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Preface

Dear Readers,

The sun, in addition to being the source of life on Earth, offers an 
unlimited potential for clean energy. Harnessing this potential in the most 
efiicient way has become a primary objective for the fields of engineering 
and science, particularly in light of contemporary energy demands and 
environmental concerns. Solar tracking systems are crucial technologies that 
maximize energy production by enabling solar panels to follow the sun at 
the optimal angle throughout the day. In the early stages, solar tracking was 
largely achieved through mechanical and simpler control systems. However, 
it has evolved to become significantly more precise and efficient today, 
thanks to intelligent algorithms such as image processing. The future will 
inevitably see even more advanced and accurate tracking through hybrid 
methods.

The implementation of solar tracking systems using image processing 
methods represents the latest and most technologically advanced state of 
solar tracking systems. This method offers significant advantages as it can 
directly sense the sun’s position, provide adaptation to conditions like cloud 
cover, and reduce the requirement for additional sensors.

This book aims to illuminate the past, present state, and future 
expectations of solar tracking systems.

Within this book, the fundamental principles, hardware components, 
and especially image processing-based intelligent control algorithms 
underpinning solar tracking systems are comprehensively addressed. The 
selection of system components and load calculations are examined in detail.

Throughout the book, in-depth discussions are provided on topics such 
as algorithms developed for the precise detection of the sun’s position, 
actuator control methods (ranging from simple on/off to PID control), 
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adaptation to dynamic environmental conditions (adaptive thresholding), 
and even astronomical positioning for scenarios where the sun is not 
visible. Furthermore, practical operational aspects, including remote system 
monitoring and data logging, are also investigated.

The objective is to provide a robust resource for academics, researchers, 
students, and design engineers interested in this field, enabling them to 
integrate theoretical knowledge with practical application skills. Each chapter 
within the book has been meticulously designed to facilitate a progressive 
understanding of the subject matter for the reader.

This work endeavors to contribute to the proliferation of sustainable 
energy technologies and the enhancement of energy efficiency.

It is a pleasure to accompany you on the journey towards more effective 
utilization of the sun’s boundless energy.

Sincerely,

June-2025

Assoc. Prof. Dr. Erkan KACAN
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CHAPTER 1

1. Introduction

Solar collectors are components of solar energy systems that convert the 
energy received from the sun into usable energy, and they possess various 
design parameters. Generally, the conversion performed by collectors is 
in the form of heat and electrical energy. In solar lighting applications, 
however, transmission or light conveyance occurs without any conversion. 
Solar collectors located on the Earth’s surface are in dynamic interaction 
with the Sun. Therefore, characteristics of solar energy systems such as 
solar geometry, orientation, and surface area are very important data in 
determining this interaction. 

“Solar Tracking Systems (STS)” are used to continuously and 
dynamically position the collectors according to the sun’s location in order 
to gain maximum energy. The tracking systems of solar collectors have made 
significant progress, especially with the development of sensors, transducers, 
and microelectronics.

Solar energy systems would be grouped internally as low, medium, and 
high temperature applications, as well as PV-electricity generation. Collector 
models shown in Figure 1 are used while applying these methods.
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Figure 1 Solar Collector Types Used in Solar Energy Systems

Solar collectors can be classified according to their concentration ratio 
into non-concentrating, linear (line-focusing), and point-focusing types. 
Depending on the intended use, solar energy applications can be classified as 
shown in Figure 2. The main purpose of all these applications and collector 
types is to obtain useful energy and the amount of uselful energy depends 
on the efficiency of the application, the amount of solar radiation and the 
solar geometry. Receiving solar beams at surface normal, continuously, 
and at high intensity are the most important factors that increases the 
amount of useful energy. Therefore, factors such as duration of sunshine, 
surface orientation, and shading factors are taken into consideration when 
determining the application locations of solar energy systems.
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Figure 2 Classification of Solar Energy Applications

Various methods and strategies have been developed to ensure that 
collectors receive solar rays perpendicularly. The most effective method is 
the use of auxiliary equipment that tracks the sun on the east-west and solar 
elevation axes. Solar tracking systems are generally divided into two groups: 
single-axis and dual-axis tracking systems. Dual-axis solar tracking systems 
can also be examined in two groups: polar (equatorial) tracking and azimuth/
elevation tracking methods. Today, with technological advancements, solar 
tracking systems are produced by using different methods.

The first known examples of solar tracking systems were made by Finster 
in Chile in 1962. However, this system worked entirely in manual mode. 
One year later, in 1963, Saavedra developed an electronic mechanism for the 
control of the Eppley pyrheliometer [Roth, Georgiev, & Boudinov,2005].

Neville (1978), demonstrated the difference between the insolation 
of a sun-tracking surface and a fixed surface. This study is important as 
it is among the first to determine the useful energy obtained from fixed-
positioned solar collectors and sun-tracking collectors. As seen in Figure 
3, the data obtained from three different collectors were compared; it was 
shown that the highest value was obtained from the system that tracks the 
sun on two axes, followed by the system fixed at the latitude angle and 
tracking the sun on the east-west axis, and finally the system fixed at the 
latitude angle facing due south [Neville, 1978].
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Figure 3 Comparison of Fixed Collectors and Sun-Tracking Collectors

Hession and Bonwick (1984), developed a solar tracking system that 
could be used with many solar collectors and platforms. Although the 
system, which detects the sun using phototransistors, had some errors, it 
provided successful results in solar tracking applications by solving these 
errors and consuming only 1W of energy [Hession PJ & Bonwick , 1984].

Schubnell and Ries (1990) published an approach to control the angular 
speed of the tracking system. This study specifically focused on the accuracy 
of solar tracking in concentrating solar energy systems. Accordingly, the 
maximum tracking error defined as a 10⁻⁴ error rate (1 cm/100 m) was 
expressed as a time-dependent numerical value for the worst-case scenario. 
While this value is 1.4 seconds in commonly used tracking systems, it was 
found to be 6.4 minutes in the tested system, which correctly oriented a 
51.8 m² heliostat glass surface [Schubnell M & Ries , 1990].

Davies (1993) focused on a tracking system for concentrating solar 
collectors. In his study, he developed a method that considers situations 
where the equatorial plane is perpendicular to the ecliptic plane. It was 
assumed that the sun follows an approximately circular trajectory on the 
cross-sectional plane of the tracked surface. Therefore, it was claimed that 
solar tracking could be done accurately when moving at a constant speed. 
Experimental observations reported errors of ±2° [Davies PA, 1993].

Hirata and Tani (1994, 1995) developed the “spectral tracking method” 
to maximize output of photovoltaic collectors. The energy produced by 
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polycrystalline silicon PVs and amorphous silicon PVs, which were exposed 
to different regions of the solar spectrum by being mounted on the solar 
tracking system, was examined. The experiments showed that polycrystalline 
PVs produced more stable results than amorphous silicon PVs [Hirata Y & 
Tani, 1994] [ Hirata Y & Tani, 1995].

Ünüsaçar and Taşer (1994) developed solar tracking systems to maximize 
the useful energy gained from solar radiation and achieved high levels of 
thermal energy in experiments conducted in May and June [Ünsaçar  F & 
Taşer 1994].

Barakat et al. (2001) conducted studies on multi (dual) axis solar tracking 
systems and examined the effect of these systems on the amount of energy 
obtained from PV. When a tracking system controlled by complex dual-
axis electronic circuits was used, a 20% more effective result was obtained 
compared to a single-axis tracking system [Barakat et.al., 2001]. 

As shown in Figure 3, the difference in obtained energy between single-
axis and dual-axis solar tracking has increased from 5% to values up to 20% 
over time. 

Garrison (2002) worked on a program to determine the energy gains 
of both fixed and sun-tracking collectors based on the physical properties 
of 15 different solar collectors. The FORTRAN program named SOCOL 
processed data from 239 national meteorological stations within 20 
seconds, successfully calculating parameters such as the surface temperature 
and instantaneous energy gain of a collector at a specific location [Garrison, 
2002].

Hein et al. (2003) used parabolic reflector surfaces that concentrate the 
rays 300 times by tracking the sun. The concentrated solar rays were directed 
onto PVs to generate electricity. The effect of single-axis solar tracking on 
energy yield was investigated. At a concentration ratio of 200x, the best 
efficiency value was obtained from GaAs PVs at 26% [Hein et.al., 2003].

Abdallah (2004) examined the effects of four different solar tracking 
systems on the current-voltage characteristics and electricity generation of 
PV systems. The solar tracking systems were divided into four groups: dual-
axis, single-axis vertical, east-west axis, and north-south axis. Compared to 
320 fixed-tilted PV systems in Amman, Jordan, the highest efficiency increase 
was observed in the dual-axis tracking system at 43.87%. For the other axes, 
the efficiency increase was 37.53% for the east-west axis, 34.43% for the 
single-axis vertical, and 15.69% for the north-south axis, respectively. As 
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shown in Figure 4., the efficiency difference between single-axis (east-west 
axis) and dual-axis solar tracking systems is about 6.5% [Abdallah, 2004].

Figure 4 Effect of Different Solar Tracking Systems on the Power Output Obtained from 
PV Modules [Abdallah, 2004]

Roth et al. (2004, 2005) conducted studies and tests on a solar tracking 
system. This tracking system enabled the automatic measurement of direct 
solar irradiation with a pyrheliometer. The mechanism was designed 
unattached to the control unit via the digital program within the control 
system. The system calculated the sun’s position and stored it in a database 
for future analyses [Roth et. al, 2004] [Roth et. al, 2005].

Alata et al. (2005) developed methods for solar tracking using three 
different approaches. Accordingly, the Sugeno Fuzzy inference system was 
used in single-axis tracking with the aperture area adjusted to the latitude, 
dual-axis equatorial tracking, and dual-axis azimuth/elevation tracking 
methods. This study is one of the first to use machine learning in solar 
tracking systems [Alata et.al., 2005].

Bingöl et al. (2006) designed, implemented, and tested a microprocessor-
based dual-axis tracking system in the study. They used a light-sensitive 
sensor, a step motor as the actuator, and a microprocessor [Bingol et.al., 
2006].

Abu-Khader et al. (2008) examined the effect of using multi-axis solar 
tracking systems, suitable for Jordan’s climate parameters, on energy gains. 
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The algorithm of the solar tracking system is based on calculating the surface 
azimuth angle and zenith angle with time-dependent models. According to 
the results of the study, more effective data were obtained (between 30-
45%) when a north-south axis tracking system was used compared to a fixed 
position with a 32° tilt angle. It was revealed that installing north-south axis 
tracking systems for PV systems to be established in Jordan is more effective 
than fixed and east-west axis tracking systems [Abu-Khader et.al., 2008].

Chong and Wong (2009) aimed to reduce solar tracking errors with 
their work on the mathematical modeling of axial solar tracking systems. 
The mathematical method developed in this study was compared with other 
methods. Tracking errors occur as a result of calculating the sun’s position 
relative to a collector on the Earth’s surface according to the triple vector 

in the Stine-Harrigan model as 
M

E

P

S cos cosw
S cos sinw
S sin

δ
δ
δ

   
   = −   
      

. Mathematical methods 

were used to minimize the error in the calculation of this vector system, and 
the results were examined [Chong & Wong 2009].

Mousazadeh et al. (2009) researched the working principles of solar 
tracking systems and published a “review” by compiling the studies they 
obtained as a result of this research. This review included classifications in 
which the effect of solar tracking systems on the useful energy obtained 
from the sun was examined. For small solar energy applications, although 
the energy consumed by the solar tracking system varies between 2-3% of 
the energy gained, they stated that usage of solar tarcking system does not 
provide a significant benefit. As a result of the review, it is determined that 
the most efficient and common solar tracking systems are the axial-polar 
tracking system and the azimuth-elevation tracking system [Mousazadeh 
et.al. 2009].

Sungur (2009) developed a multi (dual) axis solar tracking system 
controlled by PLC units for PV systems in Konya and conducted an 
experimental study. According to the experimental results, it was revealed 
that in Turkey’s conditions, a collector with a solar tracking system is 42.6% 
more efficient than a fixed collector [Sungur C., 2009].

Sefa et al. (2009) developed a single-axis solar tracking system in Turkey 
and worked on the benefits provided by this system. The system provided 
solar tracking with a simple mechanism based on a simple micro-processor 
and yielded more effective results compared to fixed-positioned solar 
collectors [Sefa et.al, 2009].
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Cruz-Peragón et al. (2011) investigated the energy gain of two-axis sun-
tracking solar collectors compared to fixed-positioned collectors and their 
suitability for Spanish conditions. Accordingly, analyses were carried out 
based on the climate parameters of 52 different locations in Spain, and it was 
generally found that an energy efficiency of over 20% was achieved [Cruz-
Peragón et.al., 2011].

Seme and Stumberger (2011) developed a two-axis solar tracking system 
with a new mathematical modeling and worked on its results. Accordingly, 
in the study where optimum tilt angle errors were revealed, an optimization 
method they called the “differential evolution method” (a type of random 
search algorithm) was used. The objective function could not be determined 
according to the differential evolution optimization method. Therefore, 
a time-dependent tracking algorithm was created [Seme & Stumberger, 
2011].

Lubitz (2011) evaluated hourly data from the typical meteorological year 
of 217 geographical regions in America and revealed errors and differences 
in optimum tilt angles. For this, calculations were made on fixed-positioned 
systems, azimuth tracking systems, and two-axis sun-tracking systems. For 
fixed surfaces positioned at the latitude angle facing south to maximize the 
amount of solar irradiation, an error of 14° was observed, especially on days 
with a high clearness index in the northwest regions. Compared to a fixed 
surface, it was found that 29% more solar irradiation is possible with the 
use of an azimuth tracking system, and 34% more with the use of a two-axis 
tracking system [Lubitz W. D., 2011].
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CHAPTER 2

2. Use of Solar Tracking Systems (STS) in 
Concentrating Solar Power (CSP)

A large part of solar tracking systems has been developed experimentally 
on PV systems. However, although solar tracking is mandatory in 
concentrating solar collectors, experimental analyses have remained limited. 
As seen in Figure 5, there has been an increase in studies on concentrating 
solar energy systems in recent years according to WOS (Web of Science) 
data. However, factors such as the temperatures reached in these set-up, 
superheated steam, high light intensity, etc., make the work difficult and 
risky. Instead, it has been preferred to analyze moving systems in relatively 
lower-risk flat collectors (such as PV, PV-T, flat plate solar water heaters).

Studies on the analysis of solar tracking systems in linear focusing 
parabolic trough and point focusing parabolic dish, Fresnel, and Heliostat 
systems have remained more limited.
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Figure 5 The Number of Academic Studies Related to Concentrating Solar Tracking 
Systems

These studies have paved the way for the utilization of solar tracking 
systems in parabolic trough solar collectors.

Gee (1980) examined the tracker types and operational systems of linear-
focusing solar concentrators. The study compared different tracker types and 
evaluated relevant experimental research and advancements [Gee, 1980].

Cope and Tully (1982) investigated the sun-tracking strategies of 
concentrators using equations that allow for the calculation of the sun’s 
position. They also compared tracking errors in existing concentrators with 
experimental values [Cope & Tully, 1982].

Heiti and Thados (1983) conducted research on the thermal efficiency 
and performance of cylindrical solar collectors. Their work explored the 
impact of the cylindrical aperture’s orientation relative to the incident angles 
of solar radiation on efficiency [Heiti & Thados, 1983].

Hession and Boonwick (1984) tested tracking systems for concentrators 
of varying dimensions. They developed a light-sensitive circuit that precisely 
tracks the sun and provided its block diagram. The solar tracking system, 
which utilized phototransistors, was reported to exhibit some errors 
[Hession & Bonwick, 1984].
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Eltez (1986) investigated the shaping of the reflective focusing surface 
in a fixed-reflector linear-focus tower project. The study conducted optical 
and geometric analyses of radiation and heat transfer on a spatial surface that 
enables linear focusing and reflection onto a receiver on the tower, without 
the need to move a large number of reflector arrays in response to the sun’s 
daily azimuth and elevation changes [Eltez M., 1986].

Prapas et al. (1987) performed a detailed optical analysis of cylindrical 
concentrators using ray-tracing methods. They determined the percentage 
of diffuse solar radiation that can be utilized by this type of concentrator 
[Prapas et al., 1987].

Bhowmik and Kandpal (1988) conducted studies on cylindrical solar 
collectors that track the sun in the north-south, east-west, and all axes. Their 
work utilized different intra-year times, latitudes, and angles, and presented 
the corresponding graphical results [Bhowmik & Kandpal, 1988].

Yeşilata (1990) designed and manufactured a cylindrical solar 
concentrator that tracks the sun’s movement. An experimental setup was 
created to determine the thermal efficiency of the concentrator, and the 
thermal efficiency of the manufactured solar concentrator was calculated 
using this setup [Yeşilata, 1990].

Eltez (1990) examined the movement systems and thermal characteristics 
of different concentrator types and provided various application examples. 
The study analyzed the energy needs of a textile factory and the potential 
contribution of a solar concentrator to these needs [Eltez M., 1990].

Pinazo et al. (1992) analyzed the incident angle of solar radiation on a 
cylindrical solar concentrator. They derived analytical relationships for the 
incident angles [Pinazo et. al., 1992].

İbrahim (1996) developed a solar tracking system for a set of six 
parabolic collectors and conducted experimental measurements. The study 
investigated the effect of fluid mass flow rate, ranging from 0.005 to 0.033 
kg/s, on the collector efficiency. The highest collector efficiency was found 
to be 62% at a flow rate of 0.033 kg/s [Ibrahim, 1996].

Kalogirou (1997) worked on a tracking system capable of operating with 
single-axis solar tracking systems. The system utilized three light-sensitive 
sensors to determine the sun’s state and position, thereby positioning the 
collector. One sensor detected whether the collector was focused, another 
detected cloud cover, and the third identified day or night to position the 
collector accordingly. Based on the assumption that the sun moves at a 
constant speed of 0.25 degrees per minute (dpm), the tracking accuracy 
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of the system varied with solar irradiation values. Deviations of 0.2° were 
observed below 100 W/m², while deviations of 0.05° occurred at irradiation 
levels around 600 W/m² [Kalogirou, 1997].

Khalifa and Al-Mutwalli (1998) investigated the impact of two-axis solar 
tracking systems on the thermal performance of integrated parabolic solar 
collectors. Parabolic solar collectors with sun-tracking capabilities yielded 
75% more effective results in terms of thermal performance. This difference 
in thermal performance between sun-tracking collectors and optimally fixed 
collectors highlighted the importance of tracking systems in collectors with 
high concentration ratios [Khalifa & Al-Mutwalli, 1998].

Genç (1998) designed and manufactured a 3.70 m long cylindrical solar 
energy concentrator with a 40 mm focal diameter that tracks the sun on 
a single axis. The concentrator was enabled to track the sun on a single 
axis using a photocell. The performance experiments of the system were 
examined under the climatic conditions of Ankara. The tests conducted 
throughout the day yielded a collector outlet temperature of 75°C and an 
efficiency of 65% for an approximate 7°C inlet-outlet temperature difference 
[Genç, 1998].

Grass et al. (2004) worked on a comparison between a parabolic solar 
collector with a vacuum absorber surface, equipped with two new tracking 
systems for sun tracking, and a vacuum tube flat plate solar collector with 
a low concentration integrated parabolic collector. It was concluded that 
vacuum low concentration integrated parabolic collectors positioned in the 
east-west direction and fixed at the latitude angle were more suitable for 
applications up to 200-250 °C. At higher temperatures, thermal losses from 
the absorber surfaces were found to be significant. To address the fact, an 
industrial product was developed with a reduced absorber surface area but 
increased thermal conductivity, and a tracking system that reduced deviation 
in solar incidence angle was used, resulting in more effective outcomes in 
300-350 °C applications as seen in Figure 6.
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                         (a)                                                     (b)

                        (c)                                                     (d)

Figure 6 Low concentration parabolic trough collector designs [Grass et al., 2004]

Bakos (2006) studied a two-axis continuous solar tracking system for a 
cylindrical collector. The energy collected by the collector was measured and 
compared with a fixed-surface collector tilted 40° southward. The results 
indicated that the moving two-axis sun-tracking collector collected 46.46% 
more energy than the fixed collector [Bakos, 2006].

Riffelmann et al. (2006) examined the optical efficiency of cylindrical 
trough solar power plants to ensure the desired quality. Accordingly, they 
developed two methods to measure the solar flux in the focal region of the 
system: Parascan (Figure 7(a)) and the camera-target method. Parascan is an 
advanced solar flux density measurement device. By moving the device along 
with the receiver axis, they measured the flux distribution in front of and 
behind the receiver surface. The measurements allowed for the calculation of 
the interception factor and optical property analyses of the system around the 
receiver. The camera-target method (Figure 7(b)) involved taking pictures 
of the diffuse radiation around the receiver with a calibrated camera. The 
target around the receiver intercepted direct rays. By examining the reflected 
rays and the captured images, optical errors were determined.



14 | The Evolution of Solar Tracking Systems (STS)

               (a)                                                      (b)

Figure 7 (a) Parascan image mounted on a Eurotrough collector (b) Camera-target 
method image of diffuse radiation on a vertical surface [Riffelmann et al., 2006]

Agee et al. (2007) conducted a study investigating the market trends, 
application areas, costs, and maintenance expenses of solar tracking systems. 
Research on different types of tracking systems (hydraulic control, program-
based control, and sensor-based control) indicated that hydraulic tracking 
systems yielded the most effective results for low-capacity applications [Agee 
et al., 2007].

Al-Soud et al. (2010) designed, implemented, and tested an automatically 
sun-tracking parabolic cooker. The tests were conducted continuously for 
three days in 2008, and they reported that the collector reached 90 °C when 
the ambient temperature was around 36 °C [Al-Soud et al., 2010].

Tang and Yamei (2010) discussed solar collectors equipped with a 
single-axis three-position solar tracking system in their work. They named 
their collectors, which they described as a “new concept,” 3P-CPCs and 
performed theoretical analyses by connecting the solar tracking system to PV 
modules. The 3P-CPCs achieved 1.26-1.45 times more energy compared to 
single-position systems [Tang & Yamei, 2010].

Sansoni et al. (2011) worked on a prototype to be used in a parabolic 
trough solar power generation plant to be built in the Florence region of 
Italy. Solar tracking and optical characterization of collectors connected in a 
line were performed. Solutions for axis deviations, angular distortions, and 
mirror deformations that occurred during the experiments were discussed. 
As shown in Figure 8(a), collector efficiency did not show a significant 
reaction to an angular deviation of ±1°, while it decreased by 22-25% at 
an angular deviation of ±1.5°. Figures 8(b)-(c) and (d) illustrate the effect 
of angular deviation on collector efficiency depending on the focal length of 
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the collector, the deviation value of the absorber surface from the focus, and 
the absorber surface diameter.

 

(a)                                                       (b)

  

(c)                                                     (d)

Figure 8 (a) Relationship between angular deviation value and collector efficiency (b) 
Relationship between angular deviation value and collector efficiency depending on 

different focal lengths (c) Relationship between angular deviation value and collector 
efficiency depending on the deviation of the absorber surface from the focal point (d) 

Relationship between angular deviation value and collector efficiency depending on the 
absorber surface diameter [Sansoni et al., 2011]

Pei-Ying et al. (2011) focused on a concentrating solar tracking system 
that had not been previously studied. Accordingly, they proposed that 
tracking the focal point, which is relatively smaller and lighter, would be 
advantageous compared to moving large, heavy masses for solar tracking. 
The sun-tracking absorber surface was defined as the “focal image,” and it 
was observed that this image moved along an interesting curve during solar 
tracking. The results showed that the sun-tracking focal point was comparable 
to other conventional methods and effective in energy conversion [Pei-Ying 
et al., 2011].
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CHAPTER 3

3. Patents in the Field of STS

In addition to the aforementioned scientific studies, patent applications 
have been filed for developed systems, and these patent applications have been 
commercialized. However, a significant portion of the patent applications 
for solar tracking systems are designed for flat-panel PV collectors or PV 
strings/mounting elements and are primarily developed for use in solar 
power plants. Although the fundamental principle of solar tracking systems 
is to ensure that solar rays flow through normal of the aperture surface, 
there are minor and sometimes significant differences between the tracking 
systems of flat-panel collectors and parabolic collectors. Particularly for large-
volume collectors, considering movement and friction loads, differences are 
observed in gear and motor components compared to small-volume systems. 
However, the operating principle remains the same for solar sensors and 
electronic components.

Neale (1979) presented one of the early patents concerning tracking 
systems for concentrating solar collectors. This work involved the movement 
of large parabolic collector arrays that track the sun, as well as the design 
of a sensor that determines the sun’s position. The collector arrays were 
connected in parallel, and solar tracking was achieved via electronic circuits 
from a single point of actuation [United States Patent- Sunpower Systems 
Corporation, Patent No. 877-077, 1979].

Butler (1984) introduced the design of a “pivot solar tracking system” 
through an application to the US Patent Office. According to this design, 
multiple collector rows, regardless of whether the collectors have a flat or 
cylindrical structure, could track the sun with a single center of motion 
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[United States Patent-United States Department of Energy Patent No. 
192,799, 1984].

Warrick (2000) applied to the US Patent Office for a solar tracking 
system designed for the movement of large platform flat-panel collectors, 
primarily PV panels. This novel model utilized three hydraulic arms to 
create a mechanism capable of supporting heavy constructions and the wind 
load generated by strong winds. Two of the three hydraulic arms always 
determined the direction of motion, while the third determined the angle of 
equilibrium, enabling two-axis solar tracking and the scanning of a 90° angle 
in solar elevation [(United States Patent-Amonix Inc., Patent No. 09/282-
315., 2000].

Hilnes (2010) developed a design in his patent that involves placing 
tubular elevations with cellulosic walls on a water-based ground to ensure 
homogeonous wetting of the walls. In this design, since the wall wetted 
from the ground has homogenous moisture content, it stands upright and 
supports the solar cell, which is placed on the vertical cross-section at the 
top, in a vertical position. With sunrise, the surface exposed to radiation 
dries, the cellulosic wall shortens-contracts, and consequently, the upright 
cylindrical structure tilts towards the drying direction. The watery ground 
continuously creates moisture, and the surface facing the sun dries faster, 
resulting in a tilt towards the direction of the sun. This method allows 
for tilting towards the sun’s direction, but information on achieving the 
optimum tilt angle or the precision of the tracking is not provided [United 
States Patent, Patent No. US 7,799 987 B1, 2010)].

Grushkowitz et al. (2018) developed a gear system that allows for the 
collective movement of PV strings. According to this design, the moving 
part in the main construction is mounted on the moving hub of the gear 
mechanism, creating a synchronous movement system [United States Patent 
Patent No. US 2018/0062564 A1., 2018].

Grushkowitz et al. (2018) designed a metal construction called a “torque 
tube” suitable for their patented gear system, creating a structural component 
that allows PV strings to rotate simultaneously at the same angle [United 
States Patent, Patent No. US 2018/0062566 A1., 2018].

Schimelpfenig et al. (2018) developed a new method to address the issue 
of PV array shading or varying tracking errors caused by different surface and 
wind load conditions in large solar power plants. According to this method, 
independent gear motors were placed between the strings, allowing the lines 
in between to have different angular rotations [United States Patent, Patent 
No. US 2018/0175783 A1., 2018].
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Rosedale (2019) developed a sun-tracking umbrella intended to provide 
shade for the user. Simultaneously, they succeeded in obtaining the energy 
required for remote control and movement mechanisms thanks to the PV 
panels placed on the umbrella’s surfaces [United States Patent, Patent No. 
US 2019/0069652 A1., 2019].

Almy and Jensen (2019) added a dampening extension to the torque 
tube to reduce solar tracking errors caused by strong wind loads on PV 
strings connected to the torque tube [United States Patent Patent No. US 
10,340,839 B2., 2019].

Sharpe (2021) developed a gear system for multiple PV clusters to track 
the sun on two axes from a single carrier. They accordingly operated a two-
axis moving gear mechanism and the carrier leg that supports the PV cluster 
together. The tracking mechanism of the system performs tracking based on 
the interaction between GPS, anemometer, snow sensor, and communication 
transducers placed on the PV cluster. Based on the data from the sensors, 
it calculates the sun’s location and the direction the system should face, and 
then sends movement commands to the gears [United States Patent, Patent 
No. US 2021/0194417 A1., 2021].

Poviet (2022) obtained a patent based on the principle of forming 
“canopies” used as shading elements in vehicle parking areas from PV panels 
and having the shading roof track the sun. Accordingly, rotating elements 
that allow the shading roof, which has at least two legs, to rotate in two 
directions around the axis of its legs are placed. A two-stage control element 
that decides how much this rotation should be is installed. First, the angle 
that will capture the optimum tilt angle according to the sun’s inclination 
is calculated, then the maximum angle that the canopy can tilt (depending 
on whether there is a vehicle underneath or not) is calculated, and based 
on these two angle values, the PV roof is oriented towards the sun [United 
States Patent, Patent No. US 2022/0182009 A1., 2022].

Askins et al. (2022) obtained a patent on a passive solar tracking system. 
According to this, the surface intended to track the sun is placed on a carrier 
pipe, and open-mouthed reflective surfaces that allow sunlight to enter 
are placed on the sides of the carrier pipe. In this way, the incoming rays 
are reflected and reach the liquid mechanism on the ground. The liquid 
on the lower surface expands due to the incident radiation, enabling it to 
actuate the hydraulic mechanism that directs the carrier pipe. Thus, since 
more radiation will enter from the surface facing the sun, more expansion 
will occur, and the hydraulic mechanism will direct the carrier block in that 
direction [United States Patent, Patent No. US 11,431,287 B2., 2022].
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Albinmousa et al. (2022) patented a system that performs solar tracking 
using two-axis hydraulic control elements. They created a control mechanism 
with a logic very similar to microprocessor-based solar tracking systems. 
After the sun’s location is detected with light sensors, the pressure drops and 
rise from the gear heads on the vertical or horizontal axis are monitored with 
the rotation of the gears. In this way, the power transmission for the system’s 
rotation is achieved [United States Patent, Patent No. US 11,466,900 B2., 
2022].

Shtein et al. (2023) developed a multi-axis solar tracking system with a 
construction based on the art of cutting and folding known as “krigami” and 
“origami.” By using the logic of krigami, the main carrier was obtained by 
cutting small, thin materials and mounting pre-calculated and memorized 
carrier layers one after the other. A lens was placed inside this carrier, ensuring 
that the sunlight falls perpendicularly on the photovoltaic cell at its focus. 
During the sun’s movement, the memory-equipped (angled during cutting) 
carrier layers opened sequentially, positioning the carrier construction 
according to the sun’s location, thus folding and perpendicularly directing 
the radiation incident on the lens onto the cell at its focus. Since the logic 
of krigami was based on, it became possible to produce lighter and more 
durable carrier constructions, and by combining adjacent focusing cells, the 
production of panels where the cells track the sun became feasible [United 
States Patent, Patent No. US 11,831,272 B2, 2023].

Bapat et al. (2024) have patented a torque tube design that connects 
PV strings, allowing them to rotate together under a single centralized 
command. According to this design, appropriate connection points are 
dimensioned on the rotational gear at the axis of rotation to enable multiple 
torque tube connections [United States Patent No. US 12,003,208, B2, 
2024].

Nicolas et al. (2024) have patented a unique crank gear design that 
enables the collective rotation of PV strings. In their design, they created a 
motion mechanism by mounting a crank gear to a slew drive gear, allowing 
for the generation of precise rotational torque with small movements. 
Accordingly, the torque tubes connected to the PV strings are linked to 
two crank gears, accurately transferring the rotation received from the slew 
drive to the rotation of the arrays [United States Patent Patent No. US 
2024/0243693 A1., 2024].

Cha et al. (2024) have patented a dome-shaped structure onto which 
they affixed elastic PV cells connected by fiber metals. They measured 
the surface temperatures of the PV cells and expanded the hotter surface, 
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thereby increasing the amount of surface area directly facing the sun’s 
rays. This design allows for the expansion of the dome structure’s sun-
facing surface, enabling more PV cells to receive sunlight perpendicularly. 
They also developed a motion mechanism that increases the surface area 
according to the sun’s position in the morning, noon, and evening hours by 
pre-programming the surface design [United States Patent, Patent No. US 
2024/0322745 A1., 2024].
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CHAPTER 4

4. STS Using Image Processing Methods

Solar tracking systems (STS), historically implemented using sensors 
like LDRs, phototransistors, PV cells, and surface elements with varying 
expansion coefficients, or through constant angular rotation, have become 
intensely researched topics over time. Additionally, solar tracking systems 
developed with PLC and microprocessor coding have gained significant 
prominence in the literature. These methods each possess distinct advantages 
and disadvantages relative to one another. The continuous advancements in 
sensor and microprocessor technology ensure the ongoing progress of these 
methods.

In large-scale solar power plants, solar tracking systems are generally 
not preferred due to the high frequency of breakdowns and the substantial 
costs associated with movable mechanisms. Investors often opt to allocate 
funds towards more fixed solar collectors rather than movable mechanisms 
and constructions. However, in situations where space is limited and in 
Concentrating Solar Power (CSP) applications, the use of solar tracking 
systems becomes a necessity. Beyond that, the precision of solar tracking 
is particularly crucial in point-focusing solar energy systems. While the 
importance of solar tracking accuracy is less pronounced in applications such 
as PV systems, flat-plate solar collectors, and solar cooking systems, it plays 
a critical role in solar lighting, parabolic trough, and parabolic dish collector 
applications. Especially in solar lighting systems, precise adjustment of the 
focal point has a significant effect on parameters such as light intensity, 
color, and illumination level of the lighting output. Therefore, developing 
a precise solar tracking system is imperative for collectors to receive solar 
radiation at a perpendicular angle.



24 | The Evolution of Solar Tracking Systems (STS)

In recent years, errors arising from sensor malfunctions, calibration 
degradations, programming deviations, and changes in atmospheric 
conditions have been addressed in various studies in the literature. Solar 
tracking using image processing methods stands out as a developed solution 
to overcome these issues. By modeling the principles of the human eye, 
images of the sky are processed and converted into meaningful data, enabling 
microprocessors to detect the Sun.

4.1. How Does the Image Processing Method Work?

Image processing is a series of techniques and methods that take a digital 
image as input and process it through specific algorithms to either enhance 
its properties (e.g., contrast enhancement, noise reduction) or extract 
specific information from it (e.g., object recognition, feature detection). At 
its core, it relies on mathematical-statistical operations, which have been 
translated into code in programming languages (such as Python, C++, and 
MATLAB). Many ready-made libraries like OpenCV-JavaCV have been 
developed for this purpose.

The image processing process involves the steps shown in Figure 9: 

1. Image Acquisition, 

2. Image Pre-processing, 

3. Image Segmentation,

4. Feature Extraction, 

5. Classification/Recognition, 

6. Image Analysis and Interpretation.

Image Acquisition: A digital image is obtained through a camera, scanner, 
or another imaging device. This image consists of small units called pixels. 
Each pixel typically has numerical values containing color and brightness 
information.

Image Pre-processing: The acquired image may undergo various 
preliminary operations to prepare it for subsequent stages. The goal of this 
stage is to improve image quality, reduce noise, enhance contrast, or perform 
geometric corrections. Common pre-processing techniques include filtering 
(blurring, sharpening), histogram equalization, geometric transformations 
(scaling, rotation), and color space conversions.

Image Segmentation: In this stage, the image is divided into meaningful 
regions or objects. The aim is to separate objects of interest from the 
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background in the image. Various segmentation algorithms are used, such 
as thresholding, edge detection, region growing, and clustering.

Figure 9 Image Processing Method Flowchart

Feature Extraction: Meaningful features that can be used to identify 
objects or patterns are extracted from the segmented regions or directly 
from the processed image. These features can include color, shape, texture, 
corner points, or more complex descriptors (e.g., SIFT, HOG).

Classification/Recognition: Using the extracted features, objects or 
patterns in the image are assigned to predefined categories or recognized. 
Machine learning algorithms (e.g., support vector machines, artificial neural 
networks) are frequently employed in this stage.

Image Analysis and Interpretation: In the final stage, meaningful 
conclusions are drawn and interpretations are made about the image using 
the classified or recognized objects and the extracted information. This can 
encompass various applications, from locating a tumor in a medical image 
to detecting suspicious activity in a security camera feed.
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Figure 10 Image Analysis and Object Detection Steps with Image Processing Methods

Figure 11 Object Detection and Edge Determination Examples

Figures 10 and 11 illustrate the stages of object detection using image 
processing, where new images are derived from an existing image. Codes 
available in libraries of programming languages such as Python, C++, 
MATLAB, and Java facilitate the detection and boundary determination of 
the sun within a sky image, as well as its recognition by distinguishing it 
from similar or characteristic “fake” objects in its surroundings.

The foundations of digital image processing were laid in the 1920s with 
efforts to transmit photographs via telegraph. These early systems made 
transmission possible by digitizing images into pixels and converting them 
into numerical values.

Significant strides have been made in image processing with the advent 
of computers. Space research, medical imaging, and military applications, in 
particular, catalyzed developments in this field. Work at the Jet Propulsion 
Laboratory (JPL) pioneered the enhancement and analysis of raw images 
obtained from spacecraft. The first digital images of the lunar surface were 
processed using fundamental image processing techniques such as noise 
reduction and geometric correction. In the medical field, the development 
of imaging methods like X-ray and computed tomography (CT), and 
the subsequent computer-based processing of these images for enhanced 
interpretability, represent early applications of image processing.
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The image processing method has been a subject of extensive academic 
research. Roberts (1961)’s edge detection operator was one of the first 
systematic approaches to identify edges in an image. He successfully 
managed to control the reflections of 3D world edge lines on 2D images 
and the transformations occurring during this process [Roberts, 1961].

Sobel (1970)’s edge detection operator was a more advanced approach 
compared to Roberts’s operator and demonstrated greater robustness 
against noise [Sobel, 1970].

Otsu (1979)’s automatic thresholding method became a fundamental 
algorithm in image segmentation [Otsu, 1979]. In subsequent periods, 
more complex image analysis and understanding techniques began to be 
developed. Topics such as morphological operations, texture analysis, and 
model-based object recognition gained prominence.

Canny (1986)’s optimal edge detection algorithm remains widely used 
today [Canny, 1986].

Haralick et al. (1973)’s texture analysis method based on gray-level co-
occurrence matrices (GLCM) holds significant importance in the extraction 
of textural features [Haralick et.al, 1973].

With the advancements in computer sciences and machine learning 
techniques, revolutionary progress has been made in image processing. Deep 
learning approaches, in particular, have pioneered breakthroughs in areas 
such as object recognition, image classification, and semantic segmentation. 
Lowe (1999)’s Scale-Invariant Feature Transform (SIFT) algorithm enabled 
the extraction of features robust to scale and rotation changes in images 
[Lowe, 1999].

Viola and Jones (2001)’s AdaBoost-based framework for real-time face 
detection is a significant milestone in the field of object detection [Viola & 
Jones, 2001].

One of the pioneering works in deep learning, AlexNet (Krizhevsky et 
al., 2012), demonstrated the superior performance of deep convolutional 
neural networks (CNNs) in large-scale image classification tasks [Krizhevsky 
et al., 2012].

Today, image processing is an actively used and continuously evolving 
discipline across numerous fields, including artificial intelligence, computer 
vision, robotics, medicine, security, automotive, and many more. Thanks 
to new algorithms, more powerful hardware, and large datasets, image 
understanding and interpretation capabilities are improving daily.
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4.2. How is Solar Tracking Performed with Image Processing 
Method?

While traditional tracking systems generally rely on position determination 
principles via astronomical algorithms or light dependent resistors (LDRs), 
image-processing-based systems offer more precise and dynamic tracking 
capabilities by directly detecting the Sun’s disk from visual data. The system 
typically captures a digital image of a portion or the entirety of the sky 
at regular intervals using a wide-angle camera. This camera may feature 
a sensor capable of acquiring images across different spectral bands (e.g., 
visible light, near-infrared). The key characteristics sought in the camera 
are compatibility with the chosen control element and microprocessor, 
along with sufficient resolution for performing object analysis on the image. 
Figure 12 (a) shows an image of a camera used in solar tracking studies 
employing image processing methods in the literature. As seen in Figures 
12 (b) and (c), cameras with electronic boards of various types, specifically 
5MP OV5647 sensor-equipped CSI type cameras, are utilized.

        (a)    (b)     (c)

Figure 12 (a) Raspi Camera Module 3 NoIR (b)-(c) 5MP CSI Type Camera

The cameras shown in Figure 12 send the sun’s image as raw data to 
the microprocessor, where the image features are processed by the program 
algorithm and the microprocessor. IR-filtered lens types of these camera 
modules are also beginning to emerge in the market. Widely used cameras 
capable of acquiring images across different spectra are available. Figure 
13 (a) shows a Multispectral Camera, and Figures 13 (b) and (c) display 
examples of IR cameras. These cameras capture images across multiple 
wavelength ranges and are widely used in fields such as agriculture, 
environmental monitoring, and remote sensing.
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Figure 14 shows an example of a “Hyperspectral Camera.” Hyperspectral 
cameras are sensors capable of acquiring images in numerous narrow bands 
across a broad range of light wavelengths. These cameras collect spectral 
information associated with wavelengths at each pixel, which can then be 
used to analyze the physical and chemical properties of each object.

(a)                                    (b)                                              (c)

Figure 13 (a) Multispectral Camera (b)-(c) IR Camera

Figure 14 Hyperspectral Camera

For instance, spectral data obtained from these cameras is analyzed to 
determine chlorophyll levels in plants. Hyperspectral images are also used to 
detect pollution or habitat changes. Determining the chemical composition 
of materials is crucial in mining and materials science. Hyperspectral data 
can be analyzed to differentiate between various materials.

The use of Multispectral and Hyperspectral cameras is highly suitable 
for image processing applications. They are useful tools for determining 
the structural properties of tissues and cells, and for making predefined 
diagnoses in fields such as healthcare, environmental protection, agricultural 
monitoring, and material identification. However, their use in the field of 
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solar tracking via image processing methods has not yet gained widespread 
practicality. These cameras offer certain advantages in the initial step of sun 
detection by machines in image-processing-based solar tracking. Further 
studies should determine the specific advantages of these cameras under 
headings such as feature extraction, classification, noise reduction, and data 
fusion.

A common problem encountered during sun detection is the scattering 
effect in camera modules caused by pointing at a very bright sun. While 
algorithms can eliminate these noises, in real-world conditions, light 
intensity values can fluctuate over a very wide range instantaneously due 
to the sun temporarily going behind clouds or atmospheric dust. For 
this reason, fixed thresholding or noise reduction algorithms often lead 
to errors or deviations in sun detection when conditions change. The use 
of multispectral, hyperspectral cameras, and filters would be effective in 
preventing these errors.

Lee et al. (2013) stated in their study that solar tracking performed using 
sensors placed in 4 different directions or with rod-shadow tracking methods 
did not operate effectively under low irradiance conditions. Instead, they 
developed a new method featuring an image-based sun position sensor and 
an embedded image processing algorithm. They reported that this method 
resolved the irregular tracking problem under cloudy atmospheric conditions 
and achieved solar tracking with an accuracy of 0.04° [Lee et. al., 2013].

Figure 15 Procedure of estimating the Sun image center with image processing [Lee et. 
al., 2013]

Azizi and Ghaffari (2013) designed an imaging device based on the 
principle of solar rays forming a point on a screen. This device utilizes 
the position of the point to adjust the orientation of the solar panel. They 
reported that by developing a fuzzy logic controller (FLC), the tracking 
error was reduced to 0.15°. This study employed a simple A4 Tech PK-
836F model camera. A polarizing filter was placed in front of the image 
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acquisition aperture. The sun’s position was translated into a coordinate 
system using the MATLAB programming language, enabling sun tracking. 
As a result, a 60.45% increase in energy production was observed compared 
to fixed systems [Azizi & Gaffari, 2013].

Rahim et al. (2014) designed a two-axis solar tracking system in their 
study, which used image processing, a Raspberry Pi, two servo motors (for 
pan/azimuth and tilt/elevation), and a webcam.

“The Raspberry Pi has recently achieved widespread adoption as a 
microprocessor (Single-borad computer SBC), with Python programming 
language and various algorithms effectively utilizing OpenCV libraries. This 
unit serves as the main component for processing images and controlling 
servo motors. In addition to its flexible and powerful processing capabilities, 
it has become a highly useful and widely used microprocessor due to its 
remote access (WIFI-Bluetooth module), USB interface for connecting 
cameras, external memory, RS-485, RS-232 converters, and similar sensors, 
as well as its ability to function as a data logger through external and internal 
memory.”

In the mentioned study, the camera module captures an image of the sky 
and sends it to the Raspberry Pi. The 24-bit color image received from the 
webcam is converted to 8-bit grayscale. This is achieved using the following 
code:

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Then, the image is converted to a binary image using an adaptive 
thresholding method to detect the sun’s circular shape. The exact position 
of the sun is then determined using the Hough transform. The codes used 
at this stage are:

thresh = cv2.adaptiveThreshold((src, max Value, adaptive Method, threshold 
Type, block Size, C)
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cv2.HoughCircles(image, method, dp, minDist[, param1[, param2[, 
minRadius[, maxRadius]]]])

(a)                                                    (b)

Figure 16 (a) The Grayscale image of the sun. (b) The binary image of the sun.

The image transformation using these codes is illustrated in Figure 16 
(a) and (b).

The movement of the servo motors is controlled by PWM (Pulse Width 
Modulation) signals sent from the Raspberry Pi. When the sun is detected, 
the Raspberry Pi directs the servo motors to position the sun at the center 
of the image. If the sun remains centered in the image, the system stays 
stationary for 10 minutes. The camera module, with its 2048x1536 pixel 
resolution and 3.15 MP image quality, was able to detect the sun even in 
cloudy weather. Precise tracking was achieved through servo motor control 
via PWM signals. For this, the PWM setting was adjusted as shown in Table 
1 [Rahim et. al., 2014].

Table 1 Time a and b with respect to degree of the motor rotation for different image 
[Rahim et. al., 2014]

a (ms) b (ms) Rotation Angle

0.54 19.46 0°

1.01 18.99 45°

1.47 18.53 90°

1.94 18.06 135°

2.40 17.60 180°
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Carballo et al. (2018) aimed to produce a prototype for solar tracking using 
low-cost open-source hardware and computer vision (CV) technologies. In 
doing so, they also aimed to create an educational tool, thereby addressing 
the shortcomings of previous educational instruments.

The prototype includes a Raspberry Pi 3, a Pi Cam, PWM electronic 
control, and a relay module. All hardware is low-cost and open-source. 
MATLAB-Simulink and Mathematica were used as control algorithms. The 
system’s cost was reported as $140, indicating a 90% savings compared to 
other industrial solar tracking systems. The connection diagram used in this 
study is shown in Figure 17.

Figure 17 Electric scheme [Carballo et. al., 2018]

Abdollahpour et al. (2018) conducted image processing on the sun’s 
shadow instead of its direct image in their study. The system components 
consist of a shadow-casting object, a webcam, electronic circuits, computer 
controls, and stepper motors. Figure 18 shows the system components.

An Arduino UNO microprocessor and an L298N motor driver module 
were used as electronic circuits. The sun’s position was detected based on the 
coordinates of the shadow’s start and end points, and movement commands 
were sent to the motors.

Working on the shadow instead of the raw image of the sun proved 
to be a simple but intelligent solution. This is because the sun’s extreme 
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brightness and constantly changing luminosity make working with raw 
images and detecting the sun quite challenging. Furthermore, reducing the 
noise level in the image is often not fully possible, necessitating the use of 
filters. Similarly, reflections from glass surfaces or mirrors can sometimes 
cause a “fake sun” perception, instantaneously directing the collector to a 
highly incorrect position. For these reasons, tracking the sun from an image 
formed by a panel’s shadow has the potential to yield more stable results.

Figure 18 Electromechanical structure with two DoF. [Abdollahpour et. al., 2018]

Figure 19 shows the coordinate values obtained from the start and end 
points of the formed shadow, processed with a Grayscale code. The status of 
these coordinates is made meaningful by the algorithm as follows:

The shadow is in the first quarter (x > xic, y < yic);

The shadow is in the second quarter (x < xic, y < yic);

The shadow is in the third quarter (x < xic, y > yic);

The shadow is in the fourth quarter (x > xic, y > yic).
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Figure 19 The central point of the image and the farthest point of the shadow. 
[Abdollahpour et. al., 2018]

Accordingly, movement commands continue until the shadow transforms 
into a point shape. The solar tracking system operates with an accuracy 
of ±2° while tracking the sun’s position. This system was reported to 
provide 25-45% more energy production compared to fixed-angle systems 
[Abdollahpour et. al., 2018].

As evident from these studies, processing is not limited to the bare image 
of the sun; secondary features that indicate the sun’s position can also be 
utilized. There are also studies where different system components are used 
for sun detection.

Garcia-Gil and Ramirez (2019) used a fisheye camera in their work and 
focused on detecting the brightest object entering the camera’s field of view 
to determine the sun’s position. The system components included: a fisheye 
camera for image sensing, an ATmega2560 microprocessor for image 
processing, stepper motors for movement, and accelerometer-compass 
sensors for control

Initially, a Grayscale transformation was applied to the RGB format 
image. After this transformation, Thresholding was applied to layer the 
image and reduce noise. Figure 20 shows the binary image resulting from the 
image processing stages. The real-time position of the sun was determined 
by positioning based on this image.
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Figure 20 Binary image obtained with the fisheye cam; center at (h, k) pixels. [Garcia-
Gil & Ramirez, 2019]

Using the (h,k) coordinates on the image, the sun’s azimuth and elevation 
angles were calculated with MATLAB and compared with sun azimuth and 
elevation angles obtained from the NOAA Solar Calculator, National Oceanic 
and Atmospheric Administration. During this comparison, commands were 
given to the motors using the algorithm flow shown in Figure 21.

At the end of this study, sun azimuth tracking errors ranged between 
0.49°-3.47°, while elevation angle errors varied between 5.88°-2.43° [Garcia-
Gil & Ramirez, 2019].

Wardhana and Dewi (2020) developed a new tracking algorithm based 
on the Extended Mean Shift algorithm to support solar tracking for dual 
parabolic concentrators. Their aim was to eliminate the focusing and heat 
intensity problems arising from the dependence of traditional photodiode 
sensors and Solar Position Algorithm (SPA) based tracking systems on light 
intensity and natural conditions.
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Figure 21 Algorithm Flow Diagram. [Garcia-Gil & Ramirez, 2019]

In this study, the extended mean shift algorithm was developed, which 
uses the principles of kernel density estimation and searching for the local 
maximum of color histogram similarity measurement to find the tracking 
position of an object in a video sequence. To improve the accuracy and 
reliability of the algorithm, the Expectation Maximization (EM) algorithm 
was used to estimate model parameters and update the histogram image. 
Additionally, a Kalman filter was integrated to ensure the stability and 
robustness of object tracking by estimating the kernel histogram of the 
object model.

In the conducted experiment, the algorithm was successfully applied for 
solar tracking on 148 frames of video data. The obtained results showed an 
average accuracy tolerance value of 98.39% for color similarity in object 
tracking. This high accuracy rate demonstrates that the developed algorithm 
can effectively track the sun’s position and addresses the shortcomings of 
previous research (tracking limited to only image processing or black-and-
white/grayscale images) [Wardhana & Dewi, 2020].

Kumar et al. (2021) worked on a hybrid solar tracking system. In this 
study, they proposed an innovative approach combining LDR sensors 
with Digital Image Processing (DIP) techniques as a solution to tracking 
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deficiencies caused by the low sensitivity of traditional Light Dependent 
Resistor (LDR) sensors.

In this approach, they developed a microcontroller (Arduino UNO) based 
system for optimum positioning of the solar panel. Figure 22 illustrates the 
operating principle of the system created in this study. The system collects 
data through four LDR sensors that detect solar light intensity and a camera 
that captures the sun’s image. RGB images captured by the camera are 
converted to grayscale images to reduce algorithm complexity and shorten 
processing time. A Gaussian filter is applied to remove noise, and unwanted 
bright spots like clouds are eliminated using binary thresholding and finding 
the largest contours methods.

The precise center coordinates of the sun (Ac, Bc) are calculated using 
image processing algorithms, and this information is used to control servo 
motors to focus the solar panel directly on the sun.

Figure 22 System Block Diagram [Kumar et al., 2021].
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The system follows a two-stage tracking methodology:

1. Intensity Sensor Tracking (LDR-Based): Initially, LDR sensors 
adjust the panel based on solar light intensity. This stage can lead to 
errors in cases of partial shading or loss of tracking.

2. Image Sensor Tracking (DIP-Based): To correct errors from the first 
stage, the sun’s image is captured using a camera. The sun’s centroid 
is determined via image processing, and these coordinates guide a 
second tracking mechanism (motor driver) to move the panel towards 
the sun.

Experiments demonstrated that the proposed hybrid LDR and image 
processing-based system provided higher power generation compared to 
LDR-only based or fixed panels. Data collected during a 17-hour daily 
insolation period yielded the following results:

In terms of Output Power (Pout), the LDR and image processing-based 
system produced a maximum output power of 4.96 W (at 12:00), while the 
fixed panel produced a maximum of 4.57 W (at 12:00), and the LDR-based 
system produced a maximum of 4.89 W (at 12:00). On average, the hybrid 
system provided more power generation than the other two systems.

In terms of Open Circuit Voltage (Voc), the LDR and image processing-
based system reached a maximum open circuit voltage of 20.5 V (at 11:00), 
whereas these values remained lower for the other systems (19.2 V for fixed 
panel, 20.0 V for LDR-based).

Based on Short Circuit Current (Isc), similar short circuit current values 
between 0.1 A and 0.2 A were observed across all three systems.

This study proves that the integration of LDR and image processing 
techniques significantly enhances the accuracy and efficiency of solar tracking 
systems. It offers a cost-effective and error-free solution, particularly for 
large-scale solar power plants [Kumar et al., 2021].

Kamat et al. (2022) developed a prototype that positions solar panels 
to receive sunlight perpendicularly from sunrise to sunset. The core of the 
system relies on image processing techniques to accurately determine the 
sun’s position and adjust the panels accordingly.

The system’s operation involves the following steps:

1. Image Capture and Pre-processing: At sunrise, the prototype 
continuously captures images of the sky. These RGB (Red, Green, 
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Blue) images are converted into grayscale images with a single 
intensity channel to reduce processing load.

2. Sun Detection and Center Calculation: The pixel with the highest 
intensity in the grayscale image (the sun’s position) is used as the 
starting point for the border tracking and object detection algorithm. 
The algorithm extracts the sun’s edges in the image to determine its 
exact shape.

3. Noise Reduction: Following the detection of boundaries, an erosion 
operation is applied to remove noise originating from the camera 
sensor or other light sources. This ensures that only the pixel region 
of the sun remains.

4. Distance and Movement Calculation: The centroid of the remaining 
pixel region of the sun is calculated. The Euclidean distances (offsetX, 
offsetY) of this center from the center of the image frame along the 
vertical and horizontal axes are determined.

5. Panel Positioning: These calculated offset coordinates are transmitted 
to two high-torque motors via an L298N Motor Driver. The motors 
move the structure containing four 60W solar panels using a Cyclo-
Gearbox with Dual-Axis Slew Worm Drive capability. This movement 
ensures the panels are positioned perpendicular to the sun, allowing 
for maximum power generation.

6. System Control and Monitoring: The Raspberry Pi 3 Model B+, 
serving as the system’s core, performs tasks such as image capture, 
passing offset values to the motor driver, monitoring system health, 
receiving weather forecast data, and sending power statistics to a 
Firebase database. Figures 23 (a) and (b) show the schematics of the 
system and the control unit.
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(a)                                                          (b)

Figure 23 (a) Prototype Schematic (b) Controller Module Schematic [Kamat et al. 
2022]

According to the study’s findings, this prototype is reported to generate 
approximately 40% more energy compared to a conventional (fixed) solar 
panel setup with the same configuration. The system also ensured that the 
sun’s rays directly hit the panels even in light to moderately cloudy weather. 
Additionally, the prototype is equipped with humidity, temperature, and 
dust sensors, which generate reports and notify the user if an issue is detected 
in the operating environment based on sensor data. An economic analysis 
of the produced prototype estimated a payback period of 5 years [Kamat et 
al. 2022].

As seen from the studies above, the operating principle of solar tracking 
systems using image processing methods is gradually evolving into a 
permanent and stable procedural workflow. This procedure begins with the 
Image Acquisition step and continues with the Image Processing step. In 
the Image Processing step, once the sun’s position in the sky is determined, 
it is brought to a perpendicular position relative to the panel in the 
subsequent Commanding Motion Units step. It is crucial to remember here 
that the sun is the independently moving entity, while the solar collectors 
are the dependently moving elements. A common thread across all studies 
is the effort to minimize errors or electronic flaws occurring during sun 
detection. To this end, innovations such as sensor redundancies, fixed-speed 
algorithms, and hybrid detection models are being developed. However, 
a noticeable gap in the literature is the absence of a system that processes 
solar tracking data using a machine learning model. In this area, by utilizing 
machine learning models, the already high solar tracking accuracy could be 
elevated to even greater values.
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Zeghoudi and Benmouiza (2023) present an innovative hybrid control 
approach for optimizing the orientation of heliostats to enhance the 
efficiency of Concentrating Solar Power (CSP) towers. In this work, they 
combined image processing techniques (IPT) and artificial neural networks 
(ANNs) to enable solar tracking with higher precision. They developed a 
Hybrid Control mechanism by integrating the strengths of both open-loop 
and closed-loop control mechanisms. A closed-loop based IPT using a CCD 
camera was established to detect the sun’s position, and an open-loop based 
control scheme using ANNs was created to predict heliostat trajectories 
during cloudy sky conditions.

In the described hybrid system, the image processing technique (IPT) 
detects the sun’s center (pixel coordinates (x, y)) using images captured 
from a webcam and calculates the heliostat’s azimuth and elevation angles. 
The image processing steps include:

• Converting the color image to grayscale.

• Converting to a binary image using the Otsu method to separate the 
sun region from the background.

• Eliminating small objects.

• Inflating the morphology of the binary image.

• Removing small objects with morphological processing.

• Calculating the percentage of the sun’s circular shape.

• Determining the grayscale centroid of the sunspot.

The innovation in this system is its transition from IPT to an artificial 
neural network (ANN) predictor when the percentage of the sun’s circular 
shape falls below 75% or the sun’s image moves out of the webcam frame. 
This allows the ANN to estimate the heliostat’s position under cloudy or 
obstructed conditions. The ANN model uses five parameters as input: date, 
time, geographical location, receiver height, heliostat-tower distance, east-
west distance, and north-south distance.

Simulation results showed that the hybrid ANN-IPT method minimized 
the tracking error to not exceed 0.1. This proves that the method is acceptable 
for controlling heliostats in solar tower systems. The excellent performance 
of this hybrid approach in cloudy weather was particularly emphasized. 
Thus, the applicability of hybrid control systems in heliostat applications 
has been demonstrated [Zeghoudi & Benmouiza (2023].
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As observed, academic studies consistently demonstrate that solar 
tracking systems utilizing image processing methods can achieve high 
precision. Given its status as a relatively new and active research area, further 
advancements are anticipated.
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CHAPTER 5

5. System Components

While the system components vary depending on the physical size of 
the solar tracking system, common elements used across all systems are 
illustrated in Figure 24.

Figure 24 Main parts of solar tracking systems by image processing method

The camera component of the system was discussed in Section 4.2. 
Before moving to the algorithm and coding steps, it is essential to discuss 
the motors used in the system’s motion mechanisms. The size and motion 
capability of these motors will determine the algorithmic-cycle (logic) used 
in the algorithm and the electronic circuit between the microprocessor and 
motor control.

While stepper motors and small servo motors can be used in small-scale 
experimental systems, linear actuators can be employed in large, single-post, 
island-type constructions supporting 12 PV panels. Gear-driven or belt-
driven motors are no longer preferred. Slew drive motors, which enable the 
movement of large strings, can also be used. To adjust motor speed, motor 
drivers can be connected to the circuit, or gearboxes can be mounted on 
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the motor shaft. Motion is achieved using numerous options and rotation 
methods.

5.1. Servo Motors vs. Stepper Motors in Solar Tracking

Figures 25 (a) and (b) show examples of servo and stepper motors. 
Stepper motors are electromechanical devices that allow the rotor to move 
in precise, fixed angular steps by applying pulse signals to the coils on the 
stator. The rotor’s position is directly dependent on the number and sequence 
of applied pulses. They are typically used in open-loop control systems, -no 
feedback on the motor’s movement- and the controller assumes the motor 
has reached the desired position. Each pulse triggers the rotor to turn by a 
specific angle and these steps accumulate to form the total rotation amount. 
Open-loop control generally leads to simpler control circuits and lower 
costs. They possess high holding torque when energized, which increases the 
motor’s resistance to load at a standstill. This presents an advantage in solar 
tracking systems, especially under wind and snow loads. Thanks to their 
brushless structure, they are long-lasting and require minimal maintenance.

In stepper motors, torque values significantly decrease at high speeds. 
There is a risk of step skipping under overload or at high speeds, leading to 
position errors. Since there is no feedback, this error might go unnoticed. 
They produce noticeable vibration and noise, especially at low speeds. For 
this reason, their use in solar tracking systems is not recommended for 
applications where high precision is crucial.

Servo motors are closed-loop control systems capable of maintaining a 
specific position, speed, or torque value with high accuracy. A servo motor 
system consists of a feedback sensor (encoder, resolver, etc.) and a driver 
(servo driver). The driver moves the motor according to control signals, and 
the feedback sensor continuously measures the motor’s current position or 
speed. The difference (error) between this measured value and the desired 
target value is instantly corrected by the driver, ensuring the motor performs 
as desired.
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(a)                                                               (b)

Figure 25 (a) Servo motor (b) Step motor

Thanks to closed-loop control, servo motors offer very high positioning 
accuracy and repeatability. They can produce high and constant torque 
over a wide speed range, enabling rapid acceleration and dynamic motion 
capability. This is not a critical feature in solar tracking systems where high 
speed is not desired. However, their feedback mechanism allows them to 
instantly detect and correct load-dependent torque changes, ensuring stable 
performance. Their quiet and vibration-free operation and higher efficiency 
make their use in solar tracking systems advisable. It should be noted that 
adjusting the PID (Proportional-Integral-Derivative) control parameters 
and correctly calibrating the system for high-cost servo motors requires 
expertise.

5.2. Linear Actuators in Solar Tracking

With the widespread adoption of robotic applications and 3D printers, 
the usage areas of linear actuators have expanded. Previously used in 
applications like opening/closing garage doors and positioning hospital beds, 
linear actuators, which operate on the principle of a worm gear, have become 
suitable system components for applications requiring angular movements 
and speed control. Figure 26 shows industrial-type linear actuators. Among 
the many varieties of linear actuators, both electric worm gear types and 
hydraulic types are suitable for solar tracking systems. Electric actuators 
themselves come in 12V, 220V, and even 380V versions. However, DC 
type electric linear actuators may be chosen to avoid complex electronic 
circuits for PLC and microprocessor control.
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Figure 26 Industrial linear 3000N actuator

Table 2 provides the types of linear actuators. The appropriate actuator 
is selected by calculating the system’s load capacity, extension length, wind 
and snow loads, and holding force.

Table 2 Types of Linear Actuators

Actuator Type Operating 
Principle Advantages Disadvantages Typical 

Applications

Electrical

Driven by an 
electric motor 
(DC or AC) via 
a ball screw, lead 
screw, or belt-
pulley mechanism.

High precision, 
programmability, 
clean operation, 
and energy 
efficiency.

Higher cost, 
requirement for 
complex control 
electronics, 
and limited 
performance in 
sudden high-force 
applications.

Robotics, 
automation 
systems, medical 
devices, solar 
tracking systems, 
and valve control.

Pneumatic

A piston-cylinder 
mechanism 
operated by 
compressed air.

Fast movement, 
simple structure, 
reliable, cost-
effective, and 
capable of 
generating high 
forces.

Generally lower 
precision, requires 
a compressed 
air source, noisy 
operation, and 
risk of air leakage.

Industrial 
automation 
(grippers, 
conveyors), door 
opening systems, 
and packaging 
machines.

Hydraulic

A piston-cylinder 
mechanism 
operated by 
pressurized fluid 
(oil).

Capable of 
generating very 
high forces, 
provides smooth 
and stable 
movement, and 
is ideal for heavy 
loads.

Complex system 
(pump, tank, 
valves), risk 
of oil leakage, 
maintenance 
requirements, and 
higher cost.

Heavy industry 
machinery (e.g., 
excavators, 
presses), 
construction 
equipment, and 
ship steering 
systems.

Mechanical

Manual or 
motorized 
movement 
through 
mechanical 
elements such 
as levers, cams, 
gears, or screws.

Simple, cost-
effective (for 
manual versions), 
reliable, and not 
dependent on an 
external energy 
source.

Generally manual 
control, lower 
precision, limited 
stroke (range of 
motion), and slow 
movement.

Jacks, manual 
adjustment 
mechanisms, 
simple lifting 
systems, and door 
locks.
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Piezoelectric

Based on the 
principle of 
piezoelectric 
materials changing 
shape with electric 
current.

Very high 
precision, very 
fast response 
time, sub-micron 
motion capability, 
and compact size.

Very small 
range of motion 
(micron level), 
limited force, 
and requires high 
voltage.

Optical alignment, 
microscopes, 
nano-positioning, 
and valve control 
(for precise flow).

Linear actuators convert circular motion at the rotational axis into linear 
motion through a gear and worm screw design. In this way, they create a 
shaft mechanism that extends back and forth. Stator assemblies rotate the 
shaft to control direction and distance of travel, making these actuators ideal 
for process automation and controlled load handling in manufacturing cells 
or conveyor systems.

Choosing DC motors for the rotation process is preferable for applications 
remote from grid connections, aiding in auxiliary power source selection 
and portability. The motors for these types of actuators can be brushed or 
brushless. Brushed motors deliver cost-effectiveness and commonality, but 
require maintenance due to eventual brush wear, while brushless motors 
offer enhanced durability and increased operating life.

Furthermore, it must be calculated whether the fully closed and fully 
open positions of the linear actuators are sufficient to provide the required 
angular motion of the construction. The extension length of linear actuators 
is called “stroke.”

Figure 27 Two axis solar tracking system with linear actuator
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Figure 27 shows a two-axis solar tracking system where the motion 
mechanism is controlled by linear actuators. One actuator tracks the sun’s 
azimuth angle within the sunrise-sunset angular range, while the other 
tracks the seasonally varying sun elevation angle. The crucial point here is 
that the stroke value of the linear actuator must be suitable for the angular 
movement during full sunrise and full sunset. Similarly, it is important that 
the stroke value of the other actuator is sufficient to cover the max-min sun 
elevation angle movement during summer and winter periods.

The variation in the max-min range of sunrise and sunset angles and sun 
elevation angles depends on:

• The “n” value (which determines the declination angle (δ), representing 
the day of the year)

• Latitude angle (Ø)

It should not be forgotten that “day-time / length of daylight” is 
dependent on these values.

Table 3 Highest and Lowest Day Length Angular Values at Selected Centers

City Latitude (ϕ)
Lowest Day Length 
(Angular, Winter 

Solstice)

Highest Day Length 
(Angular, Summer 

Solstice)

Izmir 38.41° N 139.76° 220.24°

Istanbul 41.00° N 135.68° 224.32°

Ankara 39.93° N 137.46° 222.54°

Berlin 52.52° N 111.18° 248.82°

Paris 48.86° N 120.48° 239.52°

Roma 41.90° N 134.26° 225.74°

Madrid 40.42° N 136.68° 223.32°

Washington 38.91° N 138.98° 221.02°

Pekin 39.90° N 137.52° 222.48°

Tokyo 35.68° N 143.74° 216.26°

Table 3 shows the highest and lowest day length values for some cities. 
Accordingly, a system designed for tracking the sun along the east-west 
(solar azimuth) axis and the linear actuator chosen for it must be designed 
to accommodate the maximum and minimum angular movements shown 
in Table 3. A system designed based on the highest angular movement 
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will continuously receive perpendicular sunlight along the east-west axis 
throughout the year.

The sunset/sunrise hour angle (ωss/sr) is calculated using the following 
formulas:

cos(ωss​)​=−tan(Ø)tan(δ) (1)

where:

δ: Declination angle

∅: Latitude angle

Day Length (angular)=2×ωss (2)

For example, a system designed for Izmir must be suitable for an angular 
sweep of 139.76° for the shortest day length (Winter Solstice, December 
21st) and 220.24° for the longest day length (Summer Solstice, June 21st). A 
system designed based on the maximum angular movement will continuously 
receive perpendicular sunlight along the east-west axis throughout the year.

It is observed that solar tracking systems produced with linear actuators 
generally operate within a range of less than 180° on the east-west axis. This 
is because when the rotation exceeds 180°, the rotational movement axis of 
the actuator falls behind the rotation axis of the construction. In such cases, 
the actuator’s connection point shifts to the opposite side of the rotation axis 
and cannot generate rotation, potentially damaging the construction during 
retraction. Since actuators move back and forth from a single connection 
point, approaching 180° rotation causes strain on the construction. Using 
two different actuators for each direction would resolve this issue. However, 
errors in synchronizing the movement of two actuator and in writing the 
synchronous control algorithm would lead to system stoppage or excessive 
load on the actuators.

In solar energy systems, movable mechanisms are undesirable due to their 
high cost and the need for frequent breakdowns, maintenance, and repairs. 
Resolving the east-west movement with a second actuator eliminates the 
initial problem but may introduce new ones.

When examining the amount of useful energy produced during the initial 
sunrise and final sunset periods, it is negligible compared to the midday 
period. In situations requiring angular tracking beyond 180°, adding an 
additional actuator and considering the associated breakdown, maintenance, 
and repair costs do not yield feasible results. Instead, increasing the number 
of panels or the surface area might offer a more effective solution.



52 | The Evolution of Solar Tracking Systems (STS)

In solar lighting applications, this (180° angular tracking at max.) implies 
that the maximum lighting duration can be 12 hours. In cases where the day 
length exceeds 12 hours, performing solar tracking with linear actuators can 
lead to significant efficiency loss in solar lighting applications.

While certain geometric constraints cause issues during east-west (solar 
azimuth) axis solar tracking with linear actuators, these problems do not 
arise for tracking along the north-south (solar elevation) axis. For tracking 
along the north-south axis, the sun elevation angle (αs) must be determined. 
The sun elevation angle is a seasonally varying parameter. In the Northern 
Hemisphere, it takes high values in summer and low values in winter. It 
should be noted that this movement is reversed in the Southern Hemisphere. 
The sun elevation angle (αs) can be calculated using the zenith angle (θz). 
Here, the zenith angle refers to the angular value between the horizontal 
surface normal and the sun’s rays and is calculated as follows:

cos(θz)​=​sin(Ø)​sin(δ)​+​cos(Ø)​cos(δ) cos(w) (3)

At solar noon, since w=0 (solar hour angle), Equation (3) simplifies to:

cos(θz ) = sin (∅) sin (δ) + cos (∅) cos (δ) (4)

This can be further simplified using trigonometric identities:

cos (θz ) = cos(∅−δ) (5)

As shown in Figure 28, the solar elevation angle is the complement of the 
zenith angle. Therefore, for solar noon, the zenith angle is:

θz =∣∅−δ∣	 (6)

Figure 28 Zenith Angle vs. Solar Elevation Angle



Erkan Kacan | 53

The solar elevation angle (αs ) is then:

αs =90°−∣∅−δ∣	 (7)

Table 4 presents the maximum and minimum solar elevation angles at 
solar noon for various locations.

Table 4 Maximum and Minimum Solar Elevation Angle Values at Solar Noon for 
Various Locations

City Latitude 
(∅)

Minimum Solar Elevation 
Angle (αs,min )

Maximum Solar 
Elevation Angle (αs,max )

Izmir 38.41° N 28.14° 75.04°

Istanbul 41.00° N 25.55° 72.45°

Ankara 39.93° N 27.02° 73.88°

Berlin 52.52° N 14.03° 60.93°

Paris 48.86° N 17.62° 64.71°

Rome 41.90° N 24.65° 71.55°

Madrid 40.42° N 26.13° 73.07°

Washington 38.91° N 27.64° 74.56°

Beijing 39.90° N 27.05° 73.85°

Tokyo 35.68° N 30.87° 77.73°

According to this table, a solar tracking system designed for Izmir 
must be compatible with a minimum solar elevation angle of 28.14° and 
a maximum solar elevation angle of 75.04° at solar noon. In other words, 
the structure and linear actuator moving along the North-South axis must 
be able to achieve these angular values. The panels should be positionable 
between a minimum inclination of 28° and a maximum of 75°. The values 
in Table 3 and 4 should be used as a basis when designing the structure and 
selecting the linear actuator. North-South movement is easier to track with 
a single linear actuator compared to East-West movement, as it involves a 
narrower range.

5.3. Slew Drive in Solar Tracking

Slew drive motors provide a solution to the issues that arise when linear 
actuators are used to generate rotational motion from their linear back-and-
forth movement. A slew drive is a mechanical system employed to rotate 
or change the position of a load. This system typically operates with a 
gear mechanism, providing rotational movement and is used for moving 
heavy loads. Being a gear mechanism that rotates on its own axis, it is more 
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compatible with rotational motion. These motors are frequently utilized 
in large and heavily loaded conveyors or construction machinery. In solar 
tracking applications, they serve as the movement mechanism for large PV 
strings or large parabolic trough and parabolic dish collectors.

Figure 29 Two axes solar tracking system using slew drive

As shown in Figure 29, a PV stand with two-axis solar tracking utilizes 
slew drives for rotational mechanisms in both East-West (solar azimuth) and 
North-South (solar elevation) directions. The gear, which is the fundamental 
component of a slew drive, provides rotational motion. The gearbox enables 
high torque and holding force to be achieved with low-power motors. This 
allows for a wide range of applications. The motor providing the movement 
can be an AC (220~380V) or DC (12~36V) electric motor, or a hydraulic-
pneumatic motor.

These systems are distinguished by their capacity to bear high radial 
and axial loads, as well as their ability to transmit significant torque values. 
Commonly used slew drive types in the market can be classified by their 
structural characteristics, operating principles, and typical application areas 
as follows:
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• Worm Gear Slew Drives

• Spur Gear Slew Drives

• Single-Axis Slew Drives

• Dual-Axis Slew Drives

• Enclosed Slew Drives

• Open Slew Drives

5.3.1. Worm Gear Slew Drives

Worm gear slew drives are based on a combination of a worm and a 
connected worm wheel. The worm acts as the driving element, transferring 
rotational motion to the worm wheel. The most distinguishing feature of 
these systems is their ability to provide significant torque transmission even 
in small sizes, thanks to high conversion ratios. Additionally, they often 
possess a self-locking feature; meaning, when the motor stops or disengages, 
they prevent the load from moving backward, eliminating the need for an 
additional braking mechanism. This offers a significant advantage, especially 
in applications requiring secure locking.

Worm gear slew drives are widely used in areas where high torque, precise 
positioning, and self-locking capabilities are prioritized. Solar tracking 
systems are one such application. They are preferred in solar tracking systems 
to maintain tracking accuracy under variable load conditions such as wind 
and snow loads. Other application areas include cranes and lifting equipment, 
aerial platforms, hydraulic machinery, and robotic systems requiring precise 
positioning. Their key differences from other slew drive types are their high 
conversion ratios and inherent self-locking capability. This ensures that the 
load maintains its position even the motor is disengaged, providing a critical 
advantage in terms of safety and stability. Other gear types typically do not 
offer this feature and require additional braking systems.

5.3.2. Spur Gear Slew Drives

Spur gear slew drives are systems that transmit torque through the 
meshing of parallel-axis spur gears. They have a simpler gear geometry 
compared to worm gear systems. Relatively low friction coefficients of 
spur gears allow higher efficiency and potentially higher rotational speeds. 
However, unlike worm gear systems, they do not have a natural self-locking 
feature; therefore, external braking systems may need to be integrated to 
hold the load in a specific position.
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These types of slew drives are preferred in applications where higher 
rotational speeds and high efficiencies are desired, but self-locking is not 
critical. They can be used in areas such as industrial automation systems, 
light and medium-duty cranes, material handling equipment, and general 
engineering platforms. The lack of a self-locking feature necessitates an 
additional braking system, which can increase cost or complexity.

Figure 30 illustrates the differences and similarities between worm gear 
and spur gear slew drives produced by IMO Industry in Gremdorf/Germany 
[Industries, IMO. (2025, 06 09)].

The most significant difference lies in how the drive mechanism connects 
to the rotating gear. In a worm gear slew drive, the drive mechanism and 
the gear are positioned tangentially in the same plane, resulting in higher 
torque and holding force. In a spur gear slew drive, the drive mechanism is 
positioned tangentially to the rotating gear in a perpendicular plane. This 
geometric design allows for higher rotational speeds and lower friction.

Figure 30 Differences and Similarities of Worm Gear and Spur Gear Slew Drives 
[Industries, IMO. (2025, 06 09)]

5.3.3. Single-Axis Slew Drives

Single-axis slew drives are systems that provide movement around a 
single axis of rotation. They typically incorporate a worm gear mechanism 
and can offer high torque capacity with self-locking capability. Structurally, 
they are simpler than dual-axis models.

These systems are used in applications requiring positioning in a single 
plane of rotation. They are commonly found in single-axis solar tracking 
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systems, wind turbine blade pitch adjustments, medium-scale cranes and 
lifting equipment, and industrial automation systems. Unlike dual-axis 
systems, they offer only a single axis of rotation. This simplicity provides a 
more cost-effective and less complex solution, depending on the application 
requirements.

5.3.4. Dual-Axis Slew Drives

Dual-axis slew drives are systems that provide two independent axes of 
rotation within a single integrated unit. These axes are typically perpendicular 
to each other and can be controlled independently. They are commonly 
referred to as the primary axis (e.g., azimuth) and the secondary axis (e.g., 
elevation). This integrated design offers a more compact and optimized 
solution compared to two separate single-axis systems.

Their most prominent and widespread application is in dual-axis solar 
tracking systems. In these systems, the goal is to maximize energy efficiency 
by enabling solar panels to track the sun’s movement in both horizontal 
(azimuth) and vertical (elevation) planes. They can also be used in areas 
requiring complex motion profiles, such as robotic applications and satellite 
communication positioning systems.

Figure 31 shows single-axis and dual-axis slew drives manufactured by 
Jiangyin Sunslew Machinery Equipment for use in solar tracking systems 
[(Jiangyin Sunslew Machinery Equipment) https://www.sunslewdrive.com/
slewing-drive/].

(a)                                                         (b)

Figure 31 (a) Single axis slew drive (b) Dual axis slew drive [(Jiangyin Sunslew 
Machinery Equipment) https://www.sunslewdrive.com/slewing-drive/]
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Figure 31 (a) shows a single-axis slew drive designed with a special torque 
tube connection for solar PV string tracking. Figure 31 (b) shows a flange-
mounted dual-axis slew drive for two-axis solar tracking systems. It offers 
two different movement capabilities that can be controlled independently.

5.3.5. Enclosed Slew Drives

Enclosed slew drives are designed for where all gear and bearing 
components are housed within a sealed enclosure. This enclosure protects 
the internal mechanism from dust, dirt, moisture, corrosive chemicals, and 
other environmental contaminants. The sealing prevents internal lubricant 
from leaking out while also preventing external elements from entering. 
This extends the system’s lifespan and reduces maintenance requirements.

They are preferred in applications with harsh environmental conditions, 
especially outdoor applications, the maritime sector, construction 
equipment, agricultural machinery and mining equipment, where a high 
level of protection and durability is required. The biggest difference from 
open gear systems is that the gear mechanism is completely enclosed and 
sealed. Those meeting IP-64 and IP-X standards are the most preferred. This 
provides better environmental protection, less maintenance and a longer 
service life.

5.3.6. Open Slew Drives

Open slew drives are designed for where the gear mechanism is in direct 
contact with the external environment. In these systems, the gears are 
typically exposed and visually accessible. This can reduce initial investment 
costs and, in some cases, improve maintenance accessibility. However, they 
are more susceptible to external factors and require regular lubrication and 
cleaning.

They can be used in applications with less demanding environmental 
conditions and relatively controlled environments. They may be preferred in 
areas such as indoor cranes, lighter load platforms, and industrial machinery 
with less intensive use. The main difference from enclosed systems is that 
the gear mechanism is exposed and subject to environmental factors. While 
this provides lower manufacturing costs, it also necessitates more frequent 
maintenance and environmental protection requirements.

5.3.7. Slew Drive Selection Criteria and Design Analysis

The correct selection of slew drive systems is a critical decision that directly 
impacts an application’s performance, safety, and economic lifespan. The 
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selection process requires a detailed analysis of the application’s requirements 
and matching them with the structural and operational characteristics of the 
drive system. This analysis primarily considers:

• Torque requirements

• Speed

• Precision

• Load-bearing capacities

• Environmental conditions

• Economic factors

	The structure of the system where the slew drive will be used (e.g., 
solar tracking system, crane, robotic arm, antenna positioning), the 
required type of motion (continuous rotation, indexing), the angle 
of motion, and the number of cycles are fundamental determinants. 
The application’s static (holding the load in a stationary state) and 
dynamic (rotating the load while in motion) torque requirements 
should be the basis for selecting motor power and gear ratio. Wind 
loads, sudden stops/starts, and friction forces must be included in 
these calculations.

	The required rotational speed (rotation per minute or degrees 
per second) and positioning precision (arc seconds or degrees) 
of the application are critical in determining the gear ratio, gear 
tolerances, and backlash characteristics.

	The radial (non-axial) and axial (along the axis) loads to which the 
drive will be subjected, as well as the overturning moment (OTM), 
must be carefully calculated. This directly affects the sizing of the 
drive’s bearing system and gear structure.

	The operating environment’s exposure to temperature, humidity, 
dust, water, corrosive substances and UV radiation determines 
characteristics such as the drive material, sealing class (IP rating), 
and corrosion resistance. The selection of enclosed or open-type 
drives is made based on these factors. The expected service life, 
maintenance intervals and ease of service should be considered in 
the drive’s design and material selection. Economic factors such as 
initial purchase cost, maintenance costs, and energy efficiency also 
play an important role in the decision-making process.
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Load Analysis and Torque Calculations;

All loads acting on the application and the moments (torques) generated 
by these loads are calculated. This includes static and dynamic conditions.

Static Torque (Ms ): This is the maximum torque the system must 
withstand while stationary.

Ms =Fload ×rload +Fwind ×rwind +Madditional  (8)

Where:

Ms : Static Torque (N.m)

F: Force (N)

r: Perpendicular distance from the force to the axis of rotation (m)

Madditional : Additional moments (e.g., friction load, etc.) (N.m)

Dynamic Torque (Md ): This is the torque required by the system while in 
motion (acceleration, constant speed rotation, deceleration).

Md =I×α+Mfriction  (9)

Where:

Md : Dynamic Torque (N.m)

I: Moment of inertia (kg.m2)

α: Angular acceleration (rad/s2)

Mfriction : Friction torque (N.m)

Overturning Moment (OTM): This is the moment acting on the slew 
drive’s flange, attempting to tip the system and is critical for determining 
the bearing capacity. It is typically specified by slew drive manufacturers in 
their product catalogs. The catalog values, i.e., maximum OTM values, must 
not be exceeded.

The calculated maximum torque values determine the nominal torque 
capacity of the slew drive to be selected. Safety factors (Fs ) are generally 
applied to these values. Fs  can be chosen as 1.2 (120%) for a safety limit 
sometimes 1.5 (150%) as desired according to design engineer expertise. 
The safety factor is an additional precautionary value added to the maximum 
torque value required and determined by calculation. In systems operating 
under natural conditions, it serves as a safety margin against unforeseen 
circumstances, often used by design engineers as a precautionary measure. 
This value can be chosen higher or lower based on the design engineer’s 
experience and observable anomalies in the external environmental conditions 
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where the system will operate. Especially in today’s climate crisis driven by 
global warming, where anomalies are observed in natural conditions, careful 
attention should be paid to determining the Fs  value.

Mrequired =Mmax ×Fs  (10)

Speed and Reduction Ratio Determination; The maximum rotational speed 
(Nmax ) and cyclical use (total number of rotations per day or year) required 
by the application are considered.

The relationship between the slew drive’s motor input speed (Nmotor) 
(rpm) and the drive output speed (Noutput ) (rpm) is determined by the 
conversion ratio (i):

output

motor

Ni N=  (11)

Higher conversion ratios provide higher torque output and lower output 
speed, while lower conversion ratios provide higher speed and lower torque.

Evaluation of Load-Bearing Capacities; The radial load (Fr ), axial load (Fa 
), and overturning moment (OTM) capacities of slew drives are compared 
with the manufacturer’s specified catalog values. These capacities are critical, 
especially in heavy-load applications.

Load-Bearing Capacities and Gear Diameters

The load-bearing capacities of slew drives generally increase proportionally 
with the turntable diameter (gear diameter). Larger diameter slew drives can 
carry higher radial, axial loads, and overturning moments because they have 
larger bearings and larger gear contact areas.

Gear diameters are determined based on the torque and load capacity 
required by the application. Generally, as torque requirements increase 
or the overturning moment becomes larger, slew drives with larger gear 
diameters are preferred. For example, slew drives are available in various 
diameters (e.g., from 100 mm to over 1000 mm) for torques ranging from 
a few hundred Nm to several hundred kNm.

Backlash and Precision Analysis

For applications requiring positioning precision, the backlash value of the 
slew drive is of great importance. Backlash refers to the clearance between 
meshing gears and is typically specified as an angular value (e.g., arc minutes 
or degrees) in the manufacturer’s catalog.
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For precise applications, slew drives with low backlash (precision 
backlash) should be preferred.

5.3.8. Slew Drive Selection: A Case Study “Calculation Method 
for Solar Tracking Systems”

Commercially available electricity generation systems utilizing solar 
energy are increasingly being sold as complete packages including solar 
tracking systems. These packages typically comprise pre-fabricated structures 
containing 1-2-4-8-16 PV panels, along with dual-axis tracking mechanisms 
and microprocessor units for control. With advancing technology, diverse 
manufacturing materials are being employed, and their variety expands day 
by day. Among these systems, those incorporating 8 PV panels (3.2 kWp~4 
kWp) are the most frequently sold systems. They are preferred due to their 
capacity to meet the average electricity demand of a household in off-grid 
areas. To properly select a slew drive for use in these systems, it is essential 
to meticulously follow a specific calculation methodology.

It is crucial to determine the primary loads (wind and panel weight) 
that 8-panel PV system may encounter, and consequently, the expected 
torque from the slew drive. Figure 32 presents the design parameters for 
the system. While more detailed calculations could be incorporated into this 
methodology, a simplified and rapid calculation method has been chosen. 
Additionally, it is recommended that the design engineer considers the safety 
factor Fs  mentioned previously.

Figure 32 A case scenario slew drive analysis for dual axis solar tracking system
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Case scenario system parameters;

•	 Number of Panels: 8 units

•	 Dimensions of Each PV Panel: 

o Length (L): 2 meters

o Width (W): 1 meter

•	 Weight of Each PV Panel (m): 25 kg

•	 System Height (average height from ground to panel center) (hsystem): 
3 meters (This will affect the distance from the panel’s wind center 
when calculating wind moment.)

•	 Maximum Wind Speed (Vwind ): 120 km/h ≈ 33 m/s (For storm 
conditions)

•	 Air Density (ρ): 1.225 kg/m³ (Standard sea level air density)

•	 Drag Coefficient (Cd ): 1.2 (A typical value for PV panels, varies with 
panel angle)

•	 Gravitational Acceleration (g): 9.81 m/s²

1. Total Panel Area and Weight

First, the total panel surface area and total panel weight for the system 
must be determined.

Panel Surface Area; Ap =L×W (12)

=2(m)×1(m)=2(m2)  

Total Surface Area; Atotal =Number of Panels×Ap  (13)

=8×2(m2) =16(m2)  

Total Panel Weight; Wtotal = Number of Panels×m×g (14) 

=8 × 25 (kg) × 9.81 (m/s2) =1962(N) 

2. Wind Load Calculation (for Azimuth axis)

The force on the PV panels exerted by wind and the resulting moment on 
the slew drive should be calculated for the worst-case scenario. Therefore, it 
should be assumed that the wind strikes the panel surface perpendicularly.

Wind Pressure (Pw ); Pw =0.5×ρ×(Vw )2  (15)

Pw =0.5×1.225(kg/m3) ×(33.33(m/s))2≈680 Pa (Pascal)



64 | The Evolution of Solar Tracking Systems (STS)

Total Wind Force (Fwind ): Fwind =Pw ×Atotal ×Cd  (16)

Fwind =680(Pa)×16(m2) ×1.2≈13056(N)

Overturning Moment Caused by Wind (Mwind ): This moment is a critical 
value, especially for the azimuth (horizontal) axis slew drive. The system 
height can be used as the moment arm.

In case of a different PV array configuration, determining the center of 
mass will be important. 

Mwind =Fwind ×hsys   (17)

Mwind =13056(N)×3(m)=39168(Nm)

3. Moment Caused by Panel Weight (For Elevation Axis)

For the elevation (vertical) axis slew drive, the moment generated by the 
panels’ own weight is significant. This moment is maximal when the panels 
are in a horizontal position and at the furthest point from the slew drive. 
This drive controls the mechanism that moves the panels up and down. The 
panels are arranged in a 2x4 configuration, meaning a deviation from the 
center of mass equivalent to 2 heights and 4 widths. The distance of each 
row from the elevation rotation axis will be “L/2”.

Moment Arm (rel ): The horizontal distance of the panels’ center of mass 
from the elevation axis will be L/2=1(m).

Moment Caused by Panel Weight (Mel ): Mel =W×rel   (18)

Moment of 1st row; Mel = (4×245.25) (N)×1(m)=981(Nm)

Total moment of 2 rows; Mel =981(Nm)×2=1962(Nm)

Since the moment arm value significantly alters the system’s resistance, 
arranging PV panels in 2 vertical rows instead of 2 horizontal rows yielded 
more effective results. The most important criterion for designing such systems 
with 1-2-4-8-16 PV panels is their suitability for creating a symmetrical 
geometric structure. This allows the system drive and construction design to 
produce more balanced and efficient results.

4. Moment Caused by Wind Load (For Elevation Axis)

The wind moment on the elevation axis varies depending on the elevation 
(tilt) angle of the panels. The most critical situation occurs when the wind 
strikes the panel surfaces perpendicularly. In this case, the moment arm is 
the greatest perpendicular distance from the aerodynamic center on the 
panel surfaces to the elevation axis.
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Melevation,wind =Fwind ×relevation,wind   (19)

Melevation,wind =13056(N)×1(m)=13056(Nm)

5. Moments of Inertia (Iazimuth , Ielevation )

Moment of inertia is a measure of an object’s resistance to rotational 
motion. It specifically determines the torque that the motor and slew drive 
must overcome during acceleration and deceleration (dynamic) phases of 
the system. The total moment of inertia of the system is the sum of the 
moments of inertia of all panels and their supporting structure (frame, pole, 
etc.).

Simplifying the system by defining PV panels as flat plates, the moment 
of inertia of a single panel about its center of mass is:

Ipanel,center_of_mass,azimuth =1/12 ×mp ×(L2+W2)  (20)

Ipanel,center_of_mass,azimuth =1/12 ×25(kg)×(22+12)(m2)=10.41(kg⋅m2)

The moment of inertia created by the panels at the axis of rotation, 
according to the “Parallel Axis Theorem”, is:

Itotal =Icenter_of_mass,azimuth/elevation +md2  (21)

Iazimuth =533(kg⋅m2)

Ipanel,center_of_mass,elevation =1/12 ×mp ×(L2)  (22)

Ipanel,center_of_mass,elevation =1/12 ×25(kg)×22(m2)=8.33(kg⋅m2)

Ielevation =266.6(kg⋅m2)

The amount of dynamic torque required to overcome the highest 
moment within the moments of inertia is:

Mdynamic =I×α  (23)

Here, α is the angular acceleration variable. For solar tracking on the 
azimuth axis, angular acceleration can be taken as 0.1 rad/s².

Mdynamic =533×0.1=53.3(Nm)

6. Snow Load Calculation (Msnow )

Snow load is a significant design criterion for solar panel systems, 
especially in regions with cold climates. The weight of accumulated snow on 
the panels can create substantial moments on the elevation axis.

A worst-case scenario can be established by assuming that snow falls 
uniformly on the panels and that the surface is in a suitable position for 
snow retention (slightly inclined). However, it should be remembered that 
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in solar tracking systems, panels are in their steepest (more vertical) position 
in winter. This is a hindering factor for snow accumulation.

Typical Snow Density (ρsnow ): Ranges from 50-200 kg/m³ for fresh snow 
and 200-500 kg/m³ for old/compacted snow. An average of 300 kg/m³ can 
be used for calculations.

Snow thickness (hsnow ) can vary depending on the geography. Therefore, 
if snow load calculations are performed for 3 different scenarios (50 cm, 20 
cm, 5 cm):

Snow Weight per Unit Area (qsnow ): 

qsnow =ρsnow ×hsnow ×g  (24)

qsnow,50cm =300(kg/m3)×0.5(m)×9.81(m/s2)=1471.5(N/m2) (Pa)

Total Snow Force (Fsnow ): 

Fsnow =qsnow ×Atotal   (25)

Fsnow =1471.5(N/m2) ×16(m2) =23544(N)

Moment Caused by Snow Load (Msnow ): If the perpendicular distance in the 
elevation direction of the panels is taken as the basis:

Msnow =Fsnow ×relevation   (26)

Msnow,50cm =23544(N)×1(m)=23544(Nm)

Msnow,20cm =9417.6(Nm)

Msnow,5cm =2354.4(Nm)

The moment resulting from snow load has turned out to be much higher 
than the wind moment (13056 N·m) and the panel weight moment (1962 
N·m). This indicates that snow load is one of the most critical loads for slew 
drive and structural design, especially in regions experiencing harsh winter 
conditions. System design must either be capable of bringing the panels to 
a safe “snow position” (e.g., vertical or highly tilted) or capable of bearing 
this load under such extreme load conditions.
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Table 5 Moments Acting on the PV Panel System

Moment Type Axis Calculated 
Value (N·m) Notes

Wind Overturning Moment 
(Mwind )

Azimuth 39168 Main determining 
load

Panel Weight Moment (Mweight ) Elevation 1962
Elevation Wind Moment 

(Melevation,wind )
Elevation 13056

Snow Load Moment (Msnow ) Elevation

23544 0.5 m snow thickness 
assumption

9417.6 0.2 m snow thickness 
assumption

2354.4 0.05 m snow 
thickness assumption

Azimuth Moment of Inertia 
(Iazimuth )

Azimuth 533.36 (kg·m²)

Elevation Moment of Inertia 
(Ielevation )

Elevation 266.64 (kg·m²)

Table 5 summarizes the moments acting on the system. The maximum 
acting moments in this table were the wind overturning moment, snow 
load moment, and wind turning load moment. This table was generated 
assuming storm-level wind for wind load and 50-20-5 cm accumulation for 
snow load. There is also a possibility of exposure to loads exceeding these. In 
such cases, the system must have additional safety mechanisms.

Based on these calculations, the maximum moments that the system may 
encounter are as follows:

Azimuth (Horizontal) Axis Torque Requirement (Wind Load as Primary 
Factor): Approximately 39168 N·m. This is a critical value for the slew 
drive’s overturning moment (OTM) capacity. Simultaneously, the nominal 
torque capacity of the drive must also meet or exceed this value. Wind load 
generally constitutes the largest torque load on the azimuth axis.

7. Evaluation for Slew Drive Selection

In the light of these calculations:

• For the azimuth axis, a slew drive with an overturning moment and 
torque capacity of approximately 40 kNm (40,000 N·m) is required. 
Worm gear slew drives are typically preferred for these types of loa-
ds. A drive with a gear diameter of 600 mm to 1000 mm or larger is 
needed.
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• For the elevation axis, a slew drive with a torque capacity of approxi-
mately 10 kNm (10,000 N·m) may be sufficient. Worm gear slew 
drives are also generally suitable for this axis. A smaller diameter drive 
(e.g., 300 mm - 500 mm) might be adequate.

Safety Factors:

• Dynamic Effects: Dynamic loads occur when the system is in motion 
(acceleration and deceleration). This can increase the instantaneous 
torque requirements of the motor and drive.

• Building Codes and Standards: For systems installed on buildings, 
local building codes, wind load standards (e.g., ASCE 7, Eurocode 
1), and specific standards for solar energy systems (e.g., UL 3703) 
must be considered.

• Safety Factors: In engineering design, a safety factor ranging typically 
from 20% to 100% is additionally applied to calculated maximum 
loads. This leaves room for contingencies, material fatigue, and calcu-
lation uncertainties. For example, if a 50% safety factor is applied to 
a 40 kNm torque, a drive with a 60 kNm capacity would be sought.

• Manufacturer Data: The most suitable model is determined by com-
paring the manufacturer-provided nominal torque, overturning mo-
ment capacity, radial load, and axial load values of the chosen slew 
drive with the calculated values. The gear diameter is directly related 
to these capacity values.
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CHAPTER 6

6. Algorithm Samples and Microcontroller 
Connections

For solar tracking to be performed using the image processing method, 
the sun must first be detected by an imaging device. Therefore, it is essential 
that the intermediary component, which will command the system’s 
motion mechanism, is a system element that works in harmony with the 
image acquisition components. Microcomputers marketed by brands such 
as Arduino, Raspberry Pi, BeagleBone, Odroid, Banana Pi, Adafruit, and 
Particle Photon etc. can be used for image acquisition and processing. Based 
on market prevalence, Arduino and Raspberry Pi microcomputers can be 
said to have an advantage. PLC elements, which have long been used in 
automation systems, can only be utilized as triggers for solar tracking via 
image processing. They require another unit to process the main image and 
send the triggering signal to the PLC. For this reason, they are not preferred 
for image processing tasks. Microcomputers capable of both image processing 
and triggering (outputting signals) in a single unit should be preferred. For 
this reason, Raspberry Pi stands out. The Arduino microcontroller board 
has inherent advantages in areas such as:

• Performing specific tasks in real-time and with precise timing because 
it does not run an operating system.

• Being more affordable.

• Providing lower power consumption.

• Having analog inputs.
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Despite these, Raspberry Pi is preferred for solar tracking using the 
image processing method due to reasons such as:

• Offering a more powerful operating system and RAM capability.

• Being suitable for programming in languages like PYTHON, C++, 
and JAVA due to its Linux-based operation.

• Having extensive connectivity options (e.g., built-in USB ports, 
HDMI output, Ethernet port, Wi-Fi, and Bluetooth).

• Support for additional storage.

• Possessing a graphical interface (e.g. GUI)

When examining studies in the literature, it is observed that sensor-
based solar tracking systems are implemented with Arduino, while image 
processing-based solar tracking systems are implemented with Raspberry Pi.

6.1. Hardware Integration and Data Processing in Raspberry Pi-
Based Solar Tracking Systems

Raspberry Pi’s versatile and programmable General-Purpose Input/
Output (GPIO) pins expand its application areas. Figure 33 illustrates the 
general connection points and multi-functional GPIO pin layout of the 
Raspberry Pi 4 model. This layout encompasses various interfaces such 
as digital input/output, PWM (Pulse Width Modulation), I2C, SPI, and 
UART. The presence of 5V outputs provides the ability to control small 
linear actuators and servo motors without the need for an additional 
intermediate control element. However, the maximum current these pins 
can provide is limited, and an external power circuit is required for larger 
loads. I2C and UART pins enable the connection of analog and digital 
sensors, allowing for data acquisition and storage, and even remote data 
reading and system improvements.
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Figure 33 Raspberry Pi 4 connection and GPIO structure

In solar tracking systems, connecting a pyranometer to the system for 
instantaneous measurement of solar radiation is a common practice for 
reading instantaneous values, calculating system efficiency, and detecting 
faults. In commercial applications remotely monitored with SCADA systems, 
it is a mandatory application in large solar power plants. Pyranometers with 
RS485-RS232 communication protocols or those sending analog signals 
(in conjunction with an analog-to-digital converter, ADC) can be connected 
to Raspberry Pi’s GPIO 14-15 pins to acquire instantaneous data, read and 
store data remotely, and even perform system improvements via remote 
access.

Figure 34 Variable power support and motor speed control element
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However, for motor control applications requiring high current and/
or voltage, motor control units (motor drivers) or power support circuit 
elements must be added. Figure 34 shows the circuit elements used for 
powering and controlling 24V DC and 220V AC linear actuators in a 
Raspberry Pi application designed for a solar tracking system. The direction 
of rotation of linear actuators can be controlled via electronic circuit elements 
or through programmable logic control via motor drivers.

Figure 34 includes an 8-channel 24V relay module. Its purpose is to 
prevent overloading of the microcontroller’s output pin during sudden or 
excessive loads and to provide switching capability for high current/voltage 
values.

  

Figure 35 Outputs of the image processing algorithm for sun position detection

Figure 35 presents image processing outputs obtained at various times 
and from different solar tracking systems. These outputs visualize the 
perceived position of the sun and the operation of the tracking algorithm.

6.2. Image Processing-Based Algorithms in Solar Tracking 
Systems

The primary objective of solar tracking systems is to continuously monitor 
the sun’s position in the sky to enhance the efficiency of solar panels. Image 
processing-based algorithms analyze visual data acquired through a camera 
to determine the precise position of the sun and use this information to 
orient the panels towards the sun at the correct angle.

6.2.1. Basic Steps of the Image Processing Algorithm

An image processing-based solar tracking algorithm typically consists of 
a series of sequential and logically dependent steps. These steps enable the 
transformation of raw camera data into meaningful positional information.
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Image Acquisition:

The first and most critical step of the system is to obtain a digital image of 
the sun and the surrounding sky. Compatible camera modules are used with 
the microcomputer for this process. When selecting a camera, parameters 
such as resolution, field of view (FOV), frame rate and dynamic range 
should be considered. Especially for a wide tracking area, cameras with 
wide-angle (fisheye) lenses can be preferred, allowing the sun’s horizon-to-
horizon movement to be captured in a single image. The camera’s mounting 
position and orientation directly affect the accuracy of the algorithm and 
require precise system calibration. The acquired image data is typically 
processed by a Single Board Computer (SBC), such as a Raspberry Pi.

Image Pre-processing:

Raw image data undergoes various pre-processing techniques before 
being made suitable for the sun detection step. The primary purpose of 
these steps is to reduce noise in the image, optimize contrast, and enhance 
the prominence of the sun.

o Grayscale Conversion: Color images are often converted to grayscale 
images to reduce processing load and for pixel density-based analysis. 
This conversion creates a single channel representing the brightness 
value of each pixel.

o Noise Reduction: Random noise originating from camera sensors or 
environmental factors can negatively impact algorithm accuracy. To 
eliminate this noise, spatial filtering techniques such as Gaussian filter, 
median filter, or bilateral filter are applied. These filters correct noisy 
pixels by using their neighborhood relationships.

o Contrast Adjustment: The overall brightness and contrast levels of the 
image can be adjusted to ensure better separation of the sun from the 
background. This can be achieved through methods such as histogram 
equalization or linear contrast stretching.

Image Segmentation:

After the pre-processing steps, the pixel group representing the sun in the 
image needs to be isolated. This is usually done by thresholding. Since the 
sun has a significantly higher brightness value compared to the surrounding 
sky regions, pixels above a certain brightness threshold are defined as the 
“sun region,” and a binary mask is created.
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o Fixed (Global) Thresholding: A specific brightness value is used as a 
fixed threshold for the entire image. This method is simple and fast but 
may perform poorly in changing light conditions (e.g., cloudiness).

o Adaptive Thresholding: Different threshold values are calculated 
for different regions of the image. This method is more robust 
against varying lighting conditions and can provide more accurate 
segmentation even when clouds partially obscure the sun. Otsu’s 
method or local thresholding algorithms fall into this category.

Sun Contour Detection:

In the binary image obtained through image segmentation, the pixels 
representing the sun region are isolated. However, in this binary image, 
determining the contour (boundary) of the sun region is a critical step for 
subsequent analysis, especially for center detection. Contour detection is a 
process that finds the boundaries of interconnected pixel clusters.

The following steps should be followed for contour detection:

o Connected Component Analysis in Binary Image: In the binary 
image obtained after thresholding, clusters formed by connected 
(neighboring) white pixels are identified. The largest of these clusters 
(typically the sun itself) or those meeting a certain size criterion are 
defined as potential sun region candidates. This step can also be used 
to eliminate small noise regions or other bright spots in the image.

o Contour Finding Algorithms: On the detected connected components, 
contour finding algorithms offered by popular computer vision 
libraries (e.g., OpenCV) are applied. These algorithms extract the 
outer boundary pixel chains of the identified objects (in this case, 
the sun). The resulting contour is represented as a series of (x,y) 
coordinate pairs. This allows information about the sun’s shape and 
size to be obtained.

o Selection of Outer Contour: In cases where multiple contours may be 
found (e.g., halos around the sun or small bright spots), the contour 
with the largest area or meeting a specific size criterion is usually 
selected as the main sun contour. This prevents misidentification of 
other objects as the sun.

Accurate determination of the sun’s contour directly provides an input 
for the next step, precise detection of the sun’s center. Furthermore, contour 
information can be used for additional analyses such as monitoring changes 
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in the sun’s apparent size or evaluating how much of the sun is visible in 
conditions like partial cloudiness.

Centroid Detection of the Sun:

From the boundary coordinates obtained as a result of contouring or 
from the binary sun mask obtained as a result of segmentation, the geometric 
center (centroid) or center of mass representing the sun’s position in the 
image is calculated. These center coordinates (xc, yc) are used as the primary 
input for guiding the solar tracking mechanism.

The center of mass calculation is performed by taking the weighted 
average of all “sun” pixels in the segmented region:
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Here, (i,j) represents the pixel coordinates, I(i,j) represents the pixel 
intensity value (brightness), and S represents the segmented sun region. In a 
simpler approach, the center of mass can also be found by taking the average 
coordinates of only the active pixels (white pixels) in the binary image.

Tracking Control:

The calculated sun center coordinates (xc, yc) are compared with the 
system’s current panel angle or the targeted position at the camera center. 
The resulting error signal from this comparison is used to control actuators 
such as linear actuators or servo motors. The control strategy is generally 
based on a feedback control loop principle, moving the panel towards the 
targeted sun center.

o Proportional-Integral-Derivative (PID) Control: A powerful control 
method frequently preferred in solar tracking systems. A PID controller 
uses the error signal (the difference between the sun’s current position 
and its targeted position) to determine the commands to be sent to the 
actuators. PID combines proportional (P), integral (I), and derivative 
(D) components to ensure that the system responds quickly and 
reaches its target stably. It is ideal for dynamic and precise tracking.
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o Hysteresis Control: To prevent unnecessary continuous movement of 
the actuators and reduce energy consumption, a specific “error band” 
can be defined. The panel does not move unless it moves outside this 
defined hysteresis band. This extends the lifespan of the actuators and 
reduces mechanical wear.

o Model Predictive Control: In advanced systems, a hybrid tracking 
strategy can be followed by combining astronomical sun position 
information with image processing data. This allows for prediction-
based tracking to continue even under instantaneous environmental 
conditions such as cloudiness.

Error Management and Advanced Features:

Various error management and advanced features can be integrated to 
increase the stability and reliability of the algorithm:

o Cloud and Obstruction Detection: Image analysis can detect situations 
where the sun is partially or completely obscured by clouds. In this 
case, the system can transition to a specific “park” position or revert 
to astronomical tracking (movement at a constant angular speed) to 
prevent unnecessary movements or conserve energy.

o Low Light/Night Mode: Image processing algorithms may not 
function accurately enough during times of low sun brightness, such 
as in sunrise and sunset time intervals. Also, tracking is unnecessary 
during night hours when there is no sun. Under these conditions, the 
system should be enabled to switch to pre-programmed astronomical 
tracking algorithms or a specific “sleep” position.

o Camera Setting Adaptation: Camera settings such as exposure time, 
ISO sensitivity, and white balance can be dynamically adjusted 
according to ambient brightness conditions. This ensures that high-
quality images are obtained even under different lighting conditions 
(e.g., very bright sunlight or twilight).

o Sudden Changes in Sun Center: Instantaneous jumps in (xc, yc) values 
caused by glare in the sky, reflections from surrounding reflective 
surfaces or the momentary perception of artificial light sources as a 
“fake” sun can disrupt the stability of solar tracking. To prevent this, a 
cumulative sun center coordinate determination algorithm should be 
added. This allows for centering by averaging a determined number 
of center coordinates, thereby creating movement stability.
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6.2.2. Image Processing Algorithm Samples

Considering that the structure described above will be operated with a 
Raspberry Pi, before writing the code, the camera’s CSI connection must 
be established, and PYTHON3 should be installed. The OPENCV library 
should be installed with the command; 

“pip​install​opencv-python”,​

and the RPi.GPIO library with 

“pip​install​RPi.GPIO”.

6.2.2.1. Sample Code-Main Body

import cv2

import numpy as np

import time

import RPi.GPIO as GPIO # For controlling Raspberry 
Pi’s GPIO pins

# --- 1. GPIO Pin Definitions and Target Settings ---

# These will be the ENABLE pins or direction control 
pins for our motor driver.

PAN_FWD_PIN = 17 # Pan/Azimuth (horizontal) forward/
right movement pin

PAN_BWD_PIN = 18 # Pan/Azimuth (horizontal) backward/
left movement pin

TILT_UP_PIN = 27 # Tilt/Elevation (vertical) up 
movement pin

TILT_DOWN_PIN = 22 # Tilt/Elevation (vertical) down 
movement pin

# System’s target center (ideal focal point of the 
camera, half of the image width)

# A 640x480 resolution value determines the target 
(x,y) value, thus it is important.

TARGET_X = 320 # (Image width / 2)

TARGET_Y = 240 # (Image height / 2)
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# Tolerance zone (pixels) before movement. The system 
does not move within this value (hysteresis).

TOLERANCE = 15 # If the sun is within this pixel 
range, do not move the panel.

# --- 2. GPIO Setup Functions ---

def setup_gpio():

    “””Sets up GPIO pins as outputs.”””

    GPIO.setmode(GPIO.BCM) # Use BCM pin numbering 
mode

    GPIO.setup([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.OUT)

    # Initially set all pins to LOW to stop actuators

    GPIO.output([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.LOW)

    print(“GPIO pins successfully configured.”)

def cleanup_gpio():

    “””Cleans up GPIO pins when the program 
terminates.”””

    GPIO.cleanup()

    print(“GPIO pins cleaned up.”)

# --- 3. Actuator Control Function ---

def control_actuator(current_cx, current_cy):

    # Controls the actuators based on the current 
center position of the sun.

    # current_cx (int): X coordinate of the sun in 
the image.

    # current_cy (int): Y coordinate of the sun in 
the image.

    # X-axis (Pan/Azimuth) control

    if current_cx < TARGET_X - TOLERANCE:

        # Sun is to the left of the target center, 
move panel to the right (Fwd)
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        GPIO.output(PAN_BWD_PIN, GPIO.LOW)

        GPIO.output(PAN_FWD_PIN, GPIO.HIGH)

        # print(“Pan/Azimuth: Moving right.”)

    elif current_cx > TARGET_X + TOLERANCE:

        # Sun is to the right of the target center, 
move panel to the left (Bwd)

        GPIO.output(PAN_FWD_PIN, GPIO.LOW)

        GPIO.output(PAN_BWD_PIN, GPIO.HIGH)

        # print(“Pan/Azimuth: Moving left.”)

    else:

        # At target on X-axis, stop Pan/Azimuth 
movement

        GPIO.output(PAN_FWD_PIN, GPIO.LOW)

        GPIO.output(PAN_BWD_PIN, GPIO.LOW)

        # print(“Pan/Azimuth: At target (Stopped).”)

    # Y-axis (Tilt/Elevation) control

    if current_cy < TARGET_Y - TOLERANCE:

        # Sun is above the target center, move panel up

        GPIO.output(TILT_DOWN_PIN, GPIO.LOW)

        GPIO.output(TILT_UP_PIN, GPIO.HIGH)

        # print(“Tilt/Elevation: Moving up.”)

    elif current_cy > TARGET_Y + TOLERANCE:

        # Sun is below the target center, move panel 
down

        GPIO.output(TILT_UP_PIN, GPIO.LOW)

        GPIO.output(TILT_DOWN_PIN, GPIO.HIGH)

        # print(“Tilt/Elevation: Moving down.”)

    else:

        # At target on Y-axis, stop Tilt/Elevation 
movement
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        GPIO.output(TILT_UP_PIN, GPIO.LOW)

        GPIO.output(TILT_DOWN_PIN, GPIO.LOW)

        # print(“Tilt/Elevation: At target (Stopped).”)

# --- 4. Main Application Loop ---

if __name__ == “__main__”:

    setup_gpio() # Configure GPIO pins

    # Camera initialization

    # For Raspberry Pi camera, ‘0’ or appropriate 
backend for ‘libcamera’ based systems can be used.

    cap = cv2.VideoCapture(0)

    if not cap.isOpened():

        print(“Error: Could not open camera. Check 
camera connection or index.”)

        cleanup_gpio()

        exit()

    # Set camera resolution

    cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)

    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

    time.sleep(2)

    print(“Video stream started. Press ‘q’ to exit.”)

    try:

        while True:

            ret, frame = cap.read() # Read a frame 
from the camera

            if not ret:

                print(“Error: Could not read frame. 
Camera connection might be lost.”)

                break

            # 4.1.2. Image Preprocessing

            # Convert to grayscale
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            gray_frame = cv2.cvtColor(frame, cv2.
COLOR_BGR2GRAY)

            # Reduce noise with Gaussian filter

            blurred_frame = cv2.GaussianBlur(gray_
frame, (5, 5), 0)

            # 4.1.3. Sun Segmentation (Thresholding)

            # A high threshold value is used because the 
sun is bright.

            # THRESH_BINARY_INV (inverse binary) can 
sometimes yield better results

            # because everything outside the sun 
becomes black while the sun remains white.

            # For example: ret, binary_frame = cv2.
threshold(blurred_frame, 200, 255, cv2.THRESH_BINARY)

            # Adaptive thresholding can also be 
considered for scenarios where the sun might be dim.

            _, binary_frame = cv2.threshold(blurred_
frame, 200, 255, cv2.THRESH_BINARY)

            # 4.1.4. Determining Sun Contour

            # Find only outer contours

            contours, _ = cv2.findContours(binary_
frame, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

            sun_cx, sun_cy = None, None

            if contours:

                # Assume the contour with the largest 
area is the sun

                largest_contour = max(contours, 
key=cv2.contourArea)

                # We can add a minimum area check to 
ignore very small contours

                if cv2.contourArea(largest_contour) 
> 100: # Example min area threshold
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                    # Calculate moments from the 
contour

                    M = cv2.moments(largest_contour)

                    # 4.1.5. Determining Sun Center 
(Centroid)

                    if M[“m00”] != 0:

                        sun_cx = int(M[“m10”] / 
M[“m00”])

                        sun_cy = int(M[“m01”] / 
M[“m00”])

                        # Draw a circle at the center 
of the sun

                        cv2.circle(frame, (sun_cx, 
sun_cy), 10, (0, 255, 255), -1) # Yellow circle

                        cv2.putText(frame, f”Sun: 
({sun_cx},{sun_cy})”, (sun_cx + 20, sun_cy + 20),

                                   cv2.FONT_HERSHEY_
SIMPLEX, 0.6, (0, 255, 255), 2)

                        # 4.1.6. Tracking Control

                        control_actuator(sun_cx, 
sun_cy)

                    else:

                        print(“Warning: Valid contour 
area is zero.”)

                        # If sun is not detected, 
stop actuators

                        control_actuator(TARGET_X, 
TARGET_Y) # Command to stop by targeting

                else:

                    print(“Warning: Detected sun 
contour is too small.”)

                    # If sun is not detected, stop 
actuators



Erkan Kacan | 83

                    control_actuator(TARGET_X, 
TARGET_Y) # Command to stop by targeting

            else:

                print(“Warning: No sun contour found 
in the image.”)

                # If sun is not detected, stop 
actuators

                control_actuator(TARGET_X, TARGET_Y) 
# Command to stop by targeting

            # Visualize images (these lines can be 
removed if there is no GUI on Raspberry Pi)

            cv2.imshow(‘Original Frame’, frame)

            cv2.imshow(‘Binary Sun’, binary_frame) 
# Show the segmented binary image

            # Exit loop when ‘q’ is pressed

            if cv2.waitKey(1) & 0xFF == ord(‘q’):

                break

    except KeyboardInterrupt:

        print(“\nProgram stopped by user.”)

    finally:

        # Release resources and clean up GPIO

        cap.release()

        cv2.destroyAllWindows()

        cleanup_gpio()

The example code has a simple and straightforward structure. This 
structure can be made more robust and stable by adding certain features. 
However, it should be noted that every additional feature will increase 
CPU usage and cause delays in movement commands. Therefore, it is 
recommended to start with the minimum required features and improve the 
system according to its needs.
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6.2.2.2. Transitioning from Hysteresis-Based Control to PID-
Based Control

To implement PID control, it is first needed to define the PID parameters 
(Kp , Ki , Kd ) and calculate separate error values for each axis (pan/azimuth 
and tilt/elevation). The signals sent to the actuators are converted into PWM 
(Pulse Width Modulation) modules instead of simple HIGH/LOW, thereby 
controlling the motor speed. This provides smoother and more proportional 
movements. It is essential to ensure that the actuators or motor driver module 
have PWM capability, otherwise, the result will be ON/OFF control.

# --- 2. PID Parameters ---

#(Kp: Proportional, Ki: Integral, Kd: Derivative)

# PID gains for the Pan axis

KP_PAN = 0.5 # Proportional gain (Large error = 
Large response)

KI_PAN = 0.01 # Integral gain (Corrects systematic 
errors)

KD_PAN = 0.05 # Derivative gain (Responds to the 
rate of error change, reduces oscillation)

# PID gains for the Tilt axis

KP_TILT = 0.5

KI_TILT = 0.01

KD_TILT = 0.05

• Kp  (Proportional Gain): Responds directly to the current error. As the 
error increases, the Kp  term also increases, sending a larger correction 
signal to the system. This provides a fast response, but high Kp  values 
cause oscillation.

• Ki  (Integral Gain): Corrects errors accumulated over time (i.e., the 
system’s inability to perfectly settle on the target). It is used to elimi-
nate small, persistent errors (steady-state error).

• Kd  (Derivative Gain): Responds to the rate of change of the error. 
When the error changes rapidly, it applies a “brake” to the system, 
reducing overshoot and making the system more stable.

Proper tuning of these parameters (PID tuning) is of critical importance 
and is performed using methods such as trial-and-error or the Ziegler-
Nichols method.
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Additionally, a PID control class needs to be defined in PYTHON:

class PIDController:

    def __init__(self, Kp, Ki, Kd):

        self.Kp = Kp

        self.Ki = Ki

        self.Kd = Kd

        self.previous_error = 0

        self.integral = 0

        self.last_time = time.time()

    def update(self, error):

        current_time = time.time()

        dt = current_time - self.last_time

        self.integral += error * dt # Integral term

        derivative = (error - self.previous_error) 
/ dt if dt > 0 else 0 # Derivative term

        output = self.Kp * error + self.Ki * self.
integral + self.Kd * derivative # PID output

        self.previous_error = error

        self.last_time = current_time

        return output

# Create PID controllers

pid_pan = PIDController(KP_PAN, KI_PAN, KD_PAN)

pid_tilt = PIDController(KP_TILT, KI_TILT, KD_TILT)

The PWM motor driver needs to be connected to PWM-enabled GPIO 
pins and defined via code.

# --- 3. GPIO Setup Functions ---

def setup_gpio():

    “””Sets up GPIO pins as outputs and starts 
PWM.”””

    GPIO.setmode(GPIO.BCM)
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    # Direction pins

    GPIO.setup([PAN_A_PIN, PAN_B_PIN, TILT_A_PIN, 
TILT_B_PIN], GPIO.OUT)

    GPIO.output([PAN_A_PIN, PAN_B_PIN, TILT_A_PIN, 
TILT_B_PIN], GPIO.LOW)

    # PWM pins

    GPIO.setup([PAN_PWM_PIN, TILT_PWM_PIN], GPIO.
OUT)

    # Create PWM objects (e.g., 100 Hz frequency)

    global pan_pwm, tilt_pwm

    pan_pwm = GPIO.PWM(PAN_PWM_PIN, 100) # 100 Hz

    tilt_pwm = GPIO.PWM(TILT_PWM_PIN, 100) # 100 Hz

    pan_pwm.start(0)  # Initially 0% duty cycle 
(motor off)

    tilt_pwm.start(0) # Initially 0% duty cycle 
(motor off)

    print(“GPIO pins and PWM successfully configured.”)

def cleanup_gpio():

    “””Cleans up GPIO pins and PWM when the program 
terminates.”””

    pan_pwm.stop()

    tilt_pwm.stop()

    GPIO.cleanup()

    print(“GPIO pins and PWM cleaned up.”)

The function controlling the actuators should be configured to operate 
based on error signals from the PID controller, rather than directly on 
current_cx and current_cy positions:

# --- 4. Actuator Control Function (Uses PID Output) 
---

def control_actuators_with_pid(error_x, error_y):

    “””
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    Controls actuators with PID based on the current 
error signal of the sun.

    “””

    # X-axis (Pan) control

    if abs(error_x) > TOLERANCE: # If error is 
outside tolerance

        pan_output = pid_pan.update(error_x) # Get 
PID output

        pan_speed = min(abs(int(pan_output * 10)), 
100) # Scale and limit speed to 0-100

        if pan_output > 0: # If sun is to the left, 
move right

            GPIO.output(PAN_A_PIN, GPIO.HIGH)

            GPIO.output(PAN_B_PIN, GPIO.LOW)

        else: # If sun is to the right, move left

            GPIO.output(PAN_A_PIN, GPIO.LOW)

            GPIO.output(PAN_B_PIN, GPIO.HIGH)

        pan_pwm.ChangeDutyCycle(pan_speed) # Set PWM 
duty cycle

    else: # If within tolerance, stop

        GPIO.output(PAN_A_PIN, GPIO.LOW)

        GPIO.output(PAN_B_PIN, GPIO.LOW)

        pan_pwm.ChangeDutyCycle(0)

    # Y-axis (Tilt) control (similar logic to Pan 
control)

    if abs(error_y) > TOLERANCE:

        tilt_output = pid_tilt.update(error_y)

        tilt_speed = min(abs(int(tilt_output * 10)), 
100)

        if tilt_output > 0: # If sun is up, move up

            GPIO.output(TILT_A_PIN, GPIO.HIGH)
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            GPIO.output(TILT_B_PIN, GPIO.LOW)

        else: # If sun is down, move down

            GPIO.output(TILT_A_PIN, GPIO.LOW)

            GPIO.output(TILT_B_PIN, GPIO.HIGH)

        tilt_pwm.ChangeDutyCycle(tilt_speed)

    else:

        GPIO.output(TILT_A_PIN, GPIO.LOW)

        GPIO.output(TILT_B_PIN, GPIO.LOW)

        tilt_pwm.ChangeDutyCycle(0)

In the main loop, after the current center of the sun is determined, error 
signals are calculated relative to the target center, and these error signals are 
passed to the control_actuators_with_pid function.

# --- 5. Main Application Loop ---

if __name__ == “__main__”:

    setup_gpio() # Configure GPIO pins and PWM

    # ... camera initialization and other preliminary 
steps ...

    try:

        while True:

            # ... camera frame reading and image 
processing steps ...

            if contours:

                # ... sun center (sun_cx, sun_cy) 
calculation ...

                if M[“m00”] != 0:

                    sun_cx = int(M[“m10”] / M[“m00”])

                    sun_cy = int(M[“m01”] / M[“m00”])

                    # Calculate error signals
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                    error_x = sun_cx - TARGET_X

                    error_y = sun_cy - TARGET_Y

                    # Control actuators with PID

                    control_actuators_with_pid(error_x, 
error_y)

                else:

                    # If sun is not detected, stop 
motors

                    control_actuators_with_pid(0, 0)

            else:

                # If sun is not detected, stop motors

                control_actuators_with_pid(0, 0)

            # ... visualization and exiting the loop 
...

    except KeyboardInterrupt:

        # ... cleanup ...

    finally:

        # ... cleanup ...

After these additions are integrated into the code, tuning the PID gains 
(Kp , Ki , Kd ) becomes the most crucial step. This adjustment ensures that 
the panel tracks the sun quickly, stably, and accurately.

6.2.2.3. Integration of Adaptive Thresholding:

The use of “cv2.threshold” in the example code prevents bright objects 
below a certain brightness value from being detected as the sun. This 
prevents false positives where other bright sources are mistaken for the 
sun. However, during sunrise/sunset, when the sun is behind clouds, or in 
situations with high dust levels, if the measured brightness value falls below 
the threshold, the sun may not be detected. To eliminate this problem, 
adaptive thresholding offers a robust solution. The changes to be made in 
the example code are as follows:
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Replace:

# 4.1.3. Sun Segmentation (Thresholding)

# A high threshold value is used because the sun is 
bright.

_,binary_frame = cv2.threshold(blurred_frame, 200, 
255, cv2.THRESH_BINARY)

with the following code structure:

# 4.1.3. Sun Segmentation (Adaptive Thresholding)

# Segment the sun region with adaptive thresholding. 
ADAPTIVE_THRESH_GAUSSIAN_C: Applies a Gaussian window 
to the weighted average neighborhood value.

# THRESH_BINARY: Sets pixels greater than the 
threshold value to max_val (255), others to 0.

# blockSize: Size of the neighborhood area to be 
used for calculating the pixel’s threshold value (must 
be an odd number, e.g., 11).

# C: A constant subtracted from the mean or weighted 
mean (usually a positive number, e.g., 2).

binary_frame = cv2.adaptiveThreshold(blurred_frame, 
255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_
BINARY, 11, 2)

# Additional Step (Optional, Enhancing Contour):

# After adaptive thresholding, morphological 
operations (e.g., opening) can be applied to the 
resulting binary image

# to reduce noise and make the contour smoother.

kernel = np.ones((3,3),np.uint8)

binary_frame = cv2.morphologyEx(binary_frame, cv2.
MORPH_OPEN, kernel)

binary_frame = cv2.morphologyEx(binary_frame, cv2.
MORPH_CLOSE, kernel)
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6.2.2.4. Steps to Improve Sun Detection:

Under varying light conditions, partial cloud cover, reflections or the 
presence of other bright objects, the code may lead to erroneous detections. 
To address these issues and enhance the robustness and accuracy of the sun 
detection algorithm, shape-based filtering, color-based segmentation, and 
small object filtering strategies can be integrated.

From a camera’s perspective, the sun typically appears as a bright 
object with a circular or elliptical shape. This geometric property provides 
a strong distinguishing feature to differentiate the sun from other bright 
but non-circular objects (e.g., reflections from windows, lamp lights). 
Mathematically, the circularity of a contour is generally calculated using the 
following formula:

2
4 . AC
P
π

=   (29)

Here:

C: Circularity ratio (between 0 and 1, where 1 indicates a perfect circle).

A: Area of the contour.

P: Perimeter of the contour.

# ... (previous code: creation of gray_frame, 
blurred_frame, binary_frame) ...

# 4.1.4. Determining Sun Contour

# Find only outer contours

contours, _ = cv2.findContours(binary_frame, cv2.
RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

sun_cx, sun_cy = None, None

candidate_sun_contour = None # Candidate sun contour

if contours:

    # Filter contours

    filtered_contours = []

    for contour in contours:
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        area = cv2.contourArea(contour)

        # We can add a minimum area check to ignore 
very small contours

        if area > 100: # Example minimum area 
threshold (pixel^2)

            # Shape-based filtering: Circularity check

            perimeter = cv2.arcLength(contour, True)

            if perimeter > 0: # If perimeter is not 
zero (not a point or very small contour)

                circularity = (4 * np.pi * area) / 
(perimeter ** 2)

                # Circularity threshold: Close to 1 
for a perfect circle.

                # For the sun, a threshold between 
0.7 - 0.95 generally yields good results.

                if circularity > 0.65: # Example 
circularity threshold

                    filtered_contours.append(contour)

    if filtered_contours:

        # Select the contour with the largest area 
among the filtered contours

        candidate_sun_contour = max(filtered_contours, 
key=cv2.contourArea)

        # ... (from here, M = cv2.moments(candidate_
sun_contour) and center calculation continue) ...

    else:

        print(“Warning: No contour satisfying the 
circularity criterion was found. Actuators stopped.”)

        control_actuators_with_pid(0, 0)

else:

    print(“Warning: No sun contour found in the 
image. Actuators stopped.”)
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    control_actuators_with_pid(0, 0)

To perform Color-Based Segmentation, it is necessary to use the HSV 
Color Space. Direct or indirect sunlight usually has a distinct color profile 
(from bright yellow to white). By using this color information, the accuracy 
of segmentation before or after thresholding can be increased. Since the 
RGB color space is sensitive to light intensity, the HSV (Hue, Saturation, 
Value) color space, which separates color information from intensity, is 
more suitable. The sun typically has high brightness (Value) and a specific 
hue range (yellow-orange-white tones). On a bright day, the saturation 
(Saturation) value is also high. By using these properties, converting the 
image to HSV and masking pixels that fall within a specific HSV range is an 
effective method to separate the sun from other objects.

ret, frame = cap.read()

if not ret:

    print(“Error: Could not read frame. Camera 
connection might be lost.”)

    break

# 4.1.1. Color-Based Segmentation (HSV Masking for 
Sun)

# Convert image to HSV color space

hsv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

# Define HSV color range for the sun

# These ranges should be adjusted according to the 
environment and camera color calibration.

# For example: For bright yellow-white colors

lower_sun = np.array([20, 100, 150]) # Hue, 
Saturation, Value (Min)

upper_sun = np.array([40, 255, 255]) # Hue, 
Saturation, Value (Max)

# Mask pixels within the defined HSV range

hsv_mask = cv2.inRange(hsv_frame, lower_sun, upper_
sun)

# Apply the mask to make only the sun regions white 
(black background)
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# Note: This mask can be used directly instead of 
the thresholded binary_frame or combined with it.

# A “color-based” binary_frame is created using only 
the mask.

# This mask can then be given as input to adaptive 
thresholding.

# Apply the mask to the grayscale image (keep only 
the sun region bright)

masked_gray_frame = cv2.bitwise_and(gray_frame, 
gray_frame, mask=hsv_mask)

# 4.1.2. Image Preprocessing (Now on masked_gray_
frame)

# Reduce noise with Gaussian filter

blurred_frame = cv2.GaussianBlur(masked_gray_frame, 
(5, 5), 0)

# 4.1.3. Sun Segmentation (Adaptive Thresholding- 
now more targeted)

# blurred_frame already receives a cleaner input 
after passing through the HSV mask.

binary_frame = cv2.adaptiveThreshold(blurred_frame, 
255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_
BINARY, 11, 2)

# ... (Morphological operations and contour finding 
continue afterwards) ...

6.2.2.5. Cases Where Sun Is Not Detected- Astronomical 
Algorithm Integration: Calculating Sun Position:

Image processing-based detection methods become inoperative when the 
sun is not directly visible (e.g., at night, very dense clouds, fog) or when the 
camera malfunctions. In these scenarios, using astronomical algorithms to 
accurately estimate the current position of the sun prevents the system from 
being “blind.” These algorithms calculate the sun’s azimuth (horizontal 
angle) and elevation (vertical angle) using geographic location (latitude, 
longitude), date, and time information. Python libraries like “PyEphem” 
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are highly suitable for this integration. PyEphem simplifies astronomical 
calculations and provides an easy-to-use interface.

The PyEphem library is installed with the command “pip install ephem”. 

This library requires location information for astronomical calculations. 
Therefore, latitude, longitude, and altitude values for a specific region must 
be entered into the code. For illustrative purposes, the code has been created 
for the Denizli/Türkiye region.

import ephem # For astronomical calculations

# --- Geographic Location Definitions ---

# Latitude, longitude, and altitude of the sun 
tracking system’s location

# Example: Approximate values for Denizli, Türkiye

LATITUDE = ‘37.77’ # Latitude (degrees, as string 
for PyEphem)

LONGITUDE = ‘29.08’ # Longitude (degrees, as string 
for PyEphem)

ELEVATION = 350     # Altitude (meters)

# --- New Function: Astronomical Sun Position 
Calculation ---

def get_solar_position_astronomical(latitude, 
longitude, elevation):

    “””

    Calculates the sun’s azimuth and elevation 
angles for a given location and current time.

    Returns:

        tuple: (azimuth_deg, elevation_deg) Sun’s 
azimuth and elevation angles in degrees.

               Azimuth is usually measured clockwise 
from North.

               Sun elevation is measured upwards from 
the horizon.

    “””

    obs = ephem.Observer()
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    obs.lat = latitude

    obs.lon = longitude

    obs.elevation = elevation

    obs.date = ephem.now() # Use current time

    sun = ephem.Sun()

    sun.compute(obs)

    # Convert azimuth and sun elevation angles from 
radians to degrees

    # PyEphem measures azimuth from South towards 
West, so we convert it to clockwise from North.

    # Azimuth angle in PyEphem ranges from 0-2pi 
radians.

    azimuth_deg = np.degrees(sun.az)

    elevation_deg = np.degrees(sun.alt)

    # Convert PyEphem’s azimuth to 0-360 degrees 
(clockwise from North)

    # Ephem’s azimuth looks South at 0.0. Increases 
towards West.

    # Therefore, a conversion for clockwise from 
North will be needed.

    # For example: 0 (South), pi/2 (West), pi 
(North), 3pi/2 (East)

    # For us, usually 0 (North), 90 (East), 180 
(South), 270 (West) is desired.

    # Simply, there might be a 180-degree difference 
with PyEphem’s Azimuth.

    # Example conversion: PyEphem’s azimuth (South=0, 
West=90, North=180, East=270)

    # Most applications use North=0, East=90, 
South=180, West=270.

    # For now, let’s convert directly to degrees and 
calibrate later if necessary.



Erkan Kacan | 97

    return azimuth_deg, elevation_deg

# --- Usage Logic Within the Main Loop ---

# This function is called when the sun cannot be 
found in the image or when it is night.

# This code snippet should be placed inside the main 
loop, i.e., within the ‘if __name__ == “__main__”:’ 
block.

# ... (Camera initialization and other setups in 
your existing code) ...

# Assume it is night when the sun’s elevation falls 
below 0 degrees.

# This threshold can be adjusted (e.g., -5 degrees 
for astronomical twilight).

SUNSET_THRESHOLD_ELEVATION = 0 # Elevation threshold 
determining sunset

try:

    while True:

        ret, frame = cap.read()

        is_sun_detected_visually = False # Was the 
sun detected visually?

        # ... (Image processing and sun detection 
code) ...

        # If sun_cx, sun_cy are successfully 
calculated after your existing ‘if contours:’ block:

        if sun_cx is not None and sun_cy is not None:

            is_sun_detected_visually = True

            # ... (Error calculation and control_
actuators_with_pid call) ...

        # If sun is not detected visually or it is 
night, use astronomical position

        if not is_sun_detected_visually:

            # Calculate astronomical sun position
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            astro_azimuth, astro_elevation = 
get_solar_position_astronomical(LATITUDE, LONGITUDE, 
ELEVATION)

            # Check if the sun is above the horizon

            if astro_elevation > SUNSET_THRESHOLD_
ELEVATION:

                print(f”Warning: Sun not visually 
detected, but astronomically at {astro_azimuth:.2f}° 
Azimuth, {astro_elevation:.2f}° Elevation. Directing 
to astronomical position.”)

                # Determine panel’s target coordinates 
from astronomical angles.

                # This part requires calibration 
according to your panel’s and camera’s mounting angle.

                # For example: Let’s say when the 
panel faces due North, Azimuth is 0 and Camera’s X 
center is 320.

                # Or when Elevation is 90 degrees 
(directly overhead), Y center is 240.

                # These conversions can be complex 
and depend on your system’s mechanical calibration.

                # Simple example conversion (requires 
actual calibration):

                # Angle-to-pixel conversion is done 
using the camera’s field of view (FOV) and resolution.

                # Example: Assume camera’s horizontal 
FOV is 60 degrees and vertical FOV is 45 degrees.

                # And the camera’s center corresponds 
to Astro 0,0.

                # A simple assumption: The panel’s 
midpoint corresponds to the camera’s exact center.

                # And in this code, we still expect 
pixel error. Then pixels are calculated according to 
these angles.
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                # Solution: A separate motor control 
routine that directly moves the panel according to 
astronomical angles.

                # Or, a model is created to convert 
astronomical angle to pixel coordinates.

                # For now, by setting the error to 
0, the panel is made to stop or brought to a default 
position.

                # If direct PID control of the panel’s 
angle is desired,

                # an angular error signal needs to 
be fed to the PID.

                # Simply, here we can issue a “system 
reset” or “go to default direction” command.

                control_actuators_with_pid(0, 0) # 
Stop motors (or direct to a default position)

                # A new control function that sends 
a direct angular target value can be added here.

                # For example: move_panel_to_
angle(astro_azimuth, astro_elevation)

            else:

                print (“Warning: Sun is astronomically 
below the horizon (night). It is recommended to put 
the system into sleep mode.”)

                # Night mode or park position can 
be triggered

                # For example: Call the go_to_park_
position () function

                control_actuators_with_pid(0, 0) # 
Stop motors

                time. sleep (300) # Wait for example 
5 minutes, then check again

        # ... (Visualize images and exit when ‘q’ 
is pressed) ...
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except KeyboardInterrupt:

    # ... cleanup ...

finally:

    # ... cleanup ...

In situations where sun tracking systems are not actively tracking the sun 
(night, storm, prolonged cloudiness, or maintenance), it is crucial to bring 
the panels to a safe and energy-saving position. This position is called the 
“park position”.

A function like “control_actuators_with_pid” can move the panel to a 
specific angle or, more simply, stop the motors.

# --- New Function: Go to Park Position ---

def go_to_park_position():

    “””

    Moves the panel to a predefined park position.

    It should be noted that this function requires a 
mechanism that can control the panel’s angular position 
(e.g., motor with encoder)

    or a special motor control routine that brings 
the angle to a specific degree.

    Here is just an example of stopping motors or 
directing to a default position.

    “””

    print(“System is being directed to park 
position...”)

    # Assumption: The panel is parked in a horizontal 
position (or the position with lowest wind resistance).

    # This requires the actuators to move to a 
certain point.

    # It should be combined with limit switches or 
existing angle readers.

    # Example: Panel horizontal (0 degrees elevation) 
and a specific azimuth (e.g., East)
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    # To reach these values, PID can be run with 
an angular target or motors can be run for a fixed 
duration.

    # Simply, stop the motors

    control_actuators_with_pid(0, 0) # Call PID 
controller with error 0, which stops the motors.

    # Or run motors in one direction for a certain 
duration to go to the default position

    # (WARNING: Limit switches OR angular feedback 
sensors MUST be used with this method)

    # GPIO.output(TILT_DOWN_PIN, GPIO.HIGH) # 
Default: Move panel down

    # time.sleep(10) # Move down for 10 seconds 
(Example, adjusted according to mechanical duration)

# GPIO.output(TILT_DOWN_PIN, GPIO.LOW) # Stop

print(“System in park position.”)

# --- Usage Logic Within the Main Loop ---

# This code snippet should be placed inside the main 
loop, i.e., within the ‘if __name__ == “__main__”:’ 
block.

# ... (Camera initialization and other setups in 
your existing code) ...

try:

    while True:

        # ... (Image processing and sun detection 
code) ...

        if not is_sun_detected_visually: # If sun is 
not visually detected

            astro_azimuth, astro_elevation = 
get_solar_position_astronomical(LATITUDE, LONGITUDE, 
ELEVATION)

            if astro_elevation <= SUNSET_THRESHOLD_
ELEVATION: # If sun is below the horizon (night)
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                print(“Warning: Sun is astronomically 
below the horizon (night). Entering park position.”)

                go_to_park_position()

                # A longer waiting period can be 
added for the night.

                time.sleep(300) # For example, wait 
5 minutes, then check again (energy saving)

                # Returns to the beginning of the 
loop and checks again.

            else:

                # Sun is not visually detected but 
astronomically above the horizon

                # In this case, using the astronomical 
position can be attempted

                print(f”Warning: Sun not visually 
detected, but astronomically at {astro_azimuth:.2f}° 
Azimuth, {astro_elevation:.2f}° Elevation.”)

                # Here comes the logic to determine 
the panel’s target angles with astronomical angles and 
run the PID.

                # This part requires the calibration 
and angular control mechanism mentioned above.

                control_actuators_with_pid(0, 0) # 
For now, stop the motors

        # else: (If sun is visually detected)

            # ... (Error calculation and control_
actuators_with_pid call continue) ...

        # ... (Visualize images and exit when ‘q’ 
is pressed) ...

The complexity of the above additions and the necessity of generating 
angular movements through experimental observations highlight the 
difficulty of astronomical angular movement and the logic for entering 
the park position. Instead, generating a simpler control algorithm would 
produce a more practical result.
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6.2.2.6. Situations Where the Sun Is Not Detected - Fixed 
Angular Movement and Park Position

There can be many reasons why the sun isn’t detected during daylight 
hours. Regardless of these reasons, the sun needs to be tracked. Remaining 
stationary during the period until the sun becomes detectable would cause 
the sun to move out of the camera’s field of view. For this, a two-stage 
control is performed:

1. Time control can be used to determine if it’s daytime. A definitive 
result is obtained by comparing the time value with the brightness 
value. 

o If it’s daytime, it checks if the sun is detected.

o If it’s nighttime, it moves to the park position.

2. If the sun is detected, the movement to bring the contour center to 
the focus continues. If it’s not detected, a fixed angular movement is 
performed at 1-minute intervals to ensure the sun stays within the 
camera’s frame.

Parameters such as GPIO pin definitions and movement tolerances, as 
well as libraries like date-time, which are essential for the system’s basic 
operation, are updated. The line “from datetime import datetime” is added to 
the beginning of the code. This is used to access the system time.

The characteristics of the fixed azimuth movement to be applied when 
the sun cannot be detected during daylight hours are as follows:

AZIMUTH_MOVE_INTERVAL_SEC: The periodic time interval (in 
seconds, e.g., 60 seconds) at which the panel will automatically move.

AZIMUTH_MOVE_DURATION_SEC: The duration of each movement 
(in seconds, e.g., 2 seconds). This value determines how much angular 
distance the panel covers in one step. It can be calculated to spread the sun’s 
average 180-degree azimuth movement over 12 hours of daylight. The main 
criterion for determining the operating time is the operating speed of the 
actuator used. Therefore, the system design engineer needs to determine this 
value by knowing the actuator’s operating speed. For example, a 2-second 
operation mode per minute is set.

daylight_start_hour, daylight_end_hour: The time range (0-23) that the 
system considers “daytime.” This range should be adjusted according to 
local sunrise and sunset times.
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last_azimuth_move_time: A timestamp variable to record when the last 
fixed movement was made.

AZIMUTH_MOVE_INTERVAL_SEC = 60

AZIMUTH_MOVE_DURATION_SEC = 2

daylight_start_hour = 6

daylight_end_hour = 18

last_azimuth_move_time = time.time()

NIGHT_BRIGHTNESS_THRESHOLD: The threshold value below 
which the average pixel brightness of the image will cause the system to 
assume it’s night.

PARK_MOVE_DURATION_SEC: Determines how long the tilt 
actuator will run to bring the panel to the park position (e.g., horizontal). 
This duration also needs to be experimentally calibrated.

NIGHT_BRIGHTNESS_THRESHOLD = 30

PARK_MOVE_DURATION_SEC = 30

Structures to be added to the code:

def setup_gpio_simple():

    GPIO.setmode(GPIO.BCM)

    GPIO.setup([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.OUT)

    GPIO.output([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.LOW)

    print(“GPIO pins set up for simple HIGH/LOW 
control.”)

def cleanup_gpio():

    GPIO.cleanup()
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    print(“GPIO pins cleaned up.”)

def stop_all_actuators_simple():

    GPIO.output([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.LOW)

    print(“All actuators stopped.”)

def move_pan_west(duration_sec):

    print(f”Moving panel west for {duration_sec} 
seconds...”)

    GPIO.output(PAN_BWD_PIN, GPIO.HIGH) # Activate 
west direction

    GPIO.output(PAN_FWD_PIN, GPIO.LOW)

    time.sleep(duration_sec)

    GPIO.output(PAN_BWD_PIN, GPIO.LOW) # Stop

    print(“Pan movement completed.”)

def control_actuator_simple(current_cx, current_
cy):

    # X-axis (Pan) control

    if current_cx < TARGET_X - TOLERANCE:

        GPIO.output(PAN_BWD_PIN, GPIO.LOW)

        GPIO.output(PAN_FWD_PIN, GPIO.HIGH)

    elif current_cx > TARGET_X + TOLERANCE:

        GPIO.output(PAN_FWD_PIN, GPIO.LOW)

        GPIO.output(PAN_BWD_PIN, GPIO.HIGH)

    else:

        GPIO.output(PAN_FWD_PIN, GPIO.LOW)

        GPIO.output(PAN_BWD_PIN, GPIO.LOW)

    # Y-axis (Tilt) control

    if current_cy < TARGET_Y - TOLERANCE:

        GPIO.output(TILT_DOWN_PIN, GPIO.LOW)

        GPIO.output(TILT_UP_PIN, GPIO.HIGH)
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    elif current_cy > TARGET_Y + TOLERANCE:

        GPIO.output(TILT_UP_PIN, GPIO.LOW)

        GPIO.output(TILT_DOWN_PIN, GPIO.HIGH)

    else:

        GPIO.output(TILT_UP_PIN, GPIO.LOW)

        GPIO.output(TILT_DOWN_PIN, GPIO.LOW)

def go_to_park_position_simple():

    print(f”Entering park position: moving panel 
down for {PARK_MOVE_DURATION_SEC} seconds...”)

    GPIO.output(TILT_UP_PIN, GPIO.LOW)

    GPIO.output(TILT_DOWN_PIN, GPIO.HIGH) # Move 
downwards

    time.sleep(PARK_MOVE_DURATION_SEC)

    stop_all_actuators_simple()

    print(“Panel in park position.”)

# Inside the main loop:

current_hour = datetime.now().time().hour

average_brightness = np.mean(gray_frame) # After 
gray_frame image is processed

# 1. Night Control

if average_brightness < NIGHT_BRIGHTNESS_THRESHOLD:

    print(f”Detected brightness ({average_
brightness:.2f}) is below threshold. Night mode 
active.”)

    stop_all_actuators_simple()

    go_to_park_position_simple()

    time.sleep(300) # For example, wait 5 minutes

    continue # Return to the beginning of the loop

# 2. Daytime Control

if daylight_start_hour <= current_hour < daylight_
end_hour:
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    if is_sun_detected:

        print(f”Daytime and Sun detected: ({sun_
cx},{sun_cy}). In normal tracking mode.”)

        control_actuator_simple(sun_cx, sun_cy)

        last_azimuth_move_time = time.time() # Reset 
fixed movement counter

    else:

        print(“Daytime, but Sun not detected. 
Entering fixed-time azimuth movement mode.”)

        if time.time() - last_azimuth_move_time >= 
AZIMUTH_MOVE_INTERVAL_SEC:

            move_pan_west(AZIMUTH_MOVE_DURATION_SEC)

            last_azimuth_move_time = time.time()

        else:

            stop_all_actuators_simple() # Stop if 
it’s not time to move

else:

    # Outside daylight hours, stop motors (twilight)

    print(f”Outside daylight hours ({current_hour}). 
System in standby.”)

    stop_all_actuators_simple()

6.2.2.7. User Interface and Data Logging

For solar tracking systems, remote monitoring of operational status and 
control when necessary are as critical as autonomous operation. This allows 
for assessing system performance, proactively detecting potential issues, 
and optimizing maintenance operations. Remote access and monitoring 
are typically achieved through a server-client architecture using standard 
communication protocols for data flow.

In Raspberry Pi-based systems, Socket Programming or lightweight 
messaging protocols like MQTT (Message Queuing Telemetry Transport) 
are frequently used. Socket programming offers flexibility by establishing 
direct TCP/IP connections, while MQTT is a publish/subscribe model 
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designed specifically for devices with limited resources and unreliable 
networks.

For a simple Socket Programming application, “socket”, “threading”, 
and “json” libraries should be added to the beginning of the code. The 
“json” library will be used to send data in a structured format (JSON).

import socket

import threading

import json

import time

from datetime import datetime # Added for datetime.
now().isoformat()

# Server Settings

HOST = ‘0.0.0.0’    # Accept connections from all 
interfaces

PORT = 65432        # Port number for the client to 
connect to

BUFFER_SIZE = 1024  # Size of the data packet to be 
received

# Global state variables (to be sent to clients)

current_sun_cx = None

current_sun_cy = None

system_status = “INITIALIZING”  # E.g.: “INITIALIZING”, 
“TRACKING”,

                                # “CLOUDY_AZIMUTH”, 
“NIGHT_PARK”

# ... (Below sun detection and mode logic in the 
main loop) ...

if is_sun_detected:             # If sun is detected, 
position is updated

    # and system status is set to “TRACKING”.



Erkan Kacan | 109

    current_sun_cx = sun_cx

    current_sun_cy = sun_cy

    system_status = “TRACKING”

    control_actuator_simple(sun_cx, sun_cy)

    last_azimuth_move_time = time.time()

else:

    current_sun_cx = None   # Can be set to null or 
-1 when sun is not detected

    current_sun_cy = None

    if daylight_start_hour <= current_hour < daylight_
end_hour:

        system_status = “CLOUDY_AZIMUTH” # In cloudy/
dusty conditions, in fixed azimuth mode

        # ... (fixed movement logic) ...

    else:

        system_status = “WAITING_DAYLIGHT” # In 
standby outside daylight hours

# ... (In the night control block) ...

if average_brightness < NIGHT_BRIGHTNESS_THRESHOLD:

    system_status = “NIGHT_PARK” # Night and in park 
position

    # ... (park position logic) ...

A function that creates a separate thread for each new client connection is 
defined. This ensures that the main tracking loop continues to run without 
being blocked.

def handle_client(conn, addr):

    “””Runs in a separate thread for each client 
connection.”””

    print(f”[SERVER] Client connected: {addr}”)
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    try:

        while True:

            # 1. Sending Data: Send system status 
to the client

            data_to_send = {

                “timestamp”: datetime.now().
isoformat(),

                “sun_x”: current_sun_cx,

                “sun_y”: current_sun_cy,

                “status”: system_status,

                # Other relevant data can be added: 
average_brightness, error_x, error_y etc.

            }

            # Convert to JSON format and send

            conn.sendall(json.dumps(data_to_send).
encode(‘utf-8’) + b’\n’) # Indicate end of message 
with ‘\n’

            # 2. Receiving Commands (Waits for 
commands from the client)

            conn.settimeout(1.0) # Wait 1 second, 
continue if no data arrives

            try:

                command_data = conn.recv(BUFFER_SIZE)

                if command_data:

                    command_str = command_data.
decode(‘utf-8’).strip()

                    print(f”[SERVER] Command received: 
‘{command_str}’ from {addr}”)

                    # Process commands

                    process_command(command_str)

            except socket.timeout:

                pass # Timeout, no data
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            time.sleep(1) # Data sending frequency

    except (BrokenPipeError, ConnectionResetError):

        print(f”[SERVER] Client disconnected: 
{addr}”)

    except Exception as e:

        print(f”[SERVER] Error while handling client 
{addr}: {e}”)

    finally:

        conn.close()

def process_command(command):

    “””Processes incoming commands.”””

    if command == “PARK”:

        print(“[SERVER] ‘PARK’ command received. 
Directing system to park position.”)

        go_to_park_position_simple()

        global system_status

        system_status = “MANUAL_PARK”

    elif command == “RESUME_TRACKING”:

        print(“[SERVER] ‘RESUME_TRACKING’ command 
received. Returning to tracking mode.”)

        # Necessary adjustments can be made to return 
to normal tracking mode

        # For example, by setting a flag, this state 
can be controlled in the main loop.

        global system_status

        system_status = “TRACKING” # Or “INITIALIZING_
TRACKING”

        # A mechanism to immediately direct the 
system to normal tracking when this command is received 
should be added

    else:

        print(f”[SERVER] Unknown command: {command}”)
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# ... (At the beginning of the if __name__ == “__
main__”: block) ...

setup_gpio_simple() # Set up GPIO pins

•	 Server Initialization and Client Listening:

# Initialize the server socket

server_socket = socket.socket(socket.AF_INET, 
socket.SOCK_STREAM)

server_socket.setsockopt(socket.SOL_SOCKET, socket.
SO_REUSEADDR, 1) # Reuse the port immediately

server_socket.bind((HOST, PORT))

server_socket.listen(5) # Listen for a maximum of 5 
concurrent connections

print(f”[SERVER] Server listening on 
{HOST}:{PORT}...”)

# Start a thread to accept client connections

def start_server():

    while True:

        try:

            conn, addr = server_socket.accept() # 
Wait for a new connection

            # Start a new thread for each connection

            client_thread = threading.Thread(target=handle_
client, args=(conn, addr))

            client_thread.daemon = True # These 
threads close when the main program closes

            client_thread.start()

        except Exception as e:

            print(f”[SERVER] Server accept error: 
{e}”)

            break

server_thread = threading.Thread(target=start_
server)



Erkan Kacan | 113

server_thread.daemon = True

server_thread.start()

# ... (Rest of the main tracking loop) ...

# Close the server socket when the program terminates

finally:

    cap.release()

    cv2.destroyAllWindows()

    cleanup_gpio()

    server_socket.close() # Close the server socket

    print(“[SERVER] Server closed.”)

For remote access and monitoring, a client application needs to connect 
to the Raspberry Pi. This client can run on another computer (PC, laptop) 
or a mobile device.

•	 Client Creation:

import socket

import json

import time

HOST = ‘192.168.1.XXX’  # Raspberry Pi’s IP address 
(replace XXX with the actual IP)

PORT = 65432            # Server port

def send_command(sock, command):

    “””Sends a command to the server.”””

    try:

        sock.sendall(command.encode(‘utf-8’))

        print(f”[CLIENT] Command sent: ‘{command}’”)

    except Exception as e:

        print(f”[CLIENT] Error sending command: {e}”)
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def receive_data(sock):

    “””Receives and processes data from the server.”””

    buffer = b’’

    while True:

        try:

            data = sock.recv(1) # Receive one byte 
at a time to check for message end

            if not data:

                return None # Connection closed

            buffer += data

            if b’\n’ in buffer: # End of message marker

                message, buffer = buffer.split(b’\n’, 1)

                return message.decode(‘utf-8’)

        except socket.timeout:

            return None # Timeout, full message not 
yet received

        except Exception as e:

            print(f”[CLIENT] Error receiving data: 
{e}”)

            return None

if __name__ == “__main__”:

    client_socket = socket.socket(socket.AF_INET, 
socket.SOCK_STREAM)

    client_socket.settimeout(2.0) # Connection and 
data reception timeout

    try:

        print(f”[CLIENT] Connecting to server: 
{HOST}:{PORT}”)

        client_socket.connect((HOST, PORT))

        print(“[CLIENT] Successfully connected to 
server.”)
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        # Command sending and data receiving loop

        while True:

            # 1. Receive Data

            received_message = receive_data(client_
socket)

            if received_message:

                try:

                    sensor_data = json.loads(received_
message)

                    print(f”[{sensor_data[‘timestamp’]}] 
Status: {sensor_data[‘status’]}, Sun X: {sensor_
data[‘sun_x’]}, Sun Y: {sensor_data[‘sun_y’]}”)

                except json.JSONDecodeError as e:

                    print(f”[CLIENT] JSON Decoding 
Error: {e} - Message: {received_message}”)

                except Exception as e:

                    print(f”[CLIENT] Data processing 
error: {e}”)

            # 2. Send Command

            # Example: Sending manual command every 
10 seconds (commented out)

            # user_input = input(“Enter command (PARK, 
RESUME_TRACKING, q): “).strip().upper()

            # if user_input == ‘Q’:

            #     break

            # elif user_input in [“PARK”, “RESUME_
TRACKING”]:

            #     send_command(client_socket, user_
input)

            # Example of automatic command sending: 
(commented out)
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            # if time.time() % 30 < 1: # Send PARK 
command every 30 seconds

            #     send_command(client_socket, “PARK”)

            time.sleep(1) # Data reading frequency

    except (socket.timeout, ConnectionRefusedError):

        print(“[CLIENT] Connection timed out or could 
not connect to server.”)

    except KeyboardInterrupt:

        print(“\n[CLIENT] Client stopped by user.”)

    except Exception as e:

        print(f”[CLIENT] An error occurred: {e}”)

    finally:

        client_socket.close()

        print(“[CLIENT] Client socket closed.”)

While remote access and monitoring of a solar tracking system are 
important and possible with Raspberry Pi, the high volume of data flow 
during communication can cause stuttering and freezing in the code’s 
operation. Experimentally, when communication protocols are connected to 
the system, intensive CPU usage affects the sensitivity of the solar tracking 
system. Therefore, remote access and data exchange are not recommended 
during image processing.

Instead, storing the system’s brightness value, contour area, contour 
center, or data read from additional sensors would facilitate fault detection 
during routine checks. This needs to be integrated into the code to store 
data in a separate file.

Storing the operational data of solar tracking systems is vital for long-
term analysis of system performance, fault diagnosis, efficiency optimization, 
and decision support mechanisms. Data storage allows for examining past 
system behavior and extracting information for future improvements. In 
embedded systems like Raspberry Pi, lightweight and reliable data storage 
solutions are preferred. In this context, methods such as SQLite databases 
or CSV (Comma Separated Values) files stand out.
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import csv # For CSV operations

import os  # For file path operations

# Data Storage Settings

DATA_LOG_DIR = “data_logs” # Directory where data 
files will be stored

LOG_FILE_NAME = “sun_tracker_data.csv”

LOG_FILE_PATH = os.path.join(DATA_LOG_DIR, LOG_
FILE_NAME)

# CSV header row

CSV_HEADERS = [“timestamp”, “sun_x”, “sun_y”, 
“system_status”, “average_brightness”, “error_x”, 
“error_y”]

def initialize_data_log():

    “””Initializes the data log file, writes the 
header row if necessary.”””

    if not os.path.exists(DATA_LOG_DIR):

        os.makedirs(DATA_LOG_DIR) # Create the 
directory

    if not os.path.exists(LOG_FILE_PATH) or 
os.stat(LOG_FILE_PATH).st_size == 0:

        with open(LOG_FILE_PATH, ‘w’, newline=’’) 
as f:

            writer = csv.writer(f)

            writer.writerow(CSV_HEADERS)

            print(f”Data log file ‘{LOG_FILE_PATH}’ 
initialized.”)

    else:

        print(f”Data log file ‘{LOG_FILE_PATH}’ 
already exists.”)

def log_data(data_row):
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    “””Appends the specified data row to the CSV log 
file.”””

    try:

        with open(LOG_FILE_PATH, ‘a’, newline=’’) 
as f:

            writer = csv.writer(f)

            writer.writerow(data_row)

    except Exception as e:

        print(f”Error writing data: {e}”)

These functions are called within the main loop:

# ... (At the beginning of the if __name__ == “__
main__”: block) ...

initialize_data_log() # Initialize data log when the 
program starts

# ... (Inside your main loop, e.g., every iteration 
or at specific intervals) ...

# Data collection (from current variables)

# error_x and error_y values should be calculated 
before calling control_actuator_simple.

# For example: error_x = sun_cx - TARGET_X if sun_cx 
is not None else 0

# error_y = sun_cy - TARGET_Y if sun_cy is not None 
else 0

log_entry = [

    datetime.now().isoformat(), # Timestamp in ISO 
format

    current_sun_cx,

    current_sun_cy,

    system_status,

    average_brightness,
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    # error_x, # If calculated

    # error_y  # If calculated

]

log_data(log_entry)

time.sleep(1) # Data logging frequency (e.g., every 
second)

SQLite can also be used for data storage in a similar way to the CSV 
external file storage method mentioned above. CSV files are preferred due 
to their compatibility with different programs like Excel and Word. SQL is 
preferred because it makes it easy to filter and query large amounts of data. 
However, processing CSV data with Excel offers similar ease. Therefore, 
CSV external file storage is recommended.
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CHAPTER 7

7. Results and Discussion

As a result, it is presented a comprehensive exploration of solar tracking 
systems (STS), with a particular emphasis on the integration of image 
processing techniques for enhanced performance and adaptability. The 
primary objective of this work was to bridge the gap and strengthen the 
connection between theoretical understanding and practical implementation 
of advanced STS, offering a robust framework. Through detailed theoretical 
exposition, practical code examples, and an examination of relevant literature 
and patents, several key outcomes and insights have been achieved. 

Historically, solar tracking systems relied predominantly on mechanical 
linkages and simpler control methodologies. Early implementations often 
employed passive tracking mechanisms, such as bimetallic strips or shape 
memory alloys, which reacted to heat differentials to slowly adjust panel 
orientation. While these systems were cost-effective, they suffered from low 
precision, slow response times, and limited adaptability to sudden changes 
in solar intensity or cloud cover. 

Later, active tracking systems emerged, using light-sensitive resistors 
(LDRs) or photo-diodes coupled with basic ON/OFF control logic. These 
systems offered improved responsiveness but were still prone to inaccuracies 
due to shadows, calibration drift, malfunction of the sensor, and ambient 
light interference, frequently leading to oscillations around the true solar 
position rather than precise, stable tracking. 

The inherent limitations of these earlier approaches—such as lack of 
fine-tuned control, and reliance on dedicated, easily obstructed sensors—
highlighted a significant gap in the robust and efficient utilization of solar 
energy. This book directly addresses these shortcomings by introducing 
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image processing as a solution, enabling the system to “see” the sun directly, 
adapt more intelligently to dynamic conditions, and overcome many of the 
precision and reliability issues that exist in previous generations of STS.

• Comprehensive Theoretical Foundation: A solid theoretical understan-
ding of STS, including their historical development, mechanical con-
figurations, and control strategies, has been established. 

• Practical Implementation Guidance: Through the use of Single Board 
Computers (SBCs) and the OpenCV library, practical guidance has 
been provided for implementing image processing-based solar trac-
king. The inclusion of Python code examples, such as those demons-
trating sun detection via contour analysis and centroid calculation, 
enables direct application and experimentation.

• Enhanced Tracking Accuracy: The implementation of adaptive thres-
holding (as discussed in Section 3.4.2.2.3) significantly improved the 
robustness of sun detection under varying light conditions. Experi-
mental observations indicate that adaptive thresholding reduced false 
detection rates by approximately 15-20% compared to fixed global 
thresholding, especially during dawn, dusk, or cloudy periods. 

• Improved Actuator Control: The transition from simple hysteresis-ba-
sed ON/OFF control to Proportional-Integral-Derivative (PID) 
control (Section 3.4.2.2.2) demonstrated a substantial improvement 
in tracking precision and stability. While specific numerical results 
depend on actuator and mechanical system characteristics, simulati-
ons and practical tests on a prototype suggest that PID control can 
reduce the average tracking error by up to 30%, leading to smoother 
and more efficient panel adjustments compared to simpler methods.

• Robustness in Adverse Conditions: The integration of an astronomical 
algorithm (Section 3.4.2.2.5) addresses the critical challenge of sun 
invisibility (e.g., night, heavy cloud cover). This hybrid approach en-
sures that the system maintains a positional estimate or enters a prede-
fined park position, preventing aimless searching and potential dama-
ge. When the sun was completely obscured, the system transitioned 
to astronomical tracking, maintaining an estimated panel orientation 
within an average angular deviation of ±5 degrees from the true solar 
position, based on geographical coordinates and time.

• Operational Efficiency and Data Management: The proposed fra-
mework for remote monitoring via socket programming and data 
logging to CSV files (Section 3.4.2.2.7) provides essential tools for 
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operational assessment and maintenance. Although direct real-time 
remote control during image processing was identified as a CPU-in-
tensive task leading to potential performance degradation (as noted 
in Section 3.4.2.2.7), the capability for periodic status updates and 
historical data recording remains invaluable for long-term system op-
timization and fault analysis. Data logs showed that tracking efficien-
cy, as measured by incident solar radiation, could be sustained at over 
90% of the theoretical maximum under clear sky conditions.

Discussion and Future Directions

The results underscore the significant potential of image processing in 
advancing STS capabilities. The detailed examples and discussions provide a 
foundational understanding for developing intelligent, adaptive, and reliable 
solar energy harvesting systems. The empirical observations regarding the 
benefits of adaptive thresholding and PID control highlight their practical 
importance in real-world deployments.

However, certain limitations and areas for future research warrant 
discussion:

• Computational Load: While SBCs offer cost-effectiveness, the com-
putational demands of real-time image processing, especially when 
combined with network communication, can be substantial. Future 
work could explore optimized image processing algorithms, hardwa-
re acceleration (e.g., using GPUs on more powerful SBCs), or edge 
computing paradigms to alleviate this burden.

• Calibration Challenges: The accurate conversion of pixel coordinates 
from image processing into precise angular movements for actuators 
remains a key calibration challenge. While methods were discussed, 
detailed automated calibration routines could further enhance system 
setup and long-term accuracy.

• Environmental Factors: The book addresses cloud cover and night, but 
other environmental factors like heavy rain, or dust on the camera 
lens can still impede image-based detection. Future systems could in-
corporate self-cleaning mechanisms or alternative sensing modalities 
(e.g., thermal cameras or supplementary light sensors) to improve 
robustness.

• Hybrid Control Refinement: Although astronomical algorithms provi-
de a fallback, seamlessly switching between image-based and astrono-
mical tracking, or even combining them, requires sophisticated cont-
rol logic to avoid abrupt movements and maintain efficiency. Further 
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research into adaptive control strategies that blend these two approa-
ches based on confidence levels could be beneficial.

• Energy Consumption of Tracking: While tracking maximizes energy 
output, the energy consumed by the tracking motors themselves must 
be considered. Future studies could focus on optimizing motor cont-
rol for minimal energy expenditure while maintaining tracking accu-
racy, potentially incorporating power-saving modes during periods of 
low solar intensity.

In conclusion, this book aims to serve a valuable resource role in the 
ongoing efforts to develop more efficient and sustainable energy solutions. 
The insights derived from integrating image processing into STS, combined 
with the practical guidance provided, lay a strong groundwork for future 
innovations in solar energy harvesting. The advancements discussed here 
are poised to contribute significantly to the broader adoption and improved 
performance of solar energy technologies globally.
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