquisition, data analysis, and decision support 
mechanisms. In the first stage, parameters such as vibration, temperature, 
noise, current, and oil quality are continuously monitored through sensors. In 
the second stage, this data is processed using advanced analytical algorithms 
to detect deviations or anomalies in the equipment’s operational behavior. 
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In the third and final stage, based on the insights obtained, predictions about 
the Remaining Useful Life (RUL) are generated, and maintenance decisions 
are supported accordingly [26].

The impact of predictive maintenance on production systems has been 
extensively studied in the literature. For instance, a study conducted by 
Achouch et al. (2022) reported that PdM systems can reduce unplanned 
downtime by 30% to 50% and lower maintenance costs by 12% to 18% 
on average. Similarly, Zhong et al. (2023) demonstrated that predictive 
maintenance applications significantly enhance equipment reliability, 
improving operational efficiency in the energy sector by up to 20% [26].

Nevertheless, PdM implementation does not always proceed flawlessly. 
High-quality and continuous data streams are essential for accurate results. 
Sensor failures, data integrity issues, or errors in analytical algorithms can 
increase the rate of false alarms and undermine the trust of maintenance 
teams. Additionally, the initial investment cost of PdM systems can be 
considerably higher than traditional maintenance approaches. Therefore, 
the criticality of the targeted systems, expected return on investment (ROI), 
and the readiness of the existing information infrastructure must be carefully 
evaluated [27].

On the other hand, advances in artificial intelligence and machine learning 
continue to enhance the effectiveness of predictive maintenance. With deep 
learning (DL) methods, more complex fault patterns can be identified, and 
highly accurate RUL predictions can be generated from multidimensional 
datasets. Furthermore, digital twin technology enables the creation of virtual 
replicas of physical systems, allowing maintenance scenarios to be simulated 
and risks managed more effectively in advance [27].

In conclusion, predictive maintenance has evolved into a strategic asset 
management tool rather than merely a failure prevention mechanism in 
modern production systems. With ongoing developments in AI, IoT, and 
big data analytics, PdM systems are expected to become autonomous, self-
optimizing, and continuously learning structures. The success of a predictive 
maintenance program depends on the combination of the right technological 
choices, high-quality data management, skilled human resources, and 
organizational adaptation. For enterprises, this transformation is not merely 
a technological innovation—it is a critical strategic investment that enhances 
competitive advantage.
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2.4. Proactive Maintenance

Proactive Maintenance stands as one of the most advanced strategies in 
maintenance management. This approach not only aims to predict potential 
failures in advance but also seeks to identify and eliminate the root causes 
that lead to those failures. In this sense, proactive maintenance goes beyond 
merely postponing malfunctions—it strives to prevent their recurrence by 
addressing the underlying issues. Therefore, it offers a more fundamental 
and sustainable improvement compared to predictive maintenance [28].

The core philosophy of proactive maintenance can be summarized as 
follows: failures are not random events; each failure has an identifiable cause. 
Once these causes are detected and eliminated, the frequency of equipment 
breakdowns naturally decreases. This methodology transforms maintenance 
practices from reactive or predictive interventions into a framework that 
fundamentally enhances equipment reliability and operational efficiency [2].

The implementation process of proactive maintenance typically involves 
the following stages:

1. Data Collection and Monitoring: Operational data such as 
temperature, vibration, oil analysis, sound, and current are continuously 
monitored. However, the objective here is not limited to detecting anomalies; 
it also involves closely analyzing minor changes in performance trends.

2. Root Cause Analysis (RCA): The root causes of actual or potential 
failures are identified. Common methods include the Ishikawa (Fishbone) 
Diagram, the 5W1H technique, and Failure Mode and Effects Analysis 
(FMEA).

3. Corrective Actions: Based on the identified root causes, corrective 
actions are developed. These may involve design modifications, improved 
operating conditions, optimized assembly processes, or the integration of 
new technologies.

4. Performance Evaluation and Continuous Improvement: The 
effectiveness of corrective actions is monitored, and further interventions 
are planned if necessary. Proactive maintenance is a cyclic process driven by 
a philosophy of continuous improvement [28].

This approach offers numerous advantages for industrial operations. 
It significantly reduces the frequency of failures, minimizes unplanned 
downtimes, and yields considerable cost savings. Moreover, it enhances 
system reliability and elevates workplace safety standards. In fact, proactive 
maintenance has become mandatory in highly critical infrastructures, such 
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as nuclear power plants, airport runway systems, and large-scale data centers 
[1].

However, proactive maintenance also demands a high level of technical 
expertise, interdisciplinary analytical capability, and advanced data 
management skills. Accurate root cause analysis requires in-depth knowledge 
of equipment behavior, production processes, and operational conditions. 
Consequently, maintenance teams must work as multidisciplinary units, 
comprising not only technical personnel but also process engineers, quality 
control experts, and data analysts [28].

Research in the literature confirms the benefits of proactive maintenance. 
Studies indicate that it can reduce maintenance budgets by 10–25%, extend 
equipment lifespan by 15–30%, and decrease occupational accident rates 
by up to 20%. For instance, Uçar et al. (2024) reported that in smart 
manufacturing facilities where proactive maintenance is integrated with 
predictive maintenance, annual failure-related costs were reduced by up to 
40% [29, 30].

Proactive maintenance also exhibits a strong synergy with digital twin 
technologies within the Industry 4.0 ecosystem. Digital twins allow for 
the creation of detailed virtual models of physical equipment, enabling the 
simulation of potential failure scenarios and the implementation of corrective 
actions in advance. This not only improves the accuracy of maintenance 
decisions but also minimizes operational risks [28].

In conclusion, proactive maintenance represents a comprehensive 
strategy that not only delays failures but systematically addresses their root 
causes. For organizations aiming to remain competitive, achieve sustainable 
production goals, and ensure a high level of workplace safety, proactive 
maintenance is indispensable. A successful implementation requires 
data-driven thinking, a culture of continuous improvement, and robust 
interdisciplinary collaboration [28-30].

2.5. Condition-Based Maintenance - CBM

Condition-Based Maintenance (CBM) is one of the most responsive 
and field-oriented strategies among modern maintenance approaches. CBM 
relies on continuously monitoring the physical indicators exhibited by 
equipment during operation and initiating maintenance only when a certain 
performance threshold is exceeded or a specific failure indicator is detected. 
In this way, CBM minimizes the drawbacks of both preventive (time-based) 
and corrective (post-failure) maintenance, offering more precise, cost-
effective, and reliable maintenance scheduling [31].
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The fundamental idea of condition-based maintenance is that maintenance 
is unnecessary when equipment operates normally, but any detectable sign 
of degradation triggers immediate corrective measures [31, 32].

To implement this strategy effectively, equipment must be equipped with 
sensors and measurement systems that continuously or periodically collect 
operational data. The monitored parameters generally reflect mechanical, 
electrical, or chemical behaviors and include the following:

• Vibration levels

• Tempera ture values

• Acoustic signals

• Variations in current and voltage

• Oil analysis (contamination, viscosity, metal particle concentration)

• Pressure and flow measurements [31, 32]

For instance, in an electric motor, vibration levels may increase over time 
due to bearing wear. In a CBM system, vibration sensors can detect this 
increase; if the vibration exceeds a predetermined threshold, the motor can 
be shut down, and maintenance initiated. This not only prevents unplanned 
failures but also avoids unnecessary disassembly and potential damage to the 
motor [32].

The success of CBM depends heavily on monitoring the right parameters 
and setting reliable threshold values. Incorrect thresholds can lead to either 
unnecessary interventions or delayed fault detection. Therefore, detailed 
initial analyses based on historical equipment data and manufacturer 
recommendations are crucial for successful CBM implementation [9].

One of the most significant advantages of condition-based maintenance 
is the optimization of maintenance costs. Since maintenance is performed 
only when genuinely necessary, expenses related to unnecessary spare part 
replacement, labor, and production interruptions are substantially reduced. 
Additionally, equipment lifespan is extended, energy efficiency is preserved, 
and workplace safety is enhanced [19].

On the other hand, CBM systems may require initial investments, such 
as sensors, data acquisition units, and analytical infrastructure. However, in 
the long term, these investments yield substantial savings and competitive 
production advantages for enterprises [9, 19].

CBM applications are widely used across various industries:
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• Energy sector: Vibration analysis of wind turbine blades for early cra-
ck detection

• Transportation: Wheel deformation monitoring in railway vehicles

• Petrochemical industry: Leak detection in pipelines through pressure 
and temperature variations

• Aerospace: Real-time temperature and vibration monitoring of airc-
raft engines for maintenance planning

For example, Rolls-Royce has successfully employed CBM in its engine 
maintenance processes for many years. The company continuously collects 
data from aircraft engines, analyzes even the slightest performance deviations, 
and optimizes maintenance planning accordingly. This not only enhances 
flight safety but also reduces total lifecycle operating costs [9, 19, 31, 32].

Condition-based maintenance also forms the foundation of predictive 
maintenance. Once a robust CBM system is in place, the continuously 
collected data can be processed using artificial intelligence and machine 
learning algorithms to predict future failures and enable systems to 
autonomously optimize their maintenance schedules [32].

In conclusion, condition-based maintenance is a real-time, data-driven 
approach that provides substantial economic and operational benefits in 
both manufacturing and service sectors. A successful CBM implementation 
requires proper sensor selection, effective data analysis, and collaboration 
with experienced maintenance teams. This strategy represents one of the 
most concrete manifestations of the data-centric management philosophy 
ushered in by Industry 4.0.

2.6. Comparison of Maintenance Types and Their Areas of 
Application

Different types of maintenance implemented in industry exhibit 
significant variations in terms of timing, data requirements, cost implications, 
and system complexity. To develop an effective maintenance strategy, it is 
crucial to understand these differences accurately and select the most suitable 
approach based on equipment-specific considerations. Table 1 presents the 
characteristics of various maintenance types [33, 34].
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Table 1. Characteristics of Maintenance Types

Feature Corrective 
Maintenance

Preventive 
Maintenance

Predictive 
Maintenance

Proactive 
Maintenance

Condition-
Based 
Maintenance

When is it 
performed?

After a failure 
occurs

At scheduled 
intervals

Before failure, 
via prediction

By eliminating 
root causes

When a failure 
symptom is 
detected

Basic Basis Failure 
occurrence

Calendar/
hour-based 
schedule

Sensor data + 
prediction

Root cause 
analysis

Sensor data 
(anomaly 
detection)

Unplanned 
Downtime 
Risk

Very high Medium Very low Very low Low

Cost Impact
Low short-
term, high 
long-term

Medium Low in the 
long term

Very low in 
the long term Optimal

Data 
Requirement None Partial High Very high Moderate

Complexity 
Level Simple Medium High Very high Medium

Application 
Area

Low-priority 
equipment

General 
systems

Critical 
systems

Critical 
systems (high 
precision)

Medium-
to-advanced 
systems

Impact on 
Work Safety Negative Positive Very positive Very positive Positive

Firstly, intervention timing is one of the fundamental criteria 
distinguishing maintenance strategies. Corrective maintenance is performed 
only after a failure occurs—no intervention takes place until the equipment 
fails, which increases the risk of unplanned downtime. In contrast, preventive 
maintenance involves interventions carried out at predefined intervals or 
based on operating cycles. In this approach, equipment is inspected or parts 
are replaced periodically before a breakdown occurs. Predictive maintenance 
analyzes real-time data from equipment to estimate the likelihood of failure 
before it happens and takes action accordingly. Proactive maintenance 
goes beyond this by identifying and eliminating the root causes of failures, 
thereby not only predicting but also preventing their occurrence. In 
condition-based maintenance, equipment performance is continuously 
monitored, and maintenance is triggered only when an anomaly is detected. 
Rather than directly predicting a failure, this strategy focuses on deviations 
in performance [33].

From the perspective of underlying basis, corrective maintenance requires 
no data or measurements intervention is made directly once a failure occurs. 
Preventive maintenance is based solely on pre-established parameters such 
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as calendar dates or operating hours. Predictive maintenance, however, uses 
sensor data, AI-assisted analytics, and statistical methods to forecast potential 
failures. Proactive maintenance relies on more in-depth analysis, using root 
cause analysis (RCA) to identify potential failures stemming from design, 
usage, or environmental conditions. In condition-based maintenance, real-
time sensor data reflecting operating conditions are evaluated to detect 
anomalies [34].

There is significant variation in unplanned downtime risk across 
maintenance strategies. Corrective maintenance carries the highest risk, as 
intervention only occurs post-failure. Preventive maintenance reduces this 
risk to some extent; however, time-based planning may not always reflect 
the actual condition of the equipment. Predictive and proactive maintenance 
strategies minimize the risk of unplanned downtime. Condition-based 
maintenance maintains a low risk level, as early signs of degradation can be 
detected and addressed in a timely manner [34].

In terms of cost implications, corrective maintenance may seem 
inexpensive initially but proves to be one of the most costly in the long 
run due to unplanned downtimes, high repair expenses, and production 
losses. Preventive maintenance keeps costs more controlled but may lead to 
unnecessary interventions, inflating the total cost. Predictive maintenance 
requires initial investments in sensors and infrastructure but results in 
significantly lower total costs over time. Proactive maintenance, although 
also requiring high initial investment, ensures minimal failure rates and 
maximum reliability, thus yielding the lowest long-term costs. Condition-
based maintenance offers an optimal balance between cost and efficiency 
[33].

Regarding data requirements, corrective maintenance has the least need 
for data, as actions are taken only after failure. Preventive maintenance relies 
partially on data, primarily using time or usage counters. Predictive and 
proactive maintenance strategies require high volumes of data and complex 
analytics. Condition-based maintenance demands a moderate level of sensor 
data and analytical infrastructure [33, 34].

The level of complexity also differs between strategies. Corrective 
maintenance is the simplest to implement. Preventive maintenance requires 
moderate planning and tracking capabilities. Predictive maintenance 
necessitates advanced data analytics, machine learning, and big data 
processing. Proactive maintenance is the most complex, involving root 
cause analysis, continuous improvement cycles, and organizational 
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culture transformation. Condition-based maintenance ranks at a moderate 
complexity level [34].

In terms of application areas, corrective maintenance is suitable for less 
critical equipment (e.g., small pumps, simple conveyor systems). Preventive 
maintenance is ideal for standard industrial machinery. Predictive maintenance 
should be used in high-cost and critical systems such as aircraft engines or 
wind turbines. Proactive maintenance is essential for systems where safety 
and uninterrupted operations are paramount (e.g., nuclear power plants). 
Condition-based maintenance is highly effective in industries with extensive 
production lines, automation systems, or railway transportation [1, 34].

Finally, impact on occupational safety is a crucial consideration. 
Corrective maintenance poses high safety risks, as sudden failures can 
lead to workplace accidents. Preventive maintenance improves safety but 
may fall short with poor planning. Predictive and proactive maintenance 
strategies offer the highest level of safety. Condition-based maintenance also 
contributes positively in this regard.
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CHAPTER 3

3. Foundations of Predictive Maintenance

3.1. Definition and Evolution of Predictive Maintenance

Predictive Maintenance (PdM) is a data-driven maintenance strategy 
developed to predict equipment failures in modern manufacturing and 
service industries. Its primary objective is to ensure production continuity 
by establishing early warning mechanisms before failures occur, thereby 
minimizing unplanned downtime and optimizing maintenance costs. 
Compared to traditional maintenance approaches, predictive maintenance 
adopts a more proactive and analytical structure; decisions are based not 
solely on experience and intuition, but also on real-time data analytics and 
scientific modeling [35].

The concept of predictive maintenance emerged within the evolutionary 
process of industrial maintenance management. Since the first industrial 
revolution, maintenance activities in production systems were largely limited 
to corrective interventions carried out after a failure. Over time, however, the 
high costs of unplanned downtimes, productivity losses, and occupational 
safety risks became more apparent, highlighting the need for more systematic 
maintenance approaches. In response to this need, time-based preventive 
maintenance concepts initially developed, eventually followed by predictive 
maintenance strategies aiming to monitor performance changes and failure 
tendencies to intervene proactively [1-3].

Beginning in the 1970s, early-generation condition monitoring 
techniques such as vibration analysis, oil analysis, and temperature 
monitoring laid the foundation for predictive maintenance. These techniques 
enabled the detection of failure symptoms at an early stage by measuring 
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changes in specific physical parameters of the equipment. However, since 
data collection was performed manually during this period, the scope of 
predictive maintenance remained limited [33, 34].

In the 1990s, the rapid advancement of information and sensor 
technologies enabled the digitalization of predictive maintenance systems. 
Automated data collection systems provided continuous monitoring 
capabilities, while increased data processing capacities allowed for faster and 
more accurate analyses. These advancements facilitated the wider industrial 
adoption of predictive maintenance systems [35].

Since the early 21st century, the integration of Big Data, Artificial 
Intelligence (AI), and Machine Learning (ML) technologies into production 
environments has elevated predictive maintenance to a new level. Today, 
millions of data points collected from equipment can be analyzed using 
advanced algorithms to not only detect current fault symptoms but also 
forecast future behavior trends of the equipment. As a result, Remaining 
Useful Life (RUL) estimations can be made, transforming maintenance 
planning into a dynamic, data-driven process [34].

Currently, predictive maintenance is widely applied not only in large-
scale industrial facilities but also in various sectors including automotive, 
aerospace, energy, healthcare, and transportation. In contemporary 
production paradigms such as Smart Manufacturing, Industry 4.0, and 
Industry 5.0, predictive maintenance serves as a foundational component 
for systems capable of self-monitoring, learning, and optimization [1-8].

In summary, the predictive maintenance approach has played a critical 
role in transforming maintenance management from a reactive process to a 
proactive and predictive one. Continuously evolving through technological 
advancements, this strategy provides revolutionary improvements in 
reliability, cost efficiency, operational performance, and occupational safety 
within production systems.

3.2. Core Components of Predictive Maintenance Systems

Predictive maintenance systems are designed as multi-component, 
integrated frameworks aimed at ensuring operational continuity, reducing 
maintenance costs, and enhancing system reliability in both manufacturing 
and service sectors. A successful predictive maintenance implementation 
is not limited to data collection alone; it also requires accurate analysis 
of the collected data, early detection of failure trends, and the execution 
of informed, data-driven decisions. This comprehensive process involves 
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several critical stages, each of which plays a key role in achieving an effective 
PdM strategy [35].

In this context, the core components of predictive maintenance can be 
categorized into four main groups:

1. Data Acquisition

2. Data Analysis

3. Anomaly Detection and Failure Prediction

4. Decision Support Mechanisms [35]

These components form the backbone of any predictive maintenance 
application. As illustrated in Figure 3, predictive maintenance systems 
integrate these modules into a cohesive structure capable of continuously 
monitoring equipment conditions, extracting actionable insights from 
dynamic data streams, and providing timely maintenance recommendations 
[1-4, 31-35].

Figure 3. The Core Components of Predictive Maintenance Systems

3.2.1. Data Acquisition in Predictive Maintenance

The success of predictive maintenance systems heavily depends on the 
continuous acquisition of high-quality data that accurately reflects the actual 
condition of the equipment. In this context, the data acquisition process 
forms one of the foundational pillars of the system and directly influences 
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the reliability of the overall maintenance strategy. In modern predictive 
maintenance approaches, data acquisition goes far beyond simply installing 
sensors; it also encompasses data sampling strategies, communication 
protocols, and preprocessing techniques [36].

The data acquisition phase is the critical initial step in any predictive 
maintenance system. Through sensors, continuous data is gathered on 
the physical behavior of the equipment. These collected signals provide 
direct insights into the system’s current condition and serve as the basis for 
estimating future performance trends [36].

Typically, the data acquisition process involves the digitization of 
analog signals obtained from multiple sensors integrated into the physical 
equipment, followed by the transmission of these signals to central analytics 
units. Commonly used sensor types include:

• Vibration Sensors (Accelerometers): Employed to detect early-stage 
mechanical issues such as imbalance and bearing failures in rotating 
machinery.

• Temperature Sensors (Thermocouples, RTDs): Used for monitoring 
anomalies like overheating or undercooling.

• Acoustic Emission Sensors: Capture micro-cracks, friction, or impa-
ct-related events.

• Pressure and Flow Sensors: Monitor leaks or performance loss in hyd-
raulic and pneumatic systems.

• Electrical Measurement Sensors: Track parameters like current, volta-
ge, and power factor in motors and generators [31-36].

Technical Parameters and Sensing Accuracy

• Sampling Frequency (FS): The number of data points acquired per 
second. For high-frequency vibration analysis, sampling rates of ≥10 
kHz are required to satisfy the Nyquist criterion and ensure accurate 
signal reconstruction.

• Noise Filtering: Low-pass filters and moving average techniques are 
applied to enhance the reliability of raw data.

• Resolution and Accuracy: The bit resolution of Analog-to-Digital 
Converters (ADC) plays a pivotal role in determining the measure-
ment precision.

• Data Integrity: Regular noise filtering and sensor calibration are ne-
cessary to maintain data accuracy and consistency [37].
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IoT Integration and Edge Architecture

Unlike conventional data acquisition systems, Industry 4.0 enables the 
use of smart IoT-based wireless sensors that transmit data to nearby edge 
devices for localized processing. This architecture reduces network load and 
facilitates real-time decision-making [38].

Communication Protocols: Protocols such as MQTT, ZigBee, and 
LoRa are widely adopted due to their low bandwidth requirements and 
energy efficiency.

Real-Time Monitoring: Supervisory Control and Data Acquisition 
(SCADA) systems play a critical role in data collection and visualization.

To ensure data reliability, periodic sensor calibration is essential, and data 
integrity validation algorithms such as Cyclic Redundancy Check (CRC) 
should be implemented. Moreover, associating timestamped metadata with 
each measurement enhances consistency and traceability in subsequent data 
analyses [38, 39].

3.2.2. Data Analysis in Predictive Maintenance

The raw data collected during the data acquisition phase does not directly 
yield actionable insights. Data analysis represents one of the fundamental 
pillars of predictive maintenance processes, transforming raw sensor data 
into meaningful, decision-supportive information. The multidimensional 
nature of data collected from sensors makes direct interpretation infeasible. 
Therefore, applying appropriate analytical techniques is critical for detecting 
abnormal patterns in equipment behavior [27].

Fundamental Time-Frequency Analysis Techniques

Time Series Analysis: Used to identify trends and variance shifts based 
on the equipment’s historical behavior. It is especially effective for the early 
detection of slowly evolving failures, such as gradual temperature increases.

Fast Fourier Transform (FFT): Decomposes vibration signals into 
their frequency components, revealing specific faults such as imbalance, gear 
defects, and bearing damage.

Wavelet Transform: Offers simultaneous time and frequency resolution, 
making it particularly suitable for detecting transient anomalies. It is effective 
in capturing short-term shocks and abrupt responses [40].
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Statistical Feature Extraction and Dimensionality Reduction

Extracting meaningful features from datasets is critical to the success of 
machine learning algorithms. In statistical studies, basic parameters such 
as mean, variance, kurtosis, skewness, and RMS (Root Mean Square) are 
commonly used.

Principal Component Analysis (PCA): Reduces the dimensionality of 
high-dimensional data, eliminating issues related to data redundancy and 
multicollinearity.

Linear Discriminant Analysis (LDA): Maximizes inter-class separability 
and is particularly useful during the data preprocessing phase of classification 
tasks [27-30, 40].

Advanced Analytical Methods and Signal Processing

Modern predictive maintenance systems enable more sophisticated 
analyses by integrating signal processing with machine learning techniques.

Hilbert-Huang Transform (HHT): Suitable for decomposing non-
linear and non-stationary signals.

Empirical Mode Decomposition (EMD): Breaks down signals into 
Intrinsic Mode Functions (IMFs), revealing local frequency characteristics.

Data Quality and Preprocessing

Before data analysis, noise and missing values in the sensor data must be 
addressed:

Z-Score Normalization and Min-Max Scaling: Standardization of 
features ensures balanced model training.

Missing Data Imputation: Linear interpolation, K-Nearest Neighbors 
(KNN), or model-based estimation methods can be applied to fill in missing 
values.

Outlier Detection: Techniques such as Z-score or Tukey’s method are 
used to filter out extreme values, preventing model distortion.

Preparing Inputs for Machine Learning

The analyzed data must be formatted appropriately to feed into machine 
learning algorithms:

Labeling: In supervised learning models, operational states (normal vs. 
faulty) should be clearly labeled.
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Feature Vector Structuring: All analysis outputs should be compiled 
into vectors to facilitate model training [32-40].

3.2.3. Anomaly Detection and Fault Prediction in Predictive 
Maintenance

One of the primary objectives of predictive maintenance systems is to 
detect abnormal behaviors in equipment at an early stage and to foresee 
potential faults before they occur. In this context, the processes of anomaly 
detection and fault prediction require the evaluation of large-volume and 
complex sensor data using advanced analytical techniques. In modern 
predictive maintenance architectures, this process is handled as an integrated 
structure combining both statistical modeling and artificial intelligence-
based approaches [41].

Anomaly detection is generally performed in comparison with the 
equipment’s historical data. Among traditional methods, the most 
common approach is threshold-based monitoring. In this method, specific 
parameters (e.g., temperature, vibration, current) are continuously 
monitored to determine whether they exceed predefined limits. However, 
since this approach shows limited performance in complex fault scenarios, 
it is increasingly being replaced by statistical control techniques and data-
driven models. In particular, control charts created through Statistical 
Process Control (SPC) methods enable the identification of anomalies by 
determining whether changes exceed normal limits [41].

In recent years, machine learning and deep learning algorithms have 
assumed a critical role in anomaly detection processes. Especially algorithms 
such as Support Vector Machines (SVM), Decision Trees, and Random 
Forests are effectively used to classify the system’s normal and abnormal 
operating states. Furthermore, deep learning models like Convolutional 
Neural Networks (CNN), which can learn historical patterns during the 
learning phase and define future deviations more precisely, and Long Short-
Term Memory (LSTM) networks, which are particularly suitable for time 
series data, provide high accuracy in anomaly detection [41, 42].

Additionally, density-based approaches have been developed to more 
effectively distinguish embedded structural degradations or outliers in the 
dataset. The DBSCAN (Density-Based Spatial Clustering of Applications 
with Noise) algorithm can distinguish anomaly clusters based on density 
differences within data sets and successfully detect anomalies that traditional 
classification methods may overlook. On the other hand, the Isolation Forest 
algorithm, which is particularly prominent in high-dimensional datasets, 
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generates anomaly decisions based on the “isolation” time of data points 
and is computationally efficient [43].

As a complement to the anomaly detection process, Remaining Useful Life 
(RUL) estimation aims to predict the time interval within which equipment 
is likely to fail. This estimation enables more accurate maintenance planning 
and the development of pre-failure intervention strategies. The methods 
used for RUL estimation are divided into two main approaches: model-
based and data-driven [40-44].

Model-based approaches create mathematical models based on the 
physical behavior of the system. For example, models based on physical 
phenomena such as bearing wear are used to explain specific failure 
mechanisms and to estimate service life. Since these models require detailed 
knowledge about the system, their applicability in complex systems may be 
limited. In contrast, data-driven approaches rely on algorithms that learn 
from and make predictions based on past operational data obtained from the 
system. In this approach, regression models, Random Forests, and especially 
Recurrent Neural Networks (RNNs) and LSTM models sensitive to time 
series analysis are frequently preferred. LSTM models, with their ability to 
learn long-term dependencies from past states, produce successful results in 
predictions based on the trend changes in sensor signals [43].

Moreover, Autoencoder architectures, which have recently become 
widespread in the literature, contribute to the processes of RUL prediction 
and anomaly detection by capturing deviations while attempting to minimize 
input-output discrepancies. Particularly in high-dimensional and noisy 
data, the explainability and accuracy offered by these methods significantly 
enhance the decision support capacity of predictive maintenance systems 
[43, 44].

In conclusion, anomaly detection and fault prediction represent one of the 
most critical stages of predictive maintenance systems. With the right choice 
of algorithms, high-quality datasets, and appropriate modeling strategies, 
the success of these systems can be significantly improved. Examples include 
RUL prediction in aircraft engines, early detection of gearbox failures in 
wind turbines, and battery life prediction in the automotive sector.

3.2.4. Decision Support Mechanisms

The ultimate goal of predictive maintenance systems is not only to 
detect fault symptoms in equipment at an early stage, but also to establish 
an effective decision support infrastructure capable of transforming these 
detections into actionable operational decisions. Integrating the outcomes 
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of data collection, analysis, and fault prediction processes into maintenance 
planning renders predictive maintenance functional. In this context, decision 
support mechanisms can be defined as a strategic component that interprets 
the outputs from the prediction process and converts them into actionable 
insights [44].

Modern decision support systems assist data-driven decision-making 
through both automated and user-guided frameworks. Especially in big data 
environments, AI-supported solutions stand out for enabling fast, reliable, 
and optimized decisions. These systems typically operate using methods 
such as decision trees, probabilistic models, or optimization algorithms; 
some also include machine learning-based recommendation engines that 
learn from historical data. These mechanisms allow maintenance managers 
to respond more accurately and dynamically to questions such as which 
equipment should be prioritized for maintenance, what type of maintenance 
actions should be applied, and how maintenance should be scheduled [37].

Decision support systems are generally structured around three core 
functions: prioritization, determination of the type of maintenance action, 
and operational optimization. In the prioritization process, the fault risk 
levels of various equipment are compared, and elements with higher 
criticality are prioritized. Risk-based maintenance planning approaches are 
commonly employed in this step, where the potential impacts of equipment 
failures are evaluated together with their probabilities. As a result, priority 
is given to interventions in areas that pose the greatest risk in terms of both 
safety and production continuity [44].

Determining the type of maintenance action is based on the current state 
of the system and the estimated Remaining Useful Life (RUL). Depending 
on the type and severity of the fault, alternative actions such as repair, 
component replacement, or temporary shutdown may be recommended for 
the equipment. The effectiveness of this process is directly related to the 
accuracy of the models used and the extent to which the decision support 
algorithm reflects the actual situation [45].

Operational optimization aims to schedule maintenance activities in 
alignment with the production process. Especially in facilities with high 
production capacity, it is crucial that maintenance timing does not disrupt 
the production cycle. Therefore, evolutionary approaches such as Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO), and similar 
techniques are frequently preferred. These methods offer effective tools for 
creating maintenance schedules based on multiple criteria [45].
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In advanced predictive maintenance systems, the decision support 
process is reinforced with visual analytics dashboards, alarm systems, and 
maintenance recommendation modules. In particular, AI-assisted decision 
support systems can offer recommendations in similar scenarios by learning 
from past data, thereby reducing the decision-making burden on maintenance 
personnel. Furthermore, the use of models capable of providing explainable 
decision suggestions is critically important for the transparency and reliability 
of the system [44, 45].

In conclusion, decision support mechanisms are a key function that 
transforms the predictive maintenance process into a data-driven, optimized, 
and actionable structure. For these systems to be successfully implemented, 
both the quality of the data and the choice of algorithm are of great 
importance; moreover, maintenance processes must be well-integrated with 
production systems.

3.3. Core Sensor Technologies Used in Predictive Maintenance

The success of predictive maintenance systems depends on the continuous 
acquisition of high-accuracy data from monitored equipment. The source of 
this data lies in sensor technologies that monitor various physical parameters. 
With the advent of Industry 4.0, these sensors not only collect data but 
also form the foundation of real-time decision support infrastructures 
by integrating with the digital twins of systems. The correct selection of 
sensor types is of critical importance in terms of reliability in fault detection, 
accuracy in prediction, and timely intervention [38-45].

3.3.1. Vibration Sensors

Vibration sensors are among the most commonly used sensor types 
in predictive maintenance applications due to their capability to detect 
mechanical imbalances, internal looseness, bearing faults, and gear defects 
in rotating equipment at an early stage. These sensors continuously monitor 
the dynamic behavior of the system during operation, checking whether the 
equipment is generating abnormal vibration levels [46].

Vibration measurements are typically conducted based on acceleration, 
velocity, or displacement parameters. The most widely used type of sensor 
is the accelerometer. These sensors convert the equipment’s vibrations 
into electrical signals via piezoelectric crystals or MEMS (Micro-Electro-
Mechanical Systems) structures. The measurement signal is generally 
collected within high-frequency ranges, as most mechanical faults produce 
high-frequency anomalies in the early phase. Therefore, these sensors are 
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configured to operate with high sampling frequencies, typically in the range 
of 10–50 kHz [44-46].

Key technical features of vibration sensors include a wide dynamic 
measurement range, low signal-to-noise ratio, high frequency sensitivity, 
and thermal stability. Modern accelerometers can detect acceleration changes 
up to ±50 g and may offer high output sensitivities such as 100 mV/g. 
Furthermore, sensor housings are usually manufactured from stainless steel 
or titanium, making them resistant to the harsh conditions of industrial 
environments [47].

Vibration data is often analyzed not only in the time domain but also in 
the frequency domain. Fast Fourier Transform (FFT) is used to decompose 
the signal into its frequency components, revealing characteristic frequencies 
associated with specific fault types. For example, defects such as inner race 
cracks, outer race damage, or ball faults in bearings manifest as increased 
energy at certain frequency components, enabling diagnostic interpretation. 
For more advanced analysis, time-frequency methods such as wavelet 
transform and envelope analysis are also applied [44-47].

In industrial applications, vibration sensors are widely used on various 
types of rotating equipment, especially motors, turbines, gearboxes, pumps, 
and compressors. Due to the critical nature of these machines in ensuring 
operational continuity—and the high costs associated with unplanned 
downtime—maintenance strategies based on vibration analysis have become 
increasingly prevalent [48].

The main advantages of vibration sensors include the ability to detect 
faults before they manifest physically, a broad operational frequency range, 
and compatibility with system integration. However, they also have certain 
limitations. For instance, they may be less effective in capturing very low-
frequency behaviors and can produce false signals due to structural noise 
arising from improper mounting. Therefore, sensor installation, calibration, 
and data processing must be carefully designed and executed [48].

3.3.2. Temperature Sensors

Temperature sensors are critical tools in predictive maintenance, enabling 
the early detection of potential faults by monitoring thermal changes 
in machine components. A significant portion of industrial equipment 
experiences performance degradation or is exposed to failure risks due 
to thermal anomalies such as overheating or insufficient cooling. In this 
context, temperature monitoring is regarded as a direct indicator of system 
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health and is considered one of the fundamental parameters in predictive 
maintenance strategies [45, 47].

Among the most commonly used temperature sensors are thermocouples 
and Resistance Temperature Detectors (RTDs). Thermocouples measure 
temperature by detecting the thermoelectric voltage generated at the junction 
of two dissimilar metals in response to a temperature gradient. RTDs, 
typically made of platinum materials (such as Pt100, Pt1000), operate 
based on changes in electrical resistance. While RTDs offer high accuracy 
and long-term stability, thermocouples provide a wider temperature range 
and faster response time [47].

From a technical perspective, the performance of temperature sensors is 
defined by parameters such as accuracy, sensitivity coefficient, response time, 
and temperature range. RTD sensors typically operate between –200°C and 
600°C with a high accuracy of up to ±0.1°C, whereas thermocouples can 
measure up to 1800°C but with an accuracy range of about ±1–2°C. The 
long-term stability of RTDs makes them preferred for reliable continuous 
measurements, while thermocouples are more durable under high-vibration 
and harsh environmental conditions [47].

In industrial applications, temperature sensors are commonly used in 
components such as electric motors, bearing systems, turbines, furnaces, heat 
exchangers, and hydraulic oil systems. For example, an abnormal increase in 
motor winding temperature may indicate overload, insufficient ventilation, 
or an electrical short circuit. Similarly, thermal rises observed in bearings 
may point to lubrication problems, friction, or structural deformations. 
Early detection of these signals helps prevent unplanned downtimes and 
potential cascading failures [44-47].

In advanced predictive maintenance systems, temperature data is not 
analyzed in isolation but rather in conjunction with other parameters such as 
vibration, current, and pressure. Through this multi-sensor data integration, 
a concurrent rise in both vibration and temperature, for instance, can 
significantly enhance the accuracy of bearing fault detection. Consequently, 
maintenance interventions can be more targeted and timely [47].

The advantages of temperature sensors include wide applicability, high 
accuracy, low energy consumption, and compatibility with various industrial 
communication protocols. However, these sensors also present certain 
limitations. Specifically, susceptibility to electromagnetic interference, signal 
attenuation over long cable lengths, and mechanical mounting challenges 
in some systems must be carefully considered during sensor selection and 
installation [47].
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3.3.3. Acoustic Emission Sensors

Acoustic emission sensors are advanced monitoring elements used to 
detect high-frequency elastic waves generated by micro-level damages, 
cracks, or deformations occurring within the structure of equipment. 
These sensors significantly enhance the proactive capability of predictive 
maintenance systems by enabling the detection of faults before they exhibit 
macroscopic symptoms, thanks to their ability to sense microscopic changes 
within the material [48].

Acoustic emission refers to ultrasonic waves that are generated due to 
internal stress release as a structure undergoes elastic deformation. These 
waves typically occur within the frequency range of 100 kHz to 1 MHz, 
which is beyond the detection capability of conventional vibration sensors. 
By capturing these waves, acoustic emission sensors can identify early-stage 
phenomena such as material fatigue, microscopic crack initiation, increased 
friction, or plastic deformation. Therefore, they are frequently employed in 
structural health monitoring (SHM) and in areas requiring high levels of 
safety [47, 48].

The structure of these sensors generally consists of piezoelectric materials. 
Piezoelectric crystals convert mechanical waves into electrical signals, 
generating analyzable data. The sensors are designed as thin-film, surface-
mountable units and are calibrated based on the acoustic transmission 
characteristics of the material to which they are attached. Moreover, 
they are often housed in protective casings to withstand harsh industrial 
environments [45-48].

Technically, acoustic emission sensors are developed to perform 
high-sensitivity, low-noise measurements. These sensors are capable of 
distinguishing high-frequency, low-amplitude signals, thus enabling the 
detection of low-energy events such as micro-cracks forming within a 
structure. Analog output signals are digitized via high-speed data acquisition 
systems and analyzed using specialized software. Using Time-of-Arrival 
(TOA) algorithms, the location of the sound source on the system can be 
determined [47-48].

Acoustic emission sensors are widely used in highly critical structural 
applications such as composite structures, pressure vessels, pipelines, weld 
seams, and metallic systems under high stress. For instance, in the aerospace 
sector, they are utilized for monitoring internal cracks in carbon composite 
fuselage structures, while in the petrochemical industry, they are used to 
track micro-tears in pipelines. Similarly, for components that are difficult 
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to access, such as wind turbine blades, these sensors provide an advantage 
by enabling continuous monitoring of surfaces exposed to environmental 
effects [48].

The advantages of these sensors include the ability to detect faults before 
other physical symptoms appear, providing non-destructive and continuous 
monitoring capabilities, and enabling the resolution of complex events 
by offering high-frequency data. However, the applicability of acoustic 
emission systems also comes with certain limitations. Their performance is 
sensitive to surface coupling, they require high-speed data acquisition and 
analysis infrastructure, and the interpretation of the data necessitates expert 
knowledge, all of which contribute to their complexity [45-48].

3.3.4. Electrical Parameter Sensors

Electrical parameter sensors play a critical role in predictive maintenance 
applications, particularly in the monitoring of electrically powered 
equipment. These sensors enable the real-time tracking of electrical behavior 
within systems, allowing for the detection of potential failures and the 
enhancement of energy efficiency. In various domains such as electric 
motors, generators, power converters, transformer systems, and smart 
energy distribution networks, these sensors not only detect early signs of 
failure but also provide essential data for maintenance scheduling, load 
imbalance analysis, and energy management [46, 47].

The main types of sensors used for monitoring electrical parameters include 
Current Transformers (CTs), Voltage Transducers, Power Measurement 
Sensors, and combined Power Analyzers. Current sensors detect the electric 
current flowing through a conductor, facilitating the analysis of system load 
conditions and energy consumption. Voltage sensors, on the other hand, 
monitor sudden changes in supply voltage or phase imbalances, thus aiding 
in the early diagnosis of electrical anomalies. In advanced systems, active 
and reactive power measurements, power factor tracking, and harmonic 
distortion analysis are also performed via integrated sensor modules [47].

Technically, these sensors are characterized by wide measurement 
ranges, high sampling rates, and low deviation ratios. A typical industrial 
current sensor can provide a linear response in the range of 5 mA to 2000 
A. Output signals are usually delivered in analog (4–20 mA, 0–10 V) or 
digital (RS485, Modbus, CANopen) formats, and they can be seamlessly 
integrated with predictive maintenance software. Additionally, these sensors 
are often designed with insulation to ensure safe operation in high-voltage 
environments [47-49].
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One of the primary advantages of electrical parameter sensors in predictive 
maintenance is their ability to detect faults such as load imbalances in 
motors, winding insulation degradation, phase loss, inrush current events, 
and harmonic distortions. For instance, a motor operating consistently 
above its nominal current level leads to energy wastage and accelerates the 
thermal aging of the equipment. This results in increased temperature and 
degradation of winding insulation, thereby indirectly initiating a thermal 
failure process. In this context, data obtained from electrical sensors can 
indicate not only direct electrical faults but also early signs of mechanical 
failures [47-49].

In industrial settings, these sensors can be integrated into various systems 
such as electric motors, generators, UPS systems, frequency converters, 
and switchgear panels. Furthermore, by enabling full integration with 
energy monitoring and management platforms, predictive maintenance 
can be conducted in conjunction with energy management. This allows for 
the monitoring of not only equipment health but also the overall energy 
performance of the facility [49].

However, the effectiveness of these sensors depends on the proper 
selection of measurement points, maintenance of cabling and signal integrity, 
and the application of appropriate filtering algorithms. In environments 
with significant electrical noise, precautions such as sensor calibration and 
shielding are required. Otherwise, issues such as measurement errors and 
false alarms may arise [45-49].

3.3.5. Pressure and Flow Sensors

Pressure and flow sensors are critical monitoring elements, especially in 
the supervision of liquid and gas flow systems. These sensors are widely used 
within the scope of predictive maintenance to both assess system efficiency 
and anticipate potential failure risks in advance. Their contributions are 
particularly prominent in sectors such as hydraulic and pneumatic circuits, 
water treatment systems, process pipelines, chemical transport systems, and 
power plants [47-49].

Pressure sensors are transducers that detect the force exerted by a liquid or 
gas within a system and convert this force into an electrical signal. Typically 
operating based on piezoresistive, capacitive, or piezoelectric principles, 
these sensors continuously monitor changes in ambient pressure and signal 
abnormal system operation when predefined thresholds are exceeded. A 
typical industrial pressure sensor can measure within the range of -1 bar 
(vacuum) to +600 bar, offering an accuracy of ±0.25% FS. In high-precision 
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applications, this accuracy can reach levels as high as ±0.1%. Furthermore, 
temperature-compensated models provide stable measurements free from 
environmental influences [47-49].

Flow sensors, on the other hand, measure the quantity of a fluid passing 
through a defined cross-sectional area per unit of time. These sensors operate 
based on various principles including turbine type, magnetic induction, 
ultrasonic, or Coriolis effects. The choice of measurement method depends 
on parameters such as system viscosity, flow profile, temperature, pressure, 
and chemical properties. For instance, ultrasonic flow sensors are preferred in 
chemically aggressive environments due to their non-contact measurement 
capabilities, while turbine types are commonly used in clean water systems. 
Flow measurement accuracy generally falls within the ±1–2% range, 
although it can be further improved in specialized applications [42-49].

These sensors not only determine whether a system is operational 
but also help analyze the efficiency level of equipment. For example, in a 
pumping system, a simultaneous drop in pressure and flow may indicate 
internal leakage, cavitation, or partial blockage. Similarly, sudden pressure 
fluctuations in pneumatic circuits may suggest regulator failure, sealing 
issues, or valve malfunctions. Early detection of such changes helps optimize 
energy consumption and prevent unplanned downtime [49].

With broad application areas, these sensors can be easily integrated into 
industrial automation systems and often feature outputs compatible with 
PLC/SCADA infrastructures. In addition to analog signals (4–20 mA, 0–10 
V), models operating with digital protocols (MODBUS, IO-Link, Profibus) 
allow for direct data exchange with predictive maintenance software [42-
49].

The advantages of these sensors include high accuracy, compact structure, 
wide operating range, fast response time, and compatibility with harsh 
environmental conditions. However, their effectiveness depends on the 
correct selection of the mounting point, regular maintenance, and control of 
factors such as fluid contamination, which may compromise signal integrity. 
In processes lacking sufficient filtration, sensor lifespan may be shortened, 
and measurement deviations may occur [42-49].

In general, pressure and flow sensors lie at the heart of condition 
monitoring activities based on liquid and gas flow in predictive maintenance. 
These sensors enable real-time system performance monitoring, early 
detection of efficiency losses, and timely maintenance interventions before 
failures occur. Therefore, they are powerful components that serve both 
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the fault prevention and operational optimization goals of predictive 
maintenance strategies [47-49].

In predictive maintenance systems, sensor selection should be made 
carefully based on the characteristics of the equipment to be monitored, 
the working environment, and the parameters of interest. Incorrect or 
inadequate sensor selection will reduce the reliability of collected data and 
significantly decrease the effectiveness of the maintenance system. Thus, 
understanding and properly configuring sensor technologies play a critical 
role in the success of predictive maintenance applications. Table 2 presents 
the basic sensor information used in predictive maintenance [45-49].

Tablo 2. The basic sensor information used in predictive maintenance

Sensor Type Measured Parameter Application Area

Vibration Sensor Vibration
Motors, Turbines, 
Gearboxes

Temperature Sensor Temperature Bearings, Motor Windings

Acoustic Emission Sensor
High-Frequency Acoustic 
Waves

Pressure Vessels, 
Composite Materials

Current/Voltage Sensor Electrical Parameters Motors, Power Systems

Pressure/Flow Sensor Pressure, Flow Rate
Hydraulic and Pneumatic 
Systems

3.4. Data Acquisition, Storage, and Management

The effectiveness of predictive maintenance systems largely depends on 
the accurate, reliable, and continuous flow of data. The proper processing 
and management of the collected data is a critical prerequisite for the system 
to reliably predict faults and make accurate maintenance decisions. In this 
context, data acquisition, data storage, and data management processes 
are considered fundamental infrastructure components of predictive 
maintenance.

3.4.1. Data Acquisition Process

One of the fundamental components of predictive maintenance systems 
is the ability to collect data from monitored equipment in a continuous, 
reliable, and accurate manner. The data acquisition process involves 
more than merely gathering raw data from sensors; it also encompasses 
digitization, transmission, and preprocessing, constituting a multilayered 
structure. In modern industrial systems, this process plays a critical role in 
terms of data quality, continuity, and system integration [50].
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In traditional systems, data acquisition is typically carried out via wired 
connections. However, with the advancement of Industry 4.0 and the 
Internet of Things (IoT) technologies, this process has become largely digital 
and automated. Today’s data acquisition architectures consist of various 
layers, including sensors, IoT devices, data acquisition systems (DAS), edge 
devices, and cloud-based infrastructures [45-47].

Analog signals obtained from sensors are first converted into digital form 
via analog-to-digital converters (ADC). During this conversion, signals are 
generally sampled at high frequencies. In the case of high-frequency data 
types such as vibration, sampling rates may exceed 10 kHz. The sampling 
frequency should be selected according to the dynamic characteristics of the 
monitored parameter and must meet the Nyquist criterion to ensure faithful 
signal reconstruction [48-50].

Data acquisition can be performed not only by transmitting data directly 
to centralized servers but also by employing edge computing technologies. 
The concept of edge computing is based on the principle of analyzing 
data as close as possible to the sensor. This approach significantly reduces 
bandwidth load and shortens analysis time, especially in environments 
with large volumes of high-frequency data. Thanks to edge devices, only 
meaningful findings are transmitted to the central server, enabling more 
efficient use of system resources [45-47].

The transmission of data to external systems can be carried out through 
both wired (Ethernet, RS485, Modbus) and wireless (Wi-Fi, LoRa, ZigBee, 
NB-IoT) communication protocols. In this communication process, data 
security and transmission stability must be prioritized. Especially in field 
applications, wireless protocols with low power consumption are preferred, 
and error correction algorithms (e.g., CRC – Cyclic Redundancy Check) are 
implemented to prevent packet loss during transmission [45-50].

Real-time data monitoring is performed using SCADA (Supervisory 
Control and Data Acquisition) systems. SCADA panels not only visually 
present the behavior of the monitored system to the user in real time but 
also trigger automatic alert mechanisms upon threshold exceedance, thereby 
initiating decision support processes. These systems are particularly valuable 
in predictive maintenance for the rapid detection of critical conditions and 
guiding maintenance teams [45-50].

Another important consideration in the data acquisition process is the 
data format. In modern systems, data is transmitted using standardized 
formats such as JSON, XML, or proprietary binary formats. Ensuring 
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compatibility of these formats with data processing systems is essential 
for the effective operation of maintenance software and decision support 
infrastructure. Additionally, each data packet is tagged with metadata such 
as timestamps and sensor identifiers, facilitating traceability and correlation 
during subsequent analyses. The data acquisition process thus encompasses 
the recording of measurements obtained from sensors in real time or at 
scheduled intervals within the system [45-50].

3.4.2. Data Storage Methods

The success of predictive maintenance systems depends not only on the 
collection of data but also directly on the secure, scalable, and accessible 
storage of such data. Long-term storage of collected data is of strategic 
importance for conducting retrospective analyses, training artificial 
intelligence models, and comparing system performances. Therefore, data 
storage methods are regarded as one of the fundamental components that 
support the sustainability of predictive maintenance [32-36].

Data storage systems are essentially divided into two main categories: 
local storage systems and cloud-based storage solutions. Local storage 
systems refer to the retention of data on in-house servers. These systems 
offer low-latency access to data and allow complete physical control over 
the information. They are especially preferred in environments such as 
manufacturing facilities, where data security is of critical concern. Moreover, 
these systems offer the advantage of operating independently from the 
network. However, due to high maintenance and update costs, the risk of 
physical failures, and limited scalability, they may pose disadvantages in 
managing large volumes of data [45-47].

On the other hand, cloud-based data storage solutions have increasingly 
gained popularity in recent years within predictive maintenance applications. 
Global providers such as Amazon Web Services (AWS), Microsoft Azure, 
and Google Cloud Platform make it possible to store and manage large 
volumes of sensor data flexibly. These systems offer advantages such as high 
availability, automatic backups, low operating costs, and dynamic resource 
allocation. Furthermore, geographically distributed teams can access data, 
enabling decentralized maintenance strategies to be executed more efficiently 
[45-49].

Data security is of great importance in cloud systems. Considering the 
sensitivity of industrial data, encryption methods (e.g., AES-256) and 
access control protocols are employed during data transmission and storage. 
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Additionally, identity authentication, role-based authorization, and multi-
factor access methods play a critical role in ensuring data security [50].

Storage architectures also vary according to the type of data structure 
used. Structured data (e.g., temperature, vibration measurements) is stored 
in traditional databases (SQL, PostgreSQL), whereas semi-structured or 
unstructured data (e.g., log files, visual data, video) is stored in NoSQL-
based systems (MongoDB, Cassandra) or data lakes. Data lakes enable raw 
storage of data in various formats and support big data analytics with their 
flexible querying infrastructures [48-50].

On the other hand, data warehouses, which are used to prepare data 
for analysis, typically operate in an integrated manner with reporting and 
decision-support systems based on historical data. These systems contain 
preprocessed, cleaned, and optimized versions of the data, providing faster 
query performance. For example, decision algorithms based on maintenance 
history draw from these systems to generate recommendations [50].

Today, hybrid storage solutions are also quite common. In this approach, 
frequently accessed data is stored on local systems, while less frequently used 
or long-term archival data is stored in the cloud. This architecture provides 
a balanced solution between cost and access performance.

3.4.3. Data Storage Methods

The success of predictive maintenance systems depends not only on the 
acquisition of data but also on its secure, scalable, and accessible storage. 
Long-term data retention is of strategic importance for conducting historical 
analyses, training artificial intelligence models, and comparing system 
performances. Therefore, data storage methods are regarded as one of the 
core components that support the sustainability of predictive maintenance 
[51].

Data storage systems are generally categorized into two main types: 
local (on-premises) storage systems and cloud-based storage solutions. 
Local storage refers to retaining data on in-house servers. These systems 
offer low-latency data access and full physical control over the data, making 
them especially suitable for high-security environments such as production 
facilities. They also provide the advantage of operating independently from 
network connectivity. However, high maintenance and upgrade costs, 
risks of physical failure, and limited scalability make them less favorable for 
managing large volumes of data [50,51].
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Conversely, cloud-based data storage solutions have become increasingly 
preferred in predictive maintenance applications in recent years. Global 
providers such as Amazon Web Services (AWS), Microsoft Azure, and 
Google Cloud Platform enable flexible storage and management of large-
scale sensor data. These systems offer advantages such as high availability, 
automatic backup, low operational costs, and dynamic resource allocation. 
Additionally, geographically distributed teams can access the data, facilitating 
the effective implementation of decentralized maintenance strategies [51].

Data security is of paramount importance in cloud systems. Considering 
the sensitivity of industrial data, encryption methods (e.g., AES-256) and 
access control protocols are employed during data transmission and storage. 
Moreover, authentication, role-based authorization, and multi-factor access 
techniques play a critical role in securing the data [27].

Storage architectures also vary depending on the data structure. 
Structured data (e.g., temperature and vibration measurements) is stored 
in conventional databases (SQL, PostgreSQL), whereas semi-structured or 
unstructured data (e.g., log files, images, videos) is stored in NoSQL-based 
systems (e.g., MongoDB, Cassandra) or data lakes. Data lakes allow the 
storage of raw data in diverse formats and support large-scale data analytics 
through flexible query infrastructures [27].

On the other hand, data warehouses, which are used to make data 
ready for analysis, typically operate in conjunction with reporting and 
decision-support systems based on historical data. These structures host 
preprocessed, cleansed, and optimized versions of the data, enabling faster 
query performance. For instance, decision algorithms based on maintenance 
history draw on these systems to generate recommendations [27].

Today, hybrid storage solutions are also widely adopted. In this approach, 
frequently accessed data is stored locally, while infrequently used or long-
term data is stored in the cloud. This configuration offers a balanced solution 
between cost and access performance [50].

3.5. Fault Detection and Remaining Useful Life (RUL) Prediction 
in Predictive Maintenance

Fault detection and Remaining Useful Life (RUL) prediction are among 
the most critical functions of predictive maintenance systems. This process 
goes beyond merely assessing the current health status of equipment; it 
aims to estimate when a potential failure may occur in the future. In doing 
so, maintenance operations can be planned more efficiently, unplanned 
downtimes are minimized, and overall system reliability is enhanced [27, 45].
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3.5.1. Fault Detection

One of the primary objectives of predictive maintenance systems is 
to detect emerging fault symptoms at the earliest possible stage—before 
any functional loss occurs in the equipment. The fault detection process 
encompasses various signal processing techniques, statistical analyses, and 
artificial intelligence-based models developed in line with this objective. A 
successful fault detection infrastructure not only assesses the current health 
status of the system but also provides accurate and timely information flow 
to guide maintenance strategies [45-48].

Traditional fault detection methods mostly rely on threshold-based 
approaches. In such systems, predefined limits are set for specific physical 
parameters (e.g., temperature, vibration, pressure, current). When sensor 
measurements exceed these boundaries, the system generates an alarm. 
While this method offers advantages in terms of ease of implementation, it 
can be insufficient to meet the needs of modern systems as it may remain 
unresponsive to dynamic conditions and complex fault scenarios [50,51].

Therefore, more sophisticated and data-driven methods have been 
developed for fault detection in recent years. Among these, Statistical 
Process Control (SPC) holds a significant place. Through the use of control 
charts, normal variations in the process can be distinguished from special 
(abnormal) variations. Out-of-control signals indicate a potential fault 
situation and guide maintenance teams toward preventive intervention [27-
32].

With the increase in data volume, the use of artificial intelligence and 
machine learning-based methods in fault detection processes has also 
become widespread. Supervised learning methods build classifiers capable 
of distinguishing between “normal” and “abnormal” behaviors of the 
equipment by learning from historical data. In this context, algorithms such 
as Support Vector Machines (SVMs), Decision Trees, Random Forests, 
and k-Nearest Neighbors (k-NN) are successfully utilized. These algorithms 
classify the current condition of the equipment based on statistical and 
frequency-domain features extracted from sensor data [27-32].

At a more advanced level, especially for complex systems, deep learning-
based models are prominent. Convolutional Neural Networks (CNNs) 
offer effective solutions in anomaly detection due to their capability to 
automatically extract features from time-series data. Similarly, Recurrent 
Neural Networks (RNNs) such as Long Short-Term Memory (LSTM) 
networks can accurately model the progression toward failure by capturing 
temporal dependencies [45,49].
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Unsupervised learning models are also widely used in scenarios where 
labeled data is scarce or unavailable. Particularly, density-based clustering 
algorithms such as DBSCAN and Isolation Forests can identify points that 
deviate from the “normal” in a dataset (outliers), thereby detecting potential 
faults. Moreover, autoencoder-based models can automatically detect 
anomalies by minimizing discrepancies between input and output data. 
These types of networks yield successful results, especially in systems dealing 
with high-dimensional data [50].

An important phase in fault detection is the accurate interpretation of 
extracted signals. For this purpose, domain knowledge aimed at understanding 
the physical behavior of the system must be integrated with data analytics. 
For instance, an inner race crack in a bearing generates vibration at a specific 
frequency, while lubrication deficiency in the same component causes signal 
distortion over a broader frequency band. Therefore, fault detection should 
not be based solely on mathematical models, but should be enriched with 
engineering insights [14-18].

3.5.2. Remaining Useful Life (RUL) Prediction

Remaining Useful Life (RUL) prediction is one of the most advanced 
applications of predictive maintenance systems and aims to estimate the 
operational time remaining before a failure occurs, based on the current 
condition of the equipment. RUL prediction enables more precise planning 
of maintenance activities, minimizes unplanned downtimes, and provides 
high efficiency in terms of both cost and production continuity [45-51].

The RUL estimation process is based on analyzing the historical and 
current condition data of a piece of equipment to predict the remaining 
time until failure. This process not only evaluates the current health status 
of the equipment but also influences maintenance strategies directly through 
its ability to forecast future behavior. Accurate RUL estimation optimizes 
the timing of maintenance decisions, eliminates unnecessary maintenance 
actions, and ensures more efficient resource utilization [45-51].

RUL prediction methods are generally divided into two main approaches: 
model-based methods and data-driven methods. Model-based approaches rely 
on equations or system models that represent the physical and mathematical 
behavior of the equipment. These methods require detailed knowledge of 
the system’s operating principles and the identification of specific failure 
mechanisms. For instance, processes such as bearing wear, corrosion, or 
material fatigue can be modeled using physical laws, allowing RUL to be 
predicted through these models. Although model-based approaches can offer 
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high reliability, the modeling process can be complex and time-consuming 
in intricate systems [45-51].

In contrast, data-driven approaches are developed based on historical 
operational data and patterns learned from sensor outputs. These methods 
have become increasingly prominent, particularly in modern manufacturing 
environments where large volumes of data are available. Core algorithms 
used in data-driven predictions include regression analysis, decision trees, 
support vector regression (SVR), and artificial neural networks. These 
techniques learn from past failure cases to make predictions for equipment 
operating under similar conditions [45-51].

Deep learning-based methods have become particularly effective in recent 
years for RUL prediction. Recurrent Neural Networks (RNNs), capable 
of identifying historical patterns in time-series data, and Long Short-Term 
Memory (LSTM) models, which can learn long-term dependencies, have 
achieved high success in sensor-based RUL estimation. LSTM networks 
learn degradation trends over time, enabling them to more accurately predict 
future failure times based on the current condition [27-51].

The features used in RUL estimation are also critically important. These 
features are typically obtained using various data processing techniques, 
such as statistical indicators (mean, variance, maximum, minimum), time-
frequency domain analyses (wavelet transform, FFT analysis), degradation 
rates, and signal trend analyses. Especially in machine learning and deep 
learning algorithms, the selection of these features directly affects the 
accuracy of the model.

In industry, RUL prediction is applied across a wide range of areas—from 
maintenance planning of aircraft engines and forecasting gearbox failures in 
wind turbines, to battery life estimation and brake system monitoring in rail 
vehicles. For example, if RUL is predicted using vibration and temperature 
data of a jet engine, maintenance operations can be scheduled during 
downtime, minimizing operational disruptions [48-50].

The accuracy of RUL predictions depends on several factors, including 
the quality of the data used, algorithm selection, model training, and 
continuous updating of predictions. Especially in systems with real-time data 
flow, dynamically updating predictions significantly improves performance. 
This ensures not only a fixed RUL value but a continuously recalculated 
estimate according to changing operational conditions [45-49].

Key Features Used in RUL Prediction:

• Statistical features such as mean and standard deviation,
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• Time-frequency analyses (Wavelet, FFT),

• Trend analyses in sensor signals,

• Performance degradation rates.

3.5.3. Industrial Applications and Case Studies

Predictive maintenance systems, and particularly one of their most 
advanced components Remaining Useful Life (RUL) estimation are actively 
implemented across various industries today, providing measurable benefits 
to enterprises. In sectors where equipment failures can result in significant 
downtime costs, such as aerospace, energy, automotive, and manufacturing, 
the use of these technologies has become a strategic competitive advantage.

The aerospace industry stands out as one of the pioneers in predictive 
maintenance. Through sensors integrated into aircraft engines, data such 
as temperature, vibration, pressure, and fuel consumption is continuously 
monitored, allowing for precise estimation of engine RUL. For instance, 
under Rolls-Royce’s “TotalCare®” program, jet engines are monitored in 
real time, and RUL calculations based on collected data enable the proactive 
scheduling of maintenance. Consequently, maintenance activities are carried 
out only when necessary, minimizing both operational disruptions and 
maintenance costs [52].

In the wind energy sector, RUL estimation for mechanical and electrical 
components of turbines is of great importance, especially due to the high 
costs of accessing these systems. Critical components such as gearboxes, 
generator bearings, and rotor blades are continuously monitored using 
vibration and temperature sensors. The data collected is analyzed using data-
driven models to predict, for example, how long it will take for a bearing 
to fail. Maintenance teams can thus optimize their planning based on RUL 
predictions, achieving efficiency in both labor and spare parts supply. These 
predictions also allow most repairs to be scheduled outside of the peak 
energy generation season [53].

In railway systems, predictive maintenance is applied particularly to 
braking systems, wheelsets, and rail-carriage connections. Data collected 
from pressure, temperature, and vibration sensors is combined with anomaly 
detection methods to calculate the RUL of critical train components. 
In some high-speed train systems in Europe, trains are directed to data 
collection and analysis stations after each trip, allowing for daily updates 
of RUL estimations. This approach not only enhances transport safety but 
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also ensures that maintenance is performed only when needed, reducing 
operational costs [54].

In the automotive industry, the lifespan of electric vehicle batteries is 
influenced by numerous factors such as driving behavior, charging habits, 
and ambient temperature. By aggregating this data, AI-supported models 
can calculate the RUL of battery cells on both individual and system 
levels. Companies such as Tesla, BMW, and General Motors continuously 
collect telemetry data from their vehicles in cloud systems to perform RUL 
predictions at both individual vehicle and fleet levels. This approach is used 
not only for maintenance planning but also for optimizing resale value and 
warranty periods [55].

In heavy industry and process sectors, predictive maintenance is primarily 
applied to essential equipment such as pumps, compressors, valves, conveyors, 
and heat exchangers. High-frequency vibration data collected from these 
devices is analyzed using AI-based methods to identify abnormal operating 
patterns, which are then used to estimate how close the equipment is to 
failure. These predictions are integrated into operational systems like SAP 
or MES (Manufacturing Execution Systems), enabling automatic updates to 
maintenance schedules and facilitating pre-failure intervention [56].

In conclusion, RUL estimation and fault detection are not merely 
technical applications of predictive maintenance; they have become 
integral components of strategic decision-making processes. The real-world 
industrial benefits achieved through these implementations include high 
system reliability, reduced maintenance costs, increased productivity, and 
enhanced customer satisfaction. The success of these applications is directly 
related to the correct sensor configuration, high-quality data management, 
and the integration of robust algorithms [50-56].
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CHAPTER 4

4. Industry 4.0 and the Future of Predictive 
Maintenance

Industry 4.0, commonly referred to as the digital transformation of 
industry, has brought about a profound paradigm shift in production and 
maintenance processes. Technologies such as smart factories, the Internet 
of Things (IoT), Big Data analytics, Cyber-Physical Systems (CPS), 
and Artificial Intelligence (AI) have made production systems more 
flexible, predictable, and efficient. One of the most direct impacts of this 
transformation has been observed in maintenance strategies. The transition 
from traditional maintenance methods to data-driven, predictive, and self-
learning maintenance systems is one of the most significant contributions of 
Industry 4.0 [6-8].

4.1. Core Concepts of Industry 4.0

Industry 4.0 is not merely a technological transformation; it represents 
a holistic approach based on the systematic integration of digitalization 
into production, maintenance, and service processes. This concept aims to 
make physical production systems smarter, more flexible, and predictable 
by integrating them with information technologies. Predictive maintenance 
stands out as one of the most concrete reflections of digital transformation 
within production processes and is built upon the foundational pillars of 
Industry 4.0. Some of the key concepts that define this transformation are 
detailed below:

Internet of Things (IoT): IoT refers to the technology that enables 
physical devices such as machines, sensors, production equipment, and 
even the products themselves to communicate with each other and with 
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centralized systems over the internet. Also known as Industrial IoT (IIoT), 
this structure ensures the digital traceability of all assets in the production 
environment. Every machine becomes “talkative” through real-time sensor 
data, and these data are actively utilized in processes such as maintenance, 
quality control, and production planning. The low energy consumption, 
wide area coverage, and wireless connectivity offered by IoT devices make 
it possible to widely deploy predictive maintenance applications across the 
field [45].

Big Data: In an Industry 4.0 environment, every production process 
is continuously monitored by thousands of sensors and control units, 
generating data at a petabyte scale. Big Data is not only defined by the 
volume of data but also by its variety (structured/unstructured), velocity, 
veracity, and value. In predictive maintenance systems, Big Data offers 
rich content regarding the past performance of equipment, failure history, 
environmental conditions, and operator habits. The correct analysis of these 
data enables the extraction of meaningful insights into equipment behavior 
[6-12].

Cyber-Physical Systems (CPS): CPS are systems in which physical 
processes (e.g., the rotational movement of a motor or pressure generation 
of a pump) are mirrored and controlled in real time through digital models. 
These systems continuously monitor the state of physical components using 
sensors, analyze the data in digital environments, and automatically transmit 
control decisions back to the physical system. This loop enhances the 
accuracy of fault detection and the responsiveness of maintenance systems. 
CPSs provide a digital model that accurately reflects the behavior of physical 
equipment, laying the foundation for digital twins [12-15].

Cloud Computing: Cloud computing refers to the architecture that 
allows data to be processed on central servers and accessed from anywhere 
in the world. In industrial environments, rather than storing vast volumes 
of sensor data on local systems, data are transferred to cloud platforms 
for analysis. This approach enables faster processing of maintenance data 
and facilitates remote monitoring and decision-making. Additionally, AI 
algorithms and Big Data analytics tools can be easily scaled and updated 
in cloud environments. This enables predictive maintenance applications 
to move beyond local systems, offering multi-point and centralized control 
capabilities [45].

Artificial Intelligence and Machine Learning: Artificial Intelligence 
(AI) refers to the development of algorithms capable of human-like 
decision-making and learning, while Machine Learning (ML) refers to the 
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process by which these systems improve through experience. Within the 
scope of Industry 4.0, AI and ML are widely used in processes such as fault 
detection, RUL prediction, anomaly classification, and optimization in 
predictive maintenance. Algorithms such as LSTM, Random Forest, CNN, 
and Autoencoders deliver high predictive performance, especially on time-
series data. These systems allow maintenance decisions to be made not only 
based on historical data but also on learned behavioral patterns [6-8, 45-51].

4.2. The Relationship Between Industry 4.0 and Predictive 
Maintenance

Industry 4.0 is a transformation paradigm based on the digitalization 
of manufacturing technologies and aims to manage physical systems in an 
integrated manner via virtual networks. One of the most prominent effects 
of this transformation is the evolution observed in maintenance strategies. 
In particular, predictive maintenance practices have diverged radically 
from conventional approaches and have reached a smart, predictive, and 
autonomous structure, enabled by the technological capabilities of Industry 
4.0 [6-8].

Core components of Industry 4.0 such as the Internet of Things (IoT), 
big data analytics, cyber-physical systems, artificial intelligence, cloud 
computing, and digital twin technologies enable predictive maintenance 
processes to be carried out with higher precision, faster response, and lower 
cost. Thanks to these technological advances, maintenance systems now 
operate not only with historical data, but also with real-time, continuously 
updated data streams and self-learning models[11-12].

Real-Time Data Streams and IoT-Based Monitoring: At the heart of 
Industry 4.0 lies IoT technology, which enables the real-time monitoring 
of equipment on production lines. Through embedded sensors, physical 
parameters such as temperature, vibration, pressure, humidity, and current 
are continuously monitored and transmitted to central data platforms via 
wireless networks. This structure enables maintenance decisions to be made 
proactively rather than reactively, allowing the system to respond before 
potential failures occur [45-48].

Machine Learning-Enabled Predictive Models: Predictive maintenance 
has evolved from threshold-based methods toward statistically enhanced 
prediction systems powered by artificial intelligence algorithms. Machine 
learning models learn from large volumes of high-dimensional data collected 
from equipment and are capable of modeling normal and abnormal system 
behavior, thereby predicting fault probabilities at an early stage. Algorithms 
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such as regression analysis, SVM, Random Forest, and LSTM-based time 
series models are widely used in Industry 4.0-supported systems [45-49].

Cyber-Physical Systems and Digital Twins: Another crucial element 
of predictive maintenance is digital twin technology, which represents the 
virtual counterpart of physical equipment. Digital twins are simulation 
models continuously updated with real-time data, enabling maintenance 
engineers to run “what-if” scenarios before a failure occurs. This virtual 
environment not only improves the accuracy of fault predictions but 
also allows complex maintenance decisions to be tested in a safe and 
controlled setting. Additionally, cyber-physical systems maintain constant 
synchronization between physical processes and digital environments, 
optimizing system behavior both horizontally (across systems) and vertically 
(across hierarchical levels) [58].

Autonomous and Decision-Support Maintenance Systems: With 
Industry 4.0, maintenance systems have evolved from being mere information 
providers into autonomous structures capable of decision-making. AI-
supported decision support systems offer maintenance recommendations 
when critical thresholds are exceeded and may even perform certain actions 
automatically. When integrated into production processes, these systems 
ensure that maintenance activities are synchronized with the production 
schedule, minimizing disruptions. In advanced applications, maintenance 
can be performed by robotic tools or unmanned systems, significantly 
reducing the likelihood of human error [51, 58].

Data-Driven Strategic Management and Integration: The data-centric 
approach introduced by Industry 4.0 allows predictive maintenance systems 
to be integrated with production planning, supply chain management, and 
quality control systems. This integration enables maintenance data to be 
used not only by technical teams but also at the managerial level as part 
of strategic decision-making processes. For example, production schedules 
can be revised based on the remaining useful life (RUL) of equipment, and 
inventory management can be optimized accordingly [11, 12].

4.3. Industry 4.0 Technologies Used in Predictive Maintenance

The advanced technologies introduced by Industry 4.0 have 
fundamentally transformed not only manufacturing processes but also 
maintenance strategies. In predictive maintenance applications in particular, 
the processes of data collection, data analysis, decision support, and 
autonomous intervention have become significantly more effective thanks 
to Industry 4.0 technologies. Table 3 provides a summarized overview 
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of the technologies used and their respective roles within predictive 
maintenance systems [8-12].

Tablo 3. Industry 4.0 Technologies and Their Roles in Predictive Maintenance

Technology Role in Predictive Maintenance

IoT (Internet of Things) Collecting and transmitting sensor data

Big Data Analytics Analyzing anomalous behaviors and failure trends

Artificial Intelligence (AI) Generating fault predictions and Remaining Useful Life 
(RUL) estimates

Cloud Computing Managing data storage and access processes

Digital Twins Monitoring equipment behavior through virtual 
simulation

5G Communication 
Technologies Enabling real-time, uninterrupted data transmission

4.3.1. Internet of Things (IoT) in Predictive Maintenance

The Internet of Things (IoT) emerges as one of the most critical 
components in the digitalization process of predictive maintenance 
applications. This concept refers to the continuous data generation by physical 
assets—such as machines, equipment, and components—connected to the 
internet via sensors and network protocols, and the subsequent processing 
of this data through centralized or distributed systems. In industrial settings, 
IoT forms the fundamental infrastructure of predictive maintenance systems 
by transforming production equipment into smart devices [8].

In today’s IoT-supported predictive maintenance systems, a wide range of 
critical parameters such as temperature, vibration, current, voltage, pressure, 
humidity, and speed can be monitored in real time via sensors integrated into 
machines. These sensors transmit the data they collect to central servers or 
cloud environments through wireless communication protocols such as Wi-
Fi, ZigBee, LoRaWAN, and NB-IoT. This uninterrupted data flow enables 
continuous observation of equipment health and allows the detection of 
early signs of failure at an incipient stage [11,12].

IoT technology allows maintenance teams to monitor systems not 
only on-site but also remotely, thus enabling maintenance activities to be 
carried out more flexibly and effectively. This feature provides a significant 
advantage particularly in widely distributed production facilities or 
geographically dispersed equipment (e.g., wind turbines, pipelines, power 
plants). Furthermore, IoT systems offer “real-time prediction” capabilities 
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by supporting maintenance decisions not only with historical data but also 
with live and continuously updated information [45].

Advanced IoT platforms serve as a bridge among devices, control systems, 
and software from different manufacturers by ensuring data standardization. 
For instance, analyzing data from Siemens, ABB, and Rockwell equipment 
on the same production line within a unified platform is made possible by 
the flexible and modular structure of IoT architectures. This data integrity 
enhances the effectiveness of intelligent decision support systems based not 
only on monitoring but also on integrated analysis of multisensor data [14-
17].

The integration of IoT systems with artificial intelligence and cloud 
computing technologies further expands the capacity of predictive 
maintenance. Thanks to edge computing devices, certain analyses can be 
performed near the data generation point, while more complex modeling and 
RUL predictions can be handled in the cloud utilizing greater computational 
power. This hybrid structure enables the system to be configured to support 
both real-time interventions and long-term foresight [8, 9].

However, it is also essential to secure the IoT infrastructure against threats 
such as data breaches, integrity violations, and cyberattacks. Accordingly, 
industrial IoT (IIoT) systems incorporate cybersecurity measures such as 
data encryption, device authentication, access control, and secure network 
protocols. Moreover, system architectures are designed in compliance with 
standards such as ISO/IEC 30141 to ensure secure operating environments 
both at the device and network levels [58, 59].

4.3.2. Big Data Analytics in Predictive Maintenance

With the advent of Industry 4.0, the volume, variety, and velocity of 
data generated in production environments have surpassed the capabilities 
of traditional analytical methods. Big Data Analytics encompasses advanced 
information technologies that enable the processing of structured, semi-
structured, and unstructured data sets, the extraction of meaningful patterns 
from these data, and the support of decision-making processes [59].

In predictive maintenance systems, big data analytics facilitates the rapid 
collection, cleansing, classification, and analysis of continuously streaming 
data obtained from hundreds of thousands of sensor nodes. As a result of 
such analyses, degradation patterns of a bearing, abnormal temperature 
trends of a motor, or anomalies in system energy consumption can be 
detected. Time series analytics, correlation discovery, feature engineering, 
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and clustering algorithms are among the most frequently used techniques 
for processing big data in predictive maintenance applications [50].

Big data approaches also contribute to the improvement of Remaining 
Useful Life (RUL) prediction accuracy by learning from historical data and 
ensuring the continuous update of maintenance strategies. Open-source 
data processing frameworks such as Apache Hadoop, Spark, and Kafka 
significantly enhance the real-time applicability of these systems [55].

4.3.3. Artificial Intelligence and Machine Learning (AI & ML) in 
Predictive Maintenance

Artificial Intelligence (AI) and Machine Learning (ML) play a decisive 
role in transforming predictive maintenance systems from static monitoring 
tools into dynamic and self-learning decision support systems. These 
technologies learn equipment behavior, recognize patterns, and can predict 
future failure probabilities [44, 45].

Supervised learning algorithms (e.g., Support Vector Machines, Decision 
Trees, Random Forests) can identify failures in new data by learning from 
historical instances of normal and abnormal conditions. Unsupervised 
learning algorithms (e.g., K-means, DBSCAN, Autoencoders) are effective 
at detecting anomalies in unlabeled datasets. Especially in large-scale data, 
these algorithms can identify unknown failure types at early stages [36].

Deep learning methods are capable of automatically processing complex, 
high-dimensional data. Convolutional Neural Networks (CNNs) analyze 
spatial patterns in sensor signals, while Long Short-Term Memory (LSTM) 
networks provide historical learning in time-dependent structures. As a result, 
maintenance systems can base decisions not only on current conditions but 
also on high-accuracy forecasts of future states [36, 56].

4.3.4. Cloud Computing in Predictive Maintenance

Cloud computing technologies enable predictive maintenance systems 
to manage processes such as data storage, processing, analysis, and model 
management in a flexible and cost-effective manner. In large-scale production 
facilities, storing and analyzing data from IoT devices on local servers 
would require substantial infrastructure investments. The cloud architecture 
distributes this burden and allows it to be managed through a service-based 
approach [38, 45].

Machine learning models and prediction algorithms used in maintenance 
systems can be trained and run in the cloud. This allows maintenance 
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engineers to access data, visualize analytics, and make timely decisions 
regardless of geographic location [50].

Platforms such as Microsoft Azure, Amazon Web Services (AWS), and 
Google Cloud offer dedicated solutions for predictive maintenance (e.g., 
Azure IoT Hub, AWS Predictive Maintenance Toolkit), accelerating the 
implementation of such systems. Furthermore, features like automated 
backups, secure access protocols, and high scalability in cloud environments 
ensure system continuity [45].

4.3.5. Digital Twins in Predictive Maintenance

Digital twin technology refers to the one-to-one digital representation 
of a physical asset. These digital models are continuously updated with real-
time data, simulating the behavior of the physical system and providing 
highly accurate predictions for predictive maintenance systems [11].

Thanks to digital twins:

• The health status of physical equipment is monitored in real time,

• Failure scenarios can be tested in a simulation environment,

• The outcomes of various maintenance strategies can be analyzed in 
advance.

For example, the digital twin of a turbine engine can predict the 
remaining life based on real-time vibration, temperature, and pressure data, 
and recommend the optimal timing for maintenance interventions. Digital 
twins are also used to evaluate post-maintenance performance and improve 
maintenance policies [53].

Advanced digital twin systems can model entire production lines and 
simulate interactions between equipment. This enables not only individual 
equipment-level predictions but also system-wide analyses of fault 
propagation and maintenance prioritization [11].

4.3.6. 5G Communication Technologies in Predictive Maintenance

5G technology meets critical requirements such as high bandwidth, 
ultra-low latency, and massive device connectivity, enabling predictive 
maintenance systems to operate in real time. With 5G, thousands of field-
deployed sensors and IoT devices can transmit data with millisecond-level 
response times [60].

For critical infrastructures requiring rapid response such as power 
plants, transportation systems, and petrochemical refineries 5G-supported 
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predictive maintenance dramatically reduces the time required for operational 
interventions. Additionally, 5G accelerates the development of autonomous 
maintenance systems. Maintenance robots and mobile inspection systems 
can perform real-time fault detection and intervention via 5G networks [60].

Moreover, the widespread adoption of edge computing technology with 
5G enables data to be processed near its source, reducing dependency on 
cloud systems. This enhances system security, ensures data privacy, and 
enables instant decision making [60].

4.4. Industry 5.0 and the Future of Predictive Maintenance

Before Industry 4.0 has fully matured, a new industrial vision—Industry 
5.0—has begun to take shape. Industry 5.0 aims to build more personalized, 
environmentally friendly, and resilient production systems by balancing 
human-centered manufacturing with artificial intelligence and automation 
[12]. Within this transformation, the future of predictive maintenance is 
also expected to undergo significant changes:

Human + Machine Collaboration: A closer integration between 
operators and machines will be established. Maintenance decisions will be 
supported not only by automation but also by the experience and insights 
of human operators.

Higher Level of Customization: Maintenance strategies will be tailored 
for each specific piece of equipment and production line, taking into account 
operational context and individual wear patterns.

Autonomous Maintenance through Artificial Intelligence: AI 
systems will not only recommend maintenance actions but will increasingly 
be empowered to autonomously execute them, reducing human intervention 
where appropriate.

Sustainable Maintenance Policies: Maintenance methods will be 
developed with a focus on energy efficiency and reducing the carbon 
footprint of industrial operations [18, 34].

The vision of Industry 4.0 and its evolution into Industry 5.0 elevates 
the concept of predictive maintenance to a much more advanced level. With 
the ongoing advancements in data collection, analytics, and automation 
technologies, maintenance systems are no longer just mechanisms to preserve 
equipment health—they are becoming core strategic components that 
provide businesses with a competitive advantage. In this future landscape, 
data governance, machine learning, and AI integration will become 
indispensable pillars of next-generation maintenance systems [12, 18, 34].
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CHAPTER 5

5. Applications of Artificial Intelligence and 
Machine Learning in Predictive Maintenance

Artificial intelligence (AI) and machine learning (ML) technologies have 
created a paradigmatic transformation in predictive maintenance applications. 
These technologies can learn from data collected from equipment, predict 
failure trends, automate decision-making processes, and dynamically plan 
maintenance activities. This chapter elaborates on the fundamental concepts, 
methods used, application examples, and the impact of these technologies 
on predictive maintenance [36, 44-48].

5.1. Fundamental Concepts of Artificial Intelligence and Machine 
Learning

Artificial intelligence is an interdisciplinary field that enables machines 
to mimic human-like reasoning, inference, and decision-making abilities. 
Within this domain, machine learning stands out as a subfield of AI that 
allows systems to make decisions based on learned patterns from data, 
without being explicitly programmed [55].

In predictive maintenance systems, the two most common machine 
learning approaches are:

Supervised Learning: The model is trained on labeled datasets where 
input features and corresponding outputs are known. Once trained, the 
system can make future predictions in similar scenarios. For example, a 
model trained on historical failure data can analyze new sensor inputs to 
forecast potential failures.
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Unsupervised Learning: This approach deals with unlabeled data, 
aiming to uncover intrinsic structures and patterns within the dataset. It is 
useful for identifying anomalies and discovering previously unknown types 
of faults.

5.2. AI Techniques Used in Predictive Maintenance

5.2.1. Supervised Learning Techniques

Support Vector Machines (SVM): Effective for small datasets, SVM 
can be applied to both classification and regression problems. It is frequently 
used for fault classification and remaining useful life (RUL) prediction.

Decision Trees & Random Forests: These models are highly 
interpretable and widely used in engineering applications. Random Forest, 
an ensemble of decision trees, enhances classification accuracy.

Artificial Neural Networks (ANN): Inspired by the human brain, 
ANNs are capable of handling complex, high-dimensional data and exhibit 
robust performance.

K-Nearest Neighbors (KNN): Due to its simplicity, KNN is effective 
for small to medium-sized datasets, particularly in classification of similar 
instances [36, 44, 45, 55]

5.2.2. Unsupervised Learning Techniques

Clustering Algorithms (K-Means, DBSCAN): These techniques 
group data based on similarity, facilitating the identification of anomalous 
behaviors and undiscovered failure modes.

Dimensionality Reduction Techniques (PCA, t-SNE): These methods 
reduce high-dimensional datasets into more manageable forms without 
losing critical information, aiding both visualization and modeling [55, 56].

5.2.3. Deep Learning Techniques

Long Short-Term Memory (LSTM): Ideal for time series data, LSTM 
networks retain long-term dependencies and are highly effective for RUL 
prediction.

Convolutional Neural Networks (CNN): Originally developed for 
image recognition, CNNs are also used for automated feature extraction 
from vibration and acoustic signals [61].



Mehmet Ali Guvenc | 61

5.3. Advantages of AI and ML in Predictive Maintenance

5.3.1. Early Fault Detection

AI algorithms learn from sensor data to identify abnormal equipment 
behavior at an early stage. Deep learning models, in particular, can detect 
subtle anomalies that traditional threshold-based methods might miss. For 
instance, LSTM-based models can identify early-stage bearing damage by 
analyzing minor deviations in time series data [44].

5.3.2. Remaining Useful Life (RUL) Prediction

Machine learning models trained on historical performance data can 
accurately estimate a component’s or system’s remaining healthy operational 
time. This allows maintenance to be scheduled at an optimal point—avoiding 
premature servicing or catastrophic failure. Regression algorithms and deep 
learning techniques are particularly effective in generating high-accuracy 
RUL predictions [55].

5.3.3. Autonomous Intervention Capabilities

AI-based systems not only predict failures but can also initiate interventions 
under certain conditions. For example, if a motor’s vibration exceeds critical 
thresholds, the system can automatically alert the maintenance team or safely 
shut down the machine. This reduces human error, shortens response times, 
and enhances operational safety. Such autonomous capabilities are expected 
to evolve further with the emergence of Industry 5.0 [1-8].

5.3.4. Operational Efficiency Enhancement

AI-enabled predictive maintenance ensures timely servicing, minimizing 
unnecessary maintenance actions and reducing associated costs. Additionally, 
avoiding unplanned production interruptions improves overall capacity 
utilization. In complex manufacturing systems, AI-supported maintenance 
planning enables optimal use of resources such as personnel, spare parts, and 
time [1-12]. A summary of the benefits of artificial intelligence applications 
in predictive maintenance is presented in Table 4.
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Table 4. Advantages of Artificial Intelligence Applications in Predictive Maintenance

Advantage Description

Early Fault Detection
Detects subtle anomalies that are undetectable by 
traditional methods.

RUL Prediction
Enables more accurate estimations of equipment’s 
remaining useful life.

Autonomous Intervention 
Capability

Can trigger maintenance operations without human 
intervention under certain conditions.

Increased Operational 
Efficiency

Optimizes production continuity and resource 
utilization.

Artificial intelligence and machine learning techniques have made 
predictive maintenance applications more predictable, flexible, and 
intelligent. With the aid of these technologies, fault prediction and 
maintenance planning are now carried out based not on past experience, but 
on real-time data analytics and dynamic learning capabilities. In the future, 
with the further advancement of deep learning and autonomous systems, 
predictive maintenance applications are expected to operate with higher 
accuracy, lower costs, and faster response times [44-48].

5.4. Challenges and Limitations of Artificial Intelligence and 
Machine Learning in Predictive Maintenance

Although artificial intelligence (AI) and machine learning (ML) 
techniques provide substantial benefits to predictive maintenance 
applications, their implementation also presents a number of technical and 
operational challenges. Understanding these challenges not only ensures the 
effective design of current systems but also contributes to identifying areas 
for improvement in future research and applications [62].

The quality of data used in predictive maintenance directly affects model 
performance. Common issues include missing values, noise, incorrect 
measurements, and temporal misalignment in sensor data. Especially, faulty 
or incomplete data can cause ML models to make inaccurate predictions. 
Addressing this issue requires the effective application of data cleansing and 
noise filtering techniques [62].

AI models require a sufficient amount of training data to operate 
successfully. However, in practice, obtaining balanced datasets especially 
those involving rare events such as equipment failures—can be difficult. 
In many cases, since equipment operates for long periods without failure, 
failure-related data is limited. This problem is addressed using data 
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augmentation, synthetic data generation (e.g., GANs), and transfer learning 
techniques [10].

Machine learning models may become overly fitted to training data, 
resulting in poor performance on new, real-world data—especially in the 
case of small datasets [18, 34].

To mitigate overfitting, the following techniques are commonly applied:

• Cross-validation

• Regularization

• Model simplification

A model trained on one dataset may perform well but fail when applied 
to different types of machines or under varying operating conditions. This 
issue is known as the generalization problem. For instance, a fault prediction 
model trained on one type of motor may not yield accurate results when 
applied to another. Thus, the development of universal feature extraction 
methods to enhance model generalizability in predictive maintenance is 
necessary [10, 18, 34].

Deep learning-based methods, in particular, require significant 
computational power (e.g., GPUs, TPUs) and memory when working 
with large datasets. This increases setup and operational costs, potentially 
limiting their applicability for small- and medium-sized enterprises. Cloud-
based solutions and model compression techniques are being developed to 
address this issue [62].

In cloud-based systems, data transmission and storage can be exposed 
to security risks. Industrial espionage and cyberattacks increase the need to 
protect critical production data. The implementation of data encryption, 
access control mechanisms, and secure communication protocols is essential 
to mitigate such risks [50].

Despite their high predictive capabilities, deep learning models often 
operate as “black boxes,” meaning their internal workings are not easily 
interpretable by users. This “black-box problem” can reduce the transparency 
of maintenance decisions and the trust in such systems. Explainable Artificial 
Intelligence (XAI) approaches aim to address this issue by making model 
decisions more understandable for human operators [51].

Despite the advantages offered by AI- and machine learning-based 
predictive maintenance systems, various technical and operational challenges 
arise during their implementation. These challenges can directly impact the 
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accuracy, reliability, and sustainability of such systems. Table 5 summarizes 
the main challenges encountered in predictive maintenance applications 
specific to artificial intelligence and machine learning, along with their 
respective descriptions [51].

Table 5. Key Challenges in AI-Based Predictive Maintenance

Challenge Description

Data Quality Issues
Incomplete, erroneous, or noisy data reduces 
model accuracy

Insufficient Training Data
Limited data availability, especially for faulty 
conditions

Model Overfitting
Excessive adaptation to training data causing 
poor performance on real-world data

Generalization Problem
Inability of models to maintain performance 
across different systems

High Computational Requirements
Deep learning models demand substantial 
hardware resources

Security and Data Privacy Risks
Risk of data leakage and exposure to cyber 
threats

Lack of Interpretability
Difficulty for users to understand model 
decision-making processes

A comprehensive understanding of the challenges and limitations 
associated with the application of artificial intelligence (AI) and machine 
learning (ML) techniques is essential for their effective deployment in 
predictive maintenance systems. These obstacles not only affect the technical 
performance of the models but also influence the reliability, scalability, and 
long-term sustainability of the overall maintenance strategy. Factors such 
as data quality issues, insufficient training data, generalization difficulties, 
and explainability concerns must be systematically addressed in order to 
realize the full potential of AI-driven maintenance solutions [50, 51, 62]. A 
visual summary of the major challenges encountered in AI- and ML-based 
predictive maintenance applications is presented in Figure 4.
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Figure 4. Barriers to Effective AI Implementation in Predictive Maintenance

These challenges not only highlight the current limitations of artificial 
intelligence applications in predictive maintenance, but also point to 
promising opportunities for future advancements in the field. They serve 
as a foundation for the emergence of new research directions aimed at 
overcoming existing barriers and enhancing system performance. For 
AI-based maintenance systems to reach a mature and robust level of 
implementation, significant improvements are required in several key 
areas, including data quality, cybersecurity, interpretability of models, and 
the generalizability of algorithms across diverse operational environments. 
Addressing these issues will be critical to ensuring that AI-driven predictive 
maintenance systems can be deployed reliably and effectively across a wide 
range of industrial sectors [62].
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CHAPTER 6

6. The Role of Iot and Cloud Computing 
Infrastructure in Predictive Maintenance

With the advent of Industry 4.0, predictive maintenance systems have 
evolved into data-driven architectures. Two fundamental technologies have 
played a pivotal role in this transformation: the Internet of Things (IoT) and 
Cloud Computing [55].

Thanks to IoT devices, continuous data can be collected from field 
equipment, while cloud-based infrastructures enable the storage, processing, 
and analysis of these data to inform maintenance decisions. This section 
examines the roles, functions, and benefits of IoT and cloud computing 
technologies within predictive maintenance systems [59].

The Role of IoT Technology in Predictive Maintenance

IoT technology enables physical objects (such as machines, motors, and 
pumps) to be connected to the internet, allowing them to generate and share 
data and to be remotely monitored. In predictive maintenance systems, IoT 
sensors integrated into equipment continuously measure critical parameters 
such as temperature, vibration, pressure, and current. This enables:

• Real-time monitoring of equipment performance,

• Rapid detection of unexpected anomalies,

• Early identification of failure trends,

• Optimization of intervention decisions based on data.
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The continuous connectivity and data flow facilitated by IoT have 
transformed predictive maintenance systems from reactive structures into 
proactive and anticipatory frameworks [55].

Moreover, modern IoT solutions support data integrity and 
interoperability among equipment from different brands and models, 
significantly enhancing the effectiveness of predictive maintenance in multi-
vendor industrial facilities [45].

Cloud Computing and Data Management

The vast volume of data generated by IoT devices has exceeded the 
capacity of local servers. Consequently, predictive maintenance systems 
have increasingly adopted cloud computing platforms for data storage and 
processing.

Cloud computing provides:

• Scalable data storage capabilities,

• High computational power for big data analytics,

• Data backup and disaster recovery solutions,

• Global accessibility, enabling remote management of maintenance 
operations.

Leading platforms such as Amazon Web Services (AWS), Microsoft 
Azure, and Google Cloud have developed dedicated solutions for predictive 
maintenance. For instance, AWS IoT Analytics and Azure Machine 
Learning are widely used to analyze sensor data and build predictive models. 
Cloud-based data management also facilitates the implementation of AI-
powered analytics, thereby enhancing the learning and adaptive capabilities 
of predictive maintenance systems [44, 45, 55].

Advantages and Potential Risks

• IoT and cloud-based predictive maintenance systems offer numerous 
advantages:

• Real-Time Monitoring: Instant visibility into the health status of 
equipment,

• Scalability: Easy expansion of the system in line with business growth 
and operational needs,

• Cost Efficiency: Reduced costs associated with local server installati-
ons and improved resource utilization,
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• Remote Access and Management: Maintenance teams can manage 
systems without being physically present.

However, these systems are not without risks:

• Data Security: Data stored in cloud environments must be protected 
against cyberattacks,

• Connectivity Dependence: Interruptions in internet or network con-
nectivity can directly impact system performance,

• Privacy Concerns: In critical infrastructure, data privacy is a signifi-
cant concern.

To mitigate these risks, robust security protocols, encryption techniques, 
and network management solutions must be implemented [44, 45, 55, 59].

The integration of IoT and cloud computing technologies has made 
predictive maintenance systems smarter, more efficient, and more 
accessible. The continuous collection of data, its analysis through powerful 
infrastructures, and the implementation of proactive decision-support 
mechanisms have become foundational elements of modern maintenance 
practices.

In the coming years, as IoT devices become more intelligent and cloud 
services offer even more secure and powerful infrastructures, the effectiveness 
and widespread adoption of predictive maintenance systems are expected to 
increase substantially. In Table 5 is given that functional structures of IoT 
and cloud systems [45].

Table 5. Functional Structures of IoT and Cloud Systems

Stage Description Technologies Used

Data Collection Continuous acquisition of data 
from equipment

IoT Sensors (Temperature, 
Vibration, etc.)

Data Transmission Wireless transfer of collected 
data

Wi-Fi, LoRaWAN, 5G

Data Storage & 
Processing

Storage and processing of data Cloud Servers, Big Data 
Platforms

Data Analysis & 
Modeling

Failure prediction and 
Remaining Useful Life (RUL) 
estimation

AI/ML Models (e.g., SVM, 
LSTM)

Decision Support & 
Intervention

Maintenance planning or 
autonomous actions

Decision Support Systems 
(DSS), IoT Actuators
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CHAPTER 7

7. Data Analytics and Training of Machine 
Learning Models in Predictive Maintenance

The success of machine learning-based predictive maintenance applications 
depends not only on the selection of the appropriate algorithm but also on 
the meticulous execution of all stages of the data analytics process [45]. 
This section provides a detailed examination of the fundamental procedures 
carried out after data collection, the steps involved in developing machine 
learning models, and the techniques used for performance evaluation.

7.1. Data Preprocessing Process

The first stage of the data analytics process involves transforming the 
collected raw data into a suitable format for analysis and modeling. In IoT-
based predictive maintenance applications, raw data is often incomplete, 
erroneous, or noisy. Therefore, the data preprocessing phase is a critical step 
that directly influences the model’s performance [38, 39].

Table 6. Key Stages and Techniques in Data Preprocessing for Predictive Maintenance

Step Description Applied Methods

Missing Data 
Handling

Completion of missing data 
points

Mean imputation, k-NN 
imputation, regression 
imputation

Noise Filtering
Elimination of measurement 
errors and random deviations Median filter, Low-pass filter

Normalization
Ensuring scale consistency 
among variables

Min-Max scaling, Z-score 
normalization

Outlier Removal
Exclusion of exceptional and 
anomalous values

Z-score thresholding, Isolation 
Forest
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Effective data preprocessing is an essential prerequisite for the 
development of robust and reliable machine learning models in predictive 
maintenance. As sensor data collected from industrial equipment often 
contains noise, missing values, or outliers, it is necessary to apply a series of 
cleaning and normalization steps to ensure data quality. Table 6 outlines the 
key preprocessing stages, including missing data imputation, noise filtering, 
normalization, and outlier removal, along with the commonly used methods 
for each step. Proper implementation of these steps significantly enhances 
model accuracy and generalizability [31-34].

7.2. Feature Extraction and Selection

Raw data is not directly suitable for training machine learning models. 
It is necessary to extract meaningful information from the data and identify 
features that will enable the model to function efficiently.

Feature Extraction Methods:

Statistical Features: Mean, variance, median, maximum, and minimum 
values.

Time-Frequency Features: Extraction of frequency components using 
Fourier Transform (FFT) and Wavelet Transform.

Signal Processing Features: Descriptive measures such as Root Mean 
Square (RMS), kurtosis, and skewness.

Feature Selection Methods:

• Correlation Matrix Analysis

• Information Gain

• Recursive Feature Elimination (RFE)

• Principal Component Analysis (PCA)

Table 7 outlines the critical steps involved in preparing relevant variables 
for machine learning models used in predictive maintenance. Feature 
extraction involves transforming raw sensor data into meaningful variables, 
while feature selection aims to eliminate redundant or non-informative 
features to enhance model performance [44, 45].
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Table 7. Feature Extraction and Selection Steps in Predictive Maintenance 
Applications

Stage Description Applied Methods

Feature 
Extraction

Generation of meaningful 
variables from raw data

Statistical analysis, FFT, Wavelet 
Transform

Feature 
Selection

Elimination of low-impact 
variables on model performance PCA, RFE, Correlation Analysis

7.3. Model Selection and Configuration

The choice of model in predictive maintenance applications should align 
with the nature of the problem at hand:

For Regression Problems (e.g., Remaining Useful Life (RUL) 
prediction):

• Linear Regression

• Support Vector Regression (SVR)

• Random Forest Regression

• Time series models such as Long Short-Term Memory (LSTM)

For Classification Problems (e.g., faulty vs. non-faulty classification):

• Support Vector Machine (SVM)

• Decision Trees

• Random Forest

• Gradient Boosting Machines (e.g., XGBoost, LightGBM)

During model configuration, several technical adjustments should be 
considered:

• Hyperparameter optimization using methods such as Grid Search and 
Random Search

• Regularization techniques such as L1 and L2 norms

• Activation functions, including ReLU, tanh, and sigmoid

This table summarizes the commonly used machine learning models in 
predictive maintenance applications, classified by problem type (regression 
or classification), along with suggested configuration strategies to optimize 
their performance [54-62].
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Table 8. Recommended Machine Learning Models and Configuration Strategies in 
Predictive Maintenance Applications

Problem Type Recommended Models Configuration Strategies

Regression SVR, Random Forest 
Regression, LSTM

Hyperparameter optimization, 
use of dropout

Classification SVM, Random Forest, 
XGBoost

Class weight adjustment, 
boosting iterations

7.4. Model Performance Evaluation

Model training refers to the process of optimizing the parameters of a 
machine learning model based on a predefined training dataset. However, 
in addition to proper training, an equally critical aspect is proper validation, 
which ensures that the model can generalize well to unseen data.

Validation Techniques:

• Hold-Out Validation: The dataset is divided into two subsets, with 
approximately 70–80% used for training and the remaining 20–30% for 
testing.

• K-Fold Cross Validation: The dataset is partitioned into k equally 
sized subsets. Each subset is used once as the test set, while the remaining 
k–1 subsets are used for training. This process is repeated k times.

• Leave-One-Out Validation (LOO): A special case of k-fold where k 
equals the total number of data points. Each data point is used once as the 
test set. This method is particularly useful for small datasets.

During training:

• Hyperparameters such as learning rate and batch size should be 
carefully selected.

• Early stopping techniques should be applied to prevent overfitting by 
monitoring validation loss and halting training when performance on the 
validation set begins to deteriorate.

7.5. Model Performance Evaluation

It is not possible to establish a reliable predictive maintenance system 
without accurately assessing the performance of the underlying model. 
Proper performance evaluation ensures that the model’s predictions are both 
accurate and generalizable to real-world applications.
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Performance Metrics for Regression Tasks:

• Mean Absolute Error (MAE): Measures the average magnitude of 
the errors between predicted and actual values, regardless of direction.

• Root Mean Squared Error (RMSE): Calculates the square root 
of the average of squared differences between predicted and actual values, 
giving higher weight to larger errors.

• R² Score (Coefficient of Determination): Represents the proportion 
of variance in the dependent variable that is predictable from the independent 
variables.

Performance Metrics for Classification Tasks:

• Accuracy: The proportion of correctly predicted instances among the 
total number of instances.

• Precision: The ratio of correctly predicted positive observations to the 
total predicted positives.

• Recall (Sensitivity): The ratio of correctly predicted positive 
observations to all actual positives.

• F1-Score: The harmonic mean of precision and recall, providing a 
balanced measure when classes are imbalanced.

The performance metrics relevant to both regression and classification-
based predictive maintenance models are summarized in Table 9. This table 
summarizes the primary performance metrics employed for evaluating 
machine learning models in predictive maintenance tasks. The selection of 
appropriate metrics depends on whether the problem involves regression 
(e.g., Remaining Useful Life prediction) or classification (e.g., fault 
detection) [45].

Table 9. Performance Metrics Used in Predictive Maintenance Models

Problem Type Metrics Explanation

Regression MAE, RMSE, R² Measures error magnitude and the 
proportion of variance explained by the 
model.

Classification Accuracy, Precision, 
Recall, F1

Evaluates classification correctness and the 
balance between sensitivity and specificity.

The success of machine learning-based predictive maintenance systems 
depends on several critical factors: high-quality data processing, effective 
feature extraction, appropriate model selection, accurate training, and 
rigorous performance evaluation using the right metrics.
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Each of these stages directly influences the overall accuracy and reliability 
of the system. Therefore, data analytics and model development processes 
must be approached with a strategic perspective to ensure robust and 
trustworthy predictive maintenance implementations [26, 27].
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CHAPTER 8

8. Digital Twins, Cyber-Physical Systems, 
and the Industry 5.0 Vision in Predictive 

Maintenance

The emerging production paradigm following Industry 4.0 has led to 
a significant evolution in maintenance technologies. Modern predictive 
maintenance systems are no longer limited to historical data analysis; instead, 
they increasingly rely on real-time simulations, forecasts, and autonomous 
decisions made possible through digital twins and cyber-physical systems. 
This section explores the technical foundations of digital twins, cyber-physical 
integration, and real-time simulation capabilities, while also evaluating the 
future trajectory of predictive maintenance under the industry 5.0 vision.

8.1. Digital Twin Technology

What is a Digital Twin?

A digital twin is a dynamic and continuously updated virtual model 
of a physical system, component, or process. This model is fed with real-
time data and replicates the behavior of the physical asset within a digital 
environment [11].

The core components of a digital twin include:

1. Physical Entity: The machine, motor, turbine, or production line 
component being monitored or modeled.

2. Digital Replica: The virtual model of the physical entity hosted on a 
simulation and analysis platform.
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3. Data Communication Layer: A network infrastructure that ensures a 
continuous flow of sensor data via IoT technologies.

4. Analytics and Prediction Module: A predictive engine powered by 
machine learning algorithms and big data analytics [11, 61].

Role of Digital Twins in Predictive Maintenance

Digital twins enable continuous monitoring of each component within 
a physical system and allow simulation of potential failure scenarios before 
they occur. The primary benefits of digital twins in predictive maintenance 
include:

• Testing of Failure Scenarios: For instance, a digital twin can simulate 
how operating a machine at a certain temperature could influence its risk 
of failure. This allows preventive actions to be identified before an actual 
malfunction occurs.

• Remaining Useful Life (RUL) Estimation: By learning from historical 
data, the digital twin can evaluate the wear rate of a component and predict 
how much longer it will remain operational.

• Optimized Maintenance Planning: Beyond identifying the right time 
for maintenance, digital twins can simulate various maintenance strategies 
and help determine the most cost- and time-effective approach [11, 61].

Technical Application Example: Rolls-Royce and Aircraft Engines

Rolls-Royce has successfully implemented digital twin technology for its 
aircraft engines. Data collected from temperature, vibration, and pressure 
sensors installed on the engines is transmitted to a digital twin, enabling 
real-time performance monitoring. Failure scenarios are simulated, and 
maintenance decisions are made based on the outcomes of these virtual 
analyses [61].

8.2. Cyber-Physical Systems (CPS)

Structure of Cyber-Physical Systems

Cyber-Physical Systems (CPS) are integrated frameworks that enable 
real-time interaction between physical components (such as motors and 
machines) and digital systems. These systems combine data acquisition, 
analysis, decision-making, and autonomous control within a unified 
architecture [57].
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Key Components:

1. Physical Layer: Includes sensors, actuators, and data acquisition 
devices.

2. Communication Layer: Encompasses IoT networks, 5G connectivity, 
and data transmission protocols.

3. Control Layer: Comprises microcontrollers, programmable logic 
controllers (PLCs), and embedded systems.

4. Software Layer: Involves analytics software, digital twin platforms, 
and simulation environments.

Role of CPS in Predictive Maintenance

Autonomous Decision-Making:

CPS can analyze sensor data and autonomously trigger maintenance 
actions under predefined conditions. For instance, if the engine temperature 
exceeds a certain threshold, the cooling system can be activated automatically.

Real-Time Feedback:

CPS continuously monitors the current state of machinery and provides 
instant notifications to users or operators, enhancing situational awareness 
and responsiveness.

Event-Driven Maintenance:

With CPS, maintenance recommendations can be generated only when 
specific events (such as abnormal vibrations) are detected, enabling more 
targeted and efficient intervention strategies.

Technical Application Example: Tesla and Autonomous Vehicles

Tesla vehicles utilize CPS infrastructure to monitor the real-time status 
of every onboard component and issue automatic maintenance alerts when 
necessary. Data from hundreds of sensors embedded throughout the 
vehicle is analyzed on a cloud-based platform, and actionable insights are 
communicated directly to the user [57].

8.3. The Vision of Industry 5.0

Industry 5.0 represents the next evolution of industrial transformation, 
where the collaboration between humans and machines is significantly 
enhanced, and sustainability becomes a fundamental pillar of production 
systems. Unlike Industry 4.0, which emphasized automation and data 
exchange, Industry 5.0 reintroduces the human element into manufacturing 
processes and aims to create more resilient, personalized, and environmentally 



80 | Predictive Maintenance and Digital Transformation: AI, Machine Learning, IoT, and Digital...

responsible production environments. This emerging paradigm integrates 
advanced digital technologies such as Digital Twins and Cyber-Physical 
Systems (CPS) within a human-centric and eco-conscious framework, 
fostering an intelligent synergy between operators, machines, and digital 
infrastructures [63].

Impacts of Industry 5.0 on Predictive Maintenance Systems

• Personalized Maintenance:

Maintenance systems in Industry 5.0 are designed to adapt to the 
individual working habits and patterns of human operators. By leveraging 
behavioral analytics, these systems can provide customized maintenance 
recommendations that align with operator preferences and real-time 
operational contexts.

• Environmental Impact Assessment:

Predictive maintenance strategies are no longer limited to maximizing 
equipment uptime; they now also aim to minimize energy consumption and 
reduce carbon emissions. Through continuous monitoring and optimization 
algorithms, Industry 5.0 systems ensure that maintenance actions contribute 
to broader sustainability goals.

• Integration with the Workforce:

Predictive maintenance frameworks in this context incorporate intuitive 
user interfaces that facilitate direct operator feedback. This feedback loop is 
used to dynamically refine and retrain predictive models, allowing human 
insights to complement machine intelligence and improve decision-making 
accuracy.

Application Example: Industry 5.0 Factories

A leading example of Industry 5.0 implementation can be seen in BMW’s 
next-generation manufacturing lines, where hybrid predictive maintenance 
systems enable seamless collaboration between industrial robots and human 
operators. These systems do not rely solely on machine-generated data; 
instead, they also analyze experiential knowledge obtained from workers 
involved in maintenance processes. This approach enhances maintenance 
precision, reduces unnecessary interventions, and promotes operational 
harmony between human and artificial agents.

In essence, the vision of Industry 5.0 signals a future where predictive 
maintenance systems become smarter, more adaptive, and more sustainable—
anchored in both technological sophistication and human-centric design [1, 
7, 63].
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CHAPTER 9

9. Redictive Maintenance Application Examples 
of Artificial Intelligence and Machine Learning 

Models

The effectiveness of predictive maintenance systems is not solely 
determined by the technologies employed. Their success is ultimately 
validated through real-world applicability and performance. This section 
elaborates on predictive maintenance implementations across various 
sectors, detailing the AI models used and the outcomes achieved.

9.1. AI-Based Predictive Maintenance in the Aviation Industry

This study aims to identify the most suitable machine learning (ML) 
technique for predictive maintenance (PdM) processes in aircraft engines. 
The focus is placed on detecting engine conditions prior to failure and 
estimating the Remaining Useful Life (RUL) of the components [64].

Application: Determining the Method of Predictive Maintenance for 
Aircraft Engines Using Machine Learning

Data Source:

The dataset used in this study originates from NASA’s Prognostics Data 
Repository and consists of run-to-failure sensor data from degraded turbofan 
engines. Measurements from 21 different sensors were collected in a time-
series format for each engine sample and utilized for model training [64].

AI Models Implemented:

Three different machine learning algorithms were employed:
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• LSTM (Long Short-Term Memory): Suitable for time-series analysis 
based on deep learning architectures.

• SVM (Support Vector Machine): A supervised learning algorithm 
used for classification and regression.

• Random Forest (RF): An ensemble learning method based on 
decision trees.

Analysis Process:

Two ML techniques were evaluated:

1. Classification: Predicts whether an engine belongs to a specific fault 
class based on input data.

2. Regression: Estimates the continuous value of the engine’s RUL.

Each model was trained and tested using Python on a system with an AMD 
Ryzen 5 processor, with an average computation time of approximately 20 
minutes. The models were run in both classification and regression modes 
and their performances were assessed using accuracy, MAE, R², and RMSE 
metrics.

Achieved Benefits:

In classification tasks, the LSTM model demonstrated the highest 
performance:

• Accuracy: 98.7%

• Precision: 92.3%

• Recall: 96%

For regression tasks, the Random Forest model exhibited the lowest 
error rates:

• MAE: 0.76

• RMSE: 19.99

• R²: 0.76

In conclusion, the classification approach was found to be more 
advantageous in terms of both accuracy and computational efficiency. 
Specifically, the LSTM model was identified as the most effective method 
for predictive maintenance in aircraft engines. This approach enables early 
identification of maintenance needs, leading to cost reduction and enhanced 
safety [64].
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9.2. Predictive Maintenance for Bearing Faults in Motors Using 
AI and IoT

Application:

This study investigates the feasibility of implementing predictive 
maintenance strategies for the early detection of faults in electric motors. 
In particular, asynchronous motors—commonly used in industrial 
manufacturing processes—were examined. Fault prediction was carried out 
by analyzing thermal, vibration, and acoustic signals from these motors. The 
overall system architecture is illustrated in Figure 5 [45].

Figure 5. General Structure of System [45]

Data Source:

The data were collected from sensor-integrated motor testing systems. 
Parameters such as motor temperature, vibration levels, and acoustic 
emissions were recorded in real time. Additionally, controlled fault scenarios 
were created in a laboratory environment to generate training and testing 
datasets [45].

AI Models Utilized:

Several machine learning methods were employed in this study, including:

• Support Vector Machines (SVM)

• Random Forest (RF)
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• Artificial Neural Networks (ANN)

• Long Short-Term Memory (LSTM)-based models

Analysis Process:

The data underwent preprocessing to eliminate anomalies and noise, 
followed by feature engineering procedures. Training and testing stages 
were clearly separated to enable objective performance evaluation. LSTM 
models outperformed in time-series-based analyses, while the Random 
Forest algorithm provided robust results in terms of overall classification 
accuracy [45].

Achieved Benefits:

• Faults were accurately detected before complete equipment failure 
occurred.

• Remaining Useful Life (RUL) was successfully estimated.

• The system was capable of autonomously generating alerts and main-
tenance recommendations without operator intervention.

• Production continuity was improved, and unplanned downtime due 
to equipment failures was significantly reduced.

9.3. Predictive Maintenance and AI Models in the Energy Sector

Predictive maintenance applications are increasingly being adopted 
in the energy sector, particularly for critical equipment such as turbines, 
generators, and converters. These applications leverage big data analytics 
and deep learning techniques to enhance operational efficiency. The overall 
system architecture is presented in Figure 6 [65].



Mehmet Ali Guvenc | 85

Figure 6. General Structure of System [65]

Application:

Big Data-Based Architecture for Real-Time Predictive Maintenance – A 
Case Study on Wind Turbines

Data Source:

The dataset used in the study was collected from three different wind 
turbine farms located in Spain. Operational data such as temperature, 
vibration, pressure, and generator status were gathered in real time from 
the turbines. These data were stored and processed using the Hadoop 
Distributed File System. The volume of data was in the terabyte range, 
encompassing both structured and unstructured formats [65].

AI Models Employed:

• Machine Learning Approaches: The study primarily utilized Decision 
Trees and Random Forest algorithms.

• Data Processing Frameworks: Real-time analytics were performed 
using Apache Hadoop and Apache Spark platforms.

• The AI models were trained and deployed using the Spark MLlib 
library.



86 | Predictive Maintenance and Digital Transformation: AI, Machine Learning, IoT, and Digital...

Analysis Process:

1. Data Collection: Various parameters such as temperature, rotor 
speed, and generator output were collected via sensors installed on the wind 
turbines.

2. Data Preprocessing: Data cleaning, missing value handling, and 
filtering were conducted on Spark and Hadoop systems.

3. Model Training and Testing: Decision tree and random forest models 
were trained on historical failure data to enable fault prediction capabilities.

4. Real-Time Monitoring: Incoming data streams were analyzed in real 
time using Spark Streaming, and alerts were triggered when potential fault 
indicators were detected.

Achieved Benefits:

• Early Fault Detection: The system enabled fault prediction an average 
of 2–3 days in advance.

• Reduced Maintenance Time: Predictive maintenance minimized 
unnecessary maintenance shutdowns.

• Increased Efficiency: Turbine energy production efficiency improved 
by approximately 5%.

• Economic Savings: By preventing unplanned downtime, the system 
resulted in an estimated annual saving of €450,000 [65].

9.4. AI-Based Predictive Maintenance in Production Lines

This study presents an analysis of a data-driven and AI-enabled predictive 
maintenance system designed to optimize maintenance applications on 
production lines. A novel approach was developed to detect equipment 
failures in advance, particularly within highly variable manufacturing 
environments. The system architecture is illustrated in Figure 7 [66].
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Figure 7. General system architecture [66]

Data Source:

The data used in this study was collected in real time from multiple 
machines operating in a manufacturing facility. Sensors recorded various 
physical parameters such as temperature, vibration, current, and voltage. 
These high-frequency time-series data were processed using a big data 
infrastructure [66].

AI Models Used:

Multiple artificial intelligence techniques were integrated into the 
analysis process. Within the scope of supervised learning, Decision Trees 
and Random Forests were used for failure classification. Additionally, the 
K-means clustering algorithm, a popular unsupervised learning technique, 
was applied for anomaly detection. This hybrid approach provided 
advantages in both classifying based on historical data and uncovering 
emerging patterns [66].

Analysis Process:

• Initially, the raw data were cleansed of missing values and noise.

• Time-series segmentation was performed to obtain meaningful 
subsequences.
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• In the feature extraction phase, statistical features in both time and 
frequency domains were computed for each sensor.

• During model training, the data were divided into training and testing 
sets. Validation was performed and hyperparameter optimization was 
carried out.

• Finally, maintenance schedules were generated based on model outputs 
[66].

Benefits Achieved:

The implementation led to a significant reduction in unexpected 
downtimes on the production line, and maintenance planning became 
more effective. The system achieved 89% accuracy in fault prediction, 
demonstrating its effectiveness. Moreover, maintenance costs were reduced 
by up to 22%, and production efficiency increased by 15%. This study 
clearly demonstrates how predictive maintenance can be transformed into a 
strategic advantage in manufacturing operations.

9.5. Predictive Maintenance in the Automotive Sector

Application of Predictive Maintenance in the Automotive Industry: 
Preventing Engine Failures through Machine Learning

Application:

This study addresses the implementation of predictive maintenance in 
engine test benches used in automotive production processes. The aim 
is to predict engine failures before they occur, thereby enhancing system 
reliability and ensuring uninterrupted production. The system monitors 
engine behavior under various operating scenarios, performing anomaly 
detection and Remaining Useful Life (RUL) estimation [67].

Data Source:

The data were collected via multiple IoT sensors integrated into engine 
test benches. Key parameters such as engine temperature, vibration 
frequencies, pressure values, speed, and engine load were gathered in real 
time. These measurements were compiled into a comprehensive dataset and 
analyzed in time-series format. Historical failure records were also utilized 
as labeled data to support the learning process [67].
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AI Models Used:

The AI-based analysis involved initial feature extraction from the raw 
data, followed by the application of classification and prediction algorithms. 
The specific models employed included:

• Random Forest (RF): Achieved high accuracy in classifying engine 
faults based on multi-dimensional sensor data.

• Gradient Boosting Machines (GBM) and XGBoost: Used for 
estimating RUL, demonstrating more stable results than other models.

• Principal Component Analysis (PCA): Applied to reduce data 
dimensionality and enhance modeling efficiency [67].

Analysis Process:

During preprocessing, missing values were removed and data 
normalization was applied. Features derived from sensor data were used 
to train the models, and cross-validation techniques were employed to 
assess accuracy. Particularly in time-series analysis, learning from historical 
behavior patterns enabled successful prediction of future anomalies. The 
dataset was partitioned with a training-to-testing ratio of 70%-30% [67].

Benefits Achieved:

The results showed that potential engine failures could be predicted with 
approximately 92% accuracy. This led to a 30% reduction in unplanned 
downtimes and up to 25% savings in maintenance costs. Additionally, 
integration of the model into a real-time monitoring system enabled 
maintenance teams to receive automated alerts in critical situations, allowing 
timely interventions. This significantly improved the Overall Equipment 
Effectiveness (OEE) across the production line [67].

9.6. Predictive Maintenance in the Railway Sector

Application:

This study focuses on the implementation of predictive maintenance 
strategies in railway systems, specifically targeting railway switches (also 
known as points). These components play a critical role in routing railway 
traffic, and their malfunction can lead to serious operational delays and 
safety hazards [68].

Data Source:

The data were primarily obtained from field sensors that measure 
parameters such as vibration, temperature, and electric motor current. 
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In addition, historical maintenance data including maintenance logs, 
operational records, and field observations were also utilized. The system 
was modeled using a combination of real-time monitoring and historical 
fault analysis [68].

AI Models Used:

Rather than proposing a single specific algorithm, the study evaluated 
various machine learning approaches reported in the literature. These 
include:

• Support Vector Machines (SVM)

• Decision Trees

• Naïve Bayes

• Artificial Neural Networks (ANN)

• K-Nearest Neighbors (KNN) [68]

The effectiveness of each algorithm in predicting switch failures was 
compared using real-world datasets.

Analysis Process:

The analysis was structured in the following phases:

1. Data Collection: Gathering real-time sensor data and compiling 
historical maintenance records.

2. Feature Extraction: Identifying meaningful attributes such as 
temperature fluctuations and vibration frequency.

3. Data Cleaning and Transformation: Filtering out noisy or 
incomplete data.

4. Model Training and Validation: Training models using various 
algorithms and validating them against test datasets.

5. Performance Comparison: Evaluating the models using metrics such 
as accuracy, precision, and F1 score [68].

Benefits Achieved:

• By predicting failures in advance, maintenance activities could be 
planned proactively, reducing unexpected disruptions and delays.

• Predictive models fed by sensor data enabled more targeted and 
cost-effective maintenance strategies.
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• Failures caused by environmental factors, such as switch freezing du-
ring winter, could be forecasted early.

• In the long term, this approach aims to reduce service interruptions 
and improve passenger satisfaction.





93

CHAPTER 10

10. Performance Evaluation of Maintenance 
Systems

The success of predictive maintenance systems is not solely dependent on 
the accuracy of the algorithms employed but is also directly related to how 
the performance of these systems is evaluated. The effectiveness of artificial 
intelligence and machine learning models is assessed and compared through 
specific performance metrics [69, 70].

This section presents a detailed analysis of the performance metrics 
commonly used in predictive maintenance systems, including model 
evaluation methods and sectoral applications.

10.1. Performance Evaluation Metrics

In machine learning and AI-based predictive maintenance systems, the 
primary metrics used to evaluate model performance are as follows:

10.1.1. Metrics for Regression Problems

Regression problems involve predicting a continuous variable (e.g., 
Remaining Useful Life – RUL). The fundamental metrics used in such 
problems include:

1. Mean Absolute Error (MAE):

Indicates the average difference between the predicted values and the 
actual values. MAE provides a measure of the magnitude of the error but 
not its direction [69-71].
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Formula:

MAE =Σ( y i − p i )/N

yᵢ: Observed value

pᵢ: Predicted value

N: Total number of samples

Example:

In the estimation of the Remaining Useful Life (RUL) of a wind turbine’s 
rotor blades, if the MAE value is 10 hours, it means that the predicted 
lifespan deviates from the actual value by an average of 10 hours.

2. Mean Squared Error (MSE):

It calculates the average of the squares of the errors and penalizes larger 
errors more heavily. This metric is particularly useful for highlighting large 
deviations [70-72].

Formula:

MSE =Σ( y i − p i ) 
2/N

yᵢ: Observed value

pᵢ: Predicted value

N: Total number of samples

Example:

In temperature predictions for an electric motor, if the MSE value is 
5°C², it indicates that the model contains large deviations in its predictions.

3. Root Mean Squared Error (RMSE):

It is obtained by taking the square root of the MSE, and the unit of error 
is the same as the unit of the predicted variable [71, 72].

Formula:

RMSE =  

Example:

In temperature predictions for a locomotive engine, if the RMSE value is 
2°C, it means that the average prediction error is approximately 2°C.

4. R² Score (Coefficient of Determination):
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This metric indicates how much of the variance in the dependent variable 
is explained by the model. It takes values between 0 and 1 [69-71].

Formula:

R2=1- 

Example:

In a battery life prediction model with an R² value of 0.85, the model is 
able to explain 85% of the variability in the observed data.

10.1.2. Classification Metrics

Classification problems involve categorizing equipment into groups 
such as faulty/non-faulty or critical/normal. The primary metrics used for 
evaluating such problems include:

1. Accuracy:

The ratio of the total number of correct predictions to the total number 
of predictions made. However, it may be misleading if there is a class 
imbalance in the dataset [45, 72, 73].

Formula:

Accuracy= 

• TP (True Positive): The actual class is positive, and the model 
predicted it correctly

• TN (True Negative): The actual class is negative, and the model 
predicted it correctly

• FP (False Positive): The actual class is negative, but the model 
predicted it as positive

• FN (False Negative): The actual class is positive, but the model 
predicted it as negative

2. Precision:

Indicates how many of the predicted positive cases are actually correct 
[45, 72, 73].
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Formula:

Precision= 

• TP (True Positive): The number of actual positive cases that were 
correctly predicted

• FP (False Positive): The number of actual negative cases that were 
incorrectly predicted as positive

• Example: Achieving 85% precision in predicting a vehicle battery 
failure indicates that 85% of the predicted failures were actual failures.

3. Recall (Sensitivity):

Indicates how many of the actual positive cases were correctly identified 
[45, 72, 73].

Formula:

Recall= 

Example: Achieving a 90% recall value in a locomotive engine 
temperature monitoring system indicates that 90% of faulty engines were 
correctly identified.

4. F1 Score:

Provides a balance between precision and recall. It offers a more accurate 
evaluation in imbalanced datasets [45, 72, 73].

Formula:

F1 Score=2 x  

Example: An 80% F1 score in an electric vehicle battery fault detection 
model indicates that the overall performance of the model is satisfactory.
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10.2. Sectoral Benchmark Comparison of Predictive Maintenance 
Models

Table 10 presents a comparative overview of predictive maintenance 
models applied across different industrial sectors. For each sector, the most 
effective AI model is highlighted along with the key performance metric 
used and the resulting benchmark performance. The results indicate that 
model performance varies by sector and application context [38-73].

Table 10. Comparative overview of different models

Sector Model Metric Result

Aviation LSTM RMSE 3.5 hour

Energy CNN Precision 88%

Automotive Random Forest F1 Score 82%

Railway SVM R² 0.92

Manufacturing ANN MAE 4.1°C
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CHAPTER 11

11. Emerging Trends and Research 
Opportunities

Predictive maintenance technologies are rapidly evolving through 
the integration of artificial intelligence, data analytics, and cyber-physical 
systems. However, this development process is still ongoing and far from 
being fully matured [1-8].

This section discusses the emerging technologies, hybrid models, and 
research opportunities that are expected to play a significant role in the near 
future of predictive maintenance applications.

11.1. Hybrid Models and Multi-Layered AI Systems

The performance of artificial intelligence applications in predictive 
maintenance heavily depends on the structure of the datasets used and the 
complexity of the underlying models. In many industrial scenarios, relying 
on a single model often falls short of capturing the nonlinearities and intricate 
dependencies inherent in real-world systems. In such cases, hybrid models 
emerge as a promising solution [45-48].

Hybrid models integrate multiple analytical approaches often combining 
data-driven methods like machine learning with rule-based or physics-
informed techniques to enhance robustness and interpretability. This fusion 
allows predictive systems to leverage the strengths of each constituent 
method while compensating for their individual weaknesses [45-48].

For instance, a hybrid predictive maintenance system may employ a deep 
learning architecture (e.g., LSTM) for time-series anomaly detection, while 
simultaneously using expert-defined thresholds or fuzzy logic to incorporate 
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domain-specific knowledge. In some cases, hybrid models might blend 
statistical regression methods with neural networks to address both short-
term pattern recognition and long-term trend extrapolation [74].

Another emerging direction is the development of multi-layered AI 
systems, where multiple AI models operate at different abstraction levels or 
stages of decision-making. For example:

• The first layer might handle raw sensor signal processing and noise 
filtering.

• The second layer could perform fault detection and classification using 
ensemble methods (e.g., Random Forest, Gradient Boosting).

• A final decision layer might apply reinforcement learning or expert 
systems to generate actionable maintenance plans.

These layered architectures promote modularity, scalability, and 
adaptability in predictive maintenance frameworks, especially when applied 
to complex industrial environments such as smart factories, energy grids, or 
aerospace systems [45, 74].

The integration of hybrid and multi-layered AI approaches is anticipated 
to drive the next wave of innovation in predictive maintenance—enabling 
systems that are not only more accurate but also more explainable, resilient to 
uncertainty, and capable of operating autonomously in dynamic operational 
contexts [45-55].

Figure 8 illustrates a hybrid predictive maintenance framework that 
integrates various Industry 4.0 technologies such as machine learning, 
IoT, data analytics, and domain-specific optimization. By combining these 
components, the model aims to improve maintenance decision-making, 
increase operational efficiency, and enhance the adoption of PdM systems 
across industries.
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Figure 8. Hybrid Predictive Maintenance Model Framework Integrating Key Industry 
4.0 Technologies

A hybrid model refers to the combination of multiple machine learning 
algorithms to build a more robust and resilient prediction system. In such 
models, each algorithm is assigned to a specific task, and their outputs are 
integrated to produce more accurate predictions.

Hybrid models in predictive maintenance involve the integration 
of multiple AI algorithms across different stages of the data pipeline. As 
illustrated in Table 11, each model specializes in a particular task ranging 
from anomaly detection to decision aggregation—allowing for enhanced 
prediction accuracy, generalization, and fault resilience compared to single-
model architectures [45].

Table 11. Functional Stages of a Hybrid Predictive Maintenance Architecture 
Integrating Multiple AI Algorithms

Stage Applied Models Task

Data Preprocessing SVM, Random Forest Anomaly detection

Feature Extraction CNN, LSTM Identifying key variables

Prediction Module LSTM, GRU Time-series forecasting

Decision Module Ensemble Learning Aggregation of model decisions
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Application Example: Use of a Hybrid Model in Smart Manufacturing 
Lines

In a manufacturing line where both vibration and temperature data are 
collected:

• In the first stage, anomaly detection is performed using SVM and 
Random Forest to identify abrupt changes in the data.

• In the second stage, LSTM is used to perform time-series analysis on 
temperature rise trends.

• In the third stage, the outputs of all models are combined through an 
Ensemble Learning module to derive the final decision.

With this hybrid approach, deviations that may be missed by a single 
model can be more reliably detected, significantly improving prediction 
accuracy [70-74].

11.2. XAI (Explainable Artificial Intelligence) Approaches

Most machine learning models used today operate as “black boxes,” 
making it difficult to understand why a certain prediction or decision is 
made. This lack of interpretability presents a major challenge in industrial 
applications. As a result, Explainable AI (XAI) approaches have gained 
significant attention in recent years, aiming to increase transparency and 
trust in AI systems. Table 12 summarizes the most widely used XAI methods 
and highlights the contexts in which they are most effective [75].

Table 12. Common XAI Techniques and Their Areas of Application

Approach Objective Application Area

LIME (Local Interpretable 
Model-Agnostic Explanations)

To explain how a single 
prediction was made

Regression and 
classification

SHAP (SHapley Additive 
exPlanations)

To quantify each feature’s 
contribution to model output

Deep learning 
models

Decision Trees To visualize the decision path
Classification 
problems

Feature Importance
To identify which variables 
have the most influence All AI model types

Key Components of XAI-Based Analysis:

Case Study: Battery Life Prediction and XAI

Let us assume that an LSTM-based model is developed to predict the 
remaining useful life (RUL) of an electric vehicle battery.
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• The model analyzes each charge-discharge cycle to estimate degradation 
patterns.

• However, presenting the prediction result alone does not provide 
insight into the decision-making process.

• In such cases, SHAP analysis is applied to visualize the contribution of 
each input variable to the model’s output.

Through this approach, it becomes possible to identify which sensor 
signals most strongly influence the prediction, enabling maintenance 
operators to take informed and proactive actions [75].

11.3. Autonomous Predictive Maintenance Systems

With the emergence of Industry 5.0, predictive maintenance systems are 
expected to evolve beyond simply generating predictions. These systems 
will increasingly gain the capability to autonomously make decisions 
and implement maintenance actions without human intervention. This 
shift represents a transformative step toward self-healing and intelligent 
maintenance infrastructures in industrial environments [12, 18].

Core Components of Autonomous Systems:

1. Data Acquisition: IoT sensors, cyber-physical systems

2. Data Analysis: LSTM, GRU, CNN

3. Decision Module: Reinforcement Learning (RL), Deep Q Networks 
(DQN)

4. Autonomous Intervention: Actuator control, robotic systems

Example: Autonomous Predictive Maintenance in Wind Turbines

In a smart wind turbine application:

• Real-time Data Collection: Temperature and vibration signals are 
continuously gathered from sensors mounted on turbine components.

• Intelligent Analysis: These signals are processed through deep 
learning models such as LSTM or GRU to detect deviations.

• Decision-Making: A reinforcement learning (RL) model, particularly 
Deep Q-Networks (DQN), determines whether the deviation indicates a 
fault.

• Autonomous Action: If vibration exceeds a predefined threshold, the 
RL-based agent activates the turbine’s cooling system without requiring 
human input.
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This self-regulating behavior enables the system to adapt to changing 
operational conditions, mitigate faults early, and significantly reduce 
maintenance delays and costs [12, 18, 34, 36, 76].

11.4. Sustainability and Environmentally Focused Maintenance 
Systems

The vision of Industry 5.0 aims to minimize the environmental impact 
of manufacturing processes. In this context, predictive maintenance systems 
must be reevaluated from a sustainability perspective. The integration of 
environmentally aware AI solutions into maintenance strategies enables not 
only higher efficiency but also measurable ecological benefits. The following 
table presents exemplary applications, their objectives, and the associated 
environmental gains [34, 76].

Table 13 highlights key applications of predictive maintenance systems 
that align with environmental sustainability goals. These include optimizing 
energy usage, monitoring and reducing carbon emissions, and minimizing 
waste generated during maintenance operations. By embedding sustainability 
principles into predictive maintenance strategies, organizations can achieve 
not only operational efficiency but also significant ecological impact 
reductions—supporting the broader objectives of Industry 5.0 [12, 18, 75, 
76].

Table 13. Environmentally Driven Predictive Maintenance Applications and Their 
Benefits

Application Objective Gain

Energy Efficiency
Optimize electricity 
consumption 20% energy savings

Carbon Footprint 
Tracking Monitor CO₂ emissions Reduction in emissions

Waste Management
Reduce waste during 
maintenance 30% waste reduction

11.5. Research Opportunities and Open Challenges

The future of predictive maintenance technologies presents numerous 
unresolved challenges, offering fertile ground for further research. This 
section outlines several promising directions for upcoming research projects:

• Development of Hybrid AI Models: Enhancing prediction accuracy 
through the integration of multiple AI algorithms.
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• Integration of XAI Systems with Autonomous Decision-Making: 
Enabling explainable AI systems to function in conjunction with autonomous 
decision modules.

• Data Security with Blockchain: Improving the security of data within 
predictive maintenance systems through blockchain technologies.

• Energy Consumption Optimization: Aligning autonomous 
maintenance systems with energy-efficient operations.

• Environmental Impact and Sustainability: Measuring and reporting 
the environmental effects of predictive maintenance strategies [74-76].
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CHAPTER 12

12. Conclusion and General Evaluation

Predictive maintenance systems have become indispensable components 
of digital transformation processes. Throughout this book, we have 
thoroughly examined the foundational principles of predictive maintenance 
as well as the implementation of advanced methodologies such as data 
analytics, artificial intelligence, and digital twin technologies.

This final chapter presents a comprehensive summary of the book’s 
content, assesses sectoral impacts, highlights future research opportunities, 
and offers a concluding evaluation of the book’s key messages.

12.1. General Summary and Evaluation

The primary objective of predictive maintenance systems is to identify 
potential failures before they occur and to enable more efficient planning of 
maintenance activities. The chapters and contents covered in this book can 
be summarized as Table 14:
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Table 14. Summarized of chapters

Chapter Title Primary Focus

1 Introduction
Definition, historical background, and industrial 
significance of predictive maintenance.

2
Fundamental 
Principles

Comparison of predictive, reactive, and preventive 
maintenance approaches.

3 Data Acquisition
In-depth analysis of IoT sensors and data collection 
methods.

4
Industry 4.0 and 
IoT

Integration of smart factories and cyber-physical 
systems.

5
Artificial Intelligence 
and ML

Role of AI models in predictive maintenance 
applications.

6
Cloud Computing 
and IoT Cloud-based analysis of IoT-generated data.

7
Data Analytics and 
Model Training

Data preprocessing, feature selection, and model 
training techniques.

8
Digital Twin and 
CPS

Utilization of digital twin technology in predictive 
maintenance.

9
Sectoral 
Applications

Use cases in energy, automotive, aerospace, 
manufacturing, and more.

10
Performance 
Evaluation

Metric analysis and comparison of model 
performances.

11 Future Trends
Hybrid models, XAI, and autonomous 
maintenance systems.

This structure has enabled a comprehensive exploration of predictive 
maintenance technologies while detailing their industrial implementations 
across various domains.

12.2. Current Status and Future Outlook

The current state of predictive maintenance has gained significant 
momentum with the rise of Industry 4.0. However, the widespread 
adoption of these technologies across all sectors is yet to be achieved. The 
main challenges include:

• Data Security: Vulnerability of IoT-collected data to cyber-attacks.

• Data Incompatibility: Difficulties in analyzing heterogeneous data 
from different devices on a unified platform.

• Model Interpretability: Lack of transparency in black-box AI models, 
hindering understanding of decision processes.
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Future Outlook:

The future of predictive maintenance will revolve around three main axes:

1. Autonomous Systems:

• AI models not only making predictions but also autonomous decisions.

• Development of self-learning maintenance systems through 
reinforcement learning.

2. Explainable AI (XAI):

• Making AI decision processes more transparent.

• Standardizing interpretability methods such as SHAP and LIME.

3. Sustainable Maintenance Systems:

• Reducing energy consumption.

• Monitoring and optimizing the carbon footprint.

• Planning maintenance with recyclable materials.

12.3. Application Domains and Sectoral Impacts

The most common application areas and benefits of predictive 
maintenance systems across various industries are presented below. Table 
14 presents a comparative overview of how predictive maintenance systems 
are applied across different industries and the measurable benefits they 
deliver. From early fault detection in aerospace engines to energy efficiency 
improvements in wind turbines, the table highlights the strategic impact of 
AI-powered maintenance technologies on operational performance.

Table 15. Sectoral Applications and Measurable Gains of Predictive Maintenance 
Systems

Sector Application Gain

Aerospace Engine vibration analysis 30% increase in fault detection

Energy Wind turbine data analysis 25% energy efficiency

Automotive Battery life prediction 20% cost reduction

Railway
Locomotive motor temperature 
monitoring 35% reduction in downtime

Manufacturing CNC machine vibration analysis 40% early fault warning

These applications help reduce operational costs, enhance efficiency, and 
enable more structured maintenance planning.
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12.4. Future Research Directions

Numerous unresolved research opportunities remain in the domain of 
predictive maintenance. These opportunities can serve as a roadmap for 
future studies:

1. Data Security and Blockchain:

• Securing IoT-collected data.

• Developing blockchain-based distributed data platforms.

2. Autonomous Maintenance Systems:

• Developing autonomous decision modules using reinforcement 
learning.

• Implementing decisions from sensor data without human intervention.

3. XAI and Hybrid Models:

• Integrating explainable AI with hybrid models.

• Developing hybrid models suitable for both regression and classification 
tasks.

4. Green Maintenance Systems:

• Minimizing energy consumption.

• Recycling waste materials.

• Conducting carbon footprint analysis for maintenance processes.

12.5. Final Remarks and Closing

This book has provided a comprehensive guide, starting from the basic 
principles of predictive maintenance to AI-based analyses, digital twin 
technologies, and future research opportunities.

By addressing both sectoral applications and advanced analytical 
techniques, the study has offered a broad perspective to both researchers 
and practitioners. The future of predictive maintenance will be shaped by 
autonomous decision-making capabilities, energy-efficient systems, and 
sustainability-focused structures.

Research and applications aligned with this vision will enable industrial 
processes to become smarter, more reliable, and environmentally friendly.
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