

The Evolution of Solar
Tracking Systems (STS):

“Principles of Image Processing for
Advanced STS”

Assoc. Prof. Dr. Erkan KACAN

The Evolution of Solar Tracking Systems (STS):
“Principles of Image Processing for Advanced STS”
Assoc. Prof. Dr. Erkan KACAN

ISBN (PDF): 978-625-5646-05-7

DOI: https://doi.org/10.58830/ozgur.pub750

Language: English
Publication Date: 2025
Cover design by Mehmet Çakır
Cover design and image licensed under CC BY-NC 4.0
Print and digital versions typeset by Çizgi Medya Co. Ltd.

Suggested citation:
Kacan, E. (2025). The Evolution of Solar Tracking Systems (STS): “Principles of Image Processing for Advanced
STS” Özgür Publications. DOI: https://doi.org/10.58830/ozgur.pub750. License: CC-BY-NC 4.0

The full text of this book has been peer-reviewed to ensure high academic standards. For full review policies, see
https://www.ozguryayinlari.com/

Published by
Özgür Yayın-Dağıtım Co. Ltd.
Certificate Number: 45503

15 Temmuz Mah. 148136. Sk. No: 9 Şehitkamil/Gaziantep
+90.850 260 09 97
+90.532 289 82 15
www.ozguryayınlari.com
info@ozguryayinlari.com

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International
(CC BY-NC 4.0). To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0/
This license allows for copying any part of the work for personal use, not commercial use, providing
author attribution is clearly stated.

iii

Preface

Dear Readers,

The sun, in addition to being the source of life on Earth, offers an
unlimited potential for clean energy. Harnessing this potential in the most
efiicient way has become a primary objective for the fields of engineering
and science, particularly in light of contemporary energy demands and
environmental concerns. Solar tracking systems are crucial technologies that
maximize energy production by enabling solar panels to follow the sun at
the optimal angle throughout the day. In the early stages, solar tracking was
largely achieved through mechanical and simpler control systems. However,
it has evolved to become significantly more precise and efficient today,
thanks to intelligent algorithms such as image processing. The future will
inevitably see even more advanced and accurate tracking through hybrid
methods.

The implementation of solar tracking systems using image processing
methods represents the latest and most technologically advanced state of
solar tracking systems. This method offers significant advantages as it can
directly sense the sun’s position, provide adaptation to conditions like cloud
cover, and reduce the requirement for additional sensors.

This book aims to illuminate the past, present state, and future
expectations of solar tracking systems.

Within this book, the fundamental principles, hardware components,
and especially image processing-based intelligent control algorithms
underpinning solar tracking systems are comprehensively addressed. The
selection of system components and load calculations are examined in detail.

Throughout the book, in-depth discussions are provided on topics such
as algorithms developed for the precise detection of the sun’s position,
actuator control methods (ranging from simple on/off to PID control),

iv

adaptation to dynamic environmental conditions (adaptive thresholding),
and even astronomical positioning for scenarios where the sun is not
visible. Furthermore, practical operational aspects, including remote system
monitoring and data logging, are also investigated.

The objective is to provide a robust resource for academics, researchers,
students, and design engineers interested in this field, enabling them to
integrate theoretical knowledge with practical application skills. Each chapter
within the book has been meticulously designed to facilitate a progressive
understanding of the subject matter for the reader.

This work endeavors to contribute to the proliferation of sustainable
energy technologies and the enhancement of energy efficiency.

It is a pleasure to accompany you on the journey towards more effective
utilization of the sun’s boundless energy.

Sincerely,

June-2025

Assoc. Prof. Dr. Erkan KACAN

v

Contents

Preface iii
1. Introduction 1
2. Use of Solar Tracking Systems (STS) in Concentrating Solar Power

(CSP) 9
3. Patents in the Field of STS 17
4. STS Using Image Processing Methods 23

4.1. How Does the Image Processing Method Work? 24
4.2. How is Solar Tracking Performed with Image Processing Method? 28

5. System Components 45
5.1. Servo Motors vs. Stepper Motors in Solar Tracking 46
5.2. Linear Actuators in Solar Tracking 47
5.3. Slew Drive in Solar Tracking 53

5.3.1. Worm Gear Slew Drives 55
5.3.2. Spur Gear Slew Drives 55
5.3.3. Single-Axis Slew Drives 56
5.3.4. Dual-Axis Slew Drives 57
5.3.5. Enclosed Slew Drives 58
5.3.6. Open Slew Drives 58
5.3.7. Slew Drive Selection Criteria and Design Analysis 58
5.3.8. Slew Drive Selection: A Case Study “Calculation Method for
Solar Tracking Systems” 62

6. Algorithm Samples and Microcontroller Connections 69
6.1. Hardware Integration and Data Processing in Raspberry Pi-Based
Solar Tracking Systems 70
6.2. Image Processing-Based Algorithms in Solar Tracking Systems 72

6.2.1. Basic Steps of the Image Processing Algorithm 72

6.2.2. Image Processing Algorithm Samples 77
6.2.2.1. Sample Code-Main Body 77
6.2.2.2. Transitioning from Hysteresis-Based Control to PID-
Based Control 84
6.2.2.3. Integration of Adaptive Thresholding: 89
6.2.2.4. Steps to Improve Sun Detection: 91
6.2.2.5. Cases Where Sun Is Not Detected- Astronomical
Algorithm Integration: Calculating Sun Position: 94
6.2.2.6. Situations Where the Sun Is Not Detected - Fixed
Angular Movement and Park Position 103
6.2.2.7. User Interface and Data Logging 107

7. Results and Discussion 121
References 125

1

CHAPTER 1

1. Introduction

Solar collectors are components of solar energy systems that convert the
energy received from the sun into usable energy, and they possess various
design parameters. Generally, the conversion performed by collectors is
in the form of heat and electrical energy. In solar lighting applications,
however, transmission or light conveyance occurs without any conversion.
Solar collectors located on the Earth’s surface are in dynamic interaction
with the Sun. Therefore, characteristics of solar energy systems such as
solar geometry, orientation, and surface area are very important data in
determining this interaction.

“Solar Tracking Systems (STS)” are used to continuously and
dynamically position the collectors according to the sun’s location in order
to gain maximum energy. The tracking systems of solar collectors have made
significant progress, especially with the development of sensors, transducers,
and microelectronics.

Solar energy systems would be grouped internally as low, medium, and
high temperature applications, as well as PV-electricity generation. Collector
models shown in Figure 1 are used while applying these methods.

2 | The Evolution of Solar Tracking Systems (STS)

Figure 1 Solar Collector Types Used in Solar Energy Systems

Solar collectors can be classified according to their concentration ratio
into non-concentrating, linear (line-focusing), and point-focusing types.
Depending on the intended use, solar energy applications can be classified as
shown in Figure 2. The main purpose of all these applications and collector
types is to obtain useful energy and the amount of uselful energy depends
on the efficiency of the application, the amount of solar radiation and the
solar geometry. Receiving solar beams at surface normal, continuously,
and at high intensity are the most important factors that increases the
amount of useful energy. Therefore, factors such as duration of sunshine,
surface orientation, and shading factors are taken into consideration when
determining the application locations of solar energy systems.

Erkan Kacan | 3

Figure 2 Classification of Solar Energy Applications

Various methods and strategies have been developed to ensure that
collectors receive solar rays perpendicularly. The most effective method is
the use of auxiliary equipment that tracks the sun on the east-west and solar
elevation axes. Solar tracking systems are generally divided into two groups:
single-axis and dual-axis tracking systems. Dual-axis solar tracking systems
can also be examined in two groups: polar (equatorial) tracking and azimuth/
elevation tracking methods. Today, with technological advancements, solar
tracking systems are produced by using different methods.

The first known examples of solar tracking systems were made by Finster
in Chile in 1962. However, this system worked entirely in manual mode.
One year later, in 1963, Saavedra developed an electronic mechanism for the
control of the Eppley pyrheliometer [Roth, Georgiev, & Boudinov,2005].

Neville (1978), demonstrated the difference between the insolation
of a sun-tracking surface and a fixed surface. This study is important as
it is among the first to determine the useful energy obtained from fixed-
positioned solar collectors and sun-tracking collectors. As seen in Figure
3, the data obtained from three different collectors were compared; it was
shown that the highest value was obtained from the system that tracks the
sun on two axes, followed by the system fixed at the latitude angle and
tracking the sun on the east-west axis, and finally the system fixed at the
latitude angle facing due south [Neville, 1978].

4 | The Evolution of Solar Tracking Systems (STS)

Figure 3 Comparison of Fixed Collectors and Sun-Tracking Collectors

Hession and Bonwick (1984), developed a solar tracking system that
could be used with many solar collectors and platforms. Although the
system, which detects the sun using phototransistors, had some errors, it
provided successful results in solar tracking applications by solving these
errors and consuming only 1W of energy [Hession PJ & Bonwick , 1984].

Schubnell and Ries (1990) published an approach to control the angular
speed of the tracking system. This study specifically focused on the accuracy
of solar tracking in concentrating solar energy systems. Accordingly, the
maximum tracking error defined as a 10⁻⁴ error rate (1 cm/100 m) was
expressed as a time-dependent numerical value for the worst-case scenario.
While this value is 1.4 seconds in commonly used tracking systems, it was
found to be 6.4 minutes in the tested system, which correctly oriented a
51.8 m² heliostat glass surface [Schubnell M & Ries , 1990].

Davies (1993) focused on a tracking system for concentrating solar
collectors. In his study, he developed a method that considers situations
where the equatorial plane is perpendicular to the ecliptic plane. It was
assumed that the sun follows an approximately circular trajectory on the
cross-sectional plane of the tracked surface. Therefore, it was claimed that
solar tracking could be done accurately when moving at a constant speed.
Experimental observations reported errors of ±2° [Davies PA, 1993].

Hirata and Tani (1994, 1995) developed the “spectral tracking method”
to maximize output of photovoltaic collectors. The energy produced by

Erkan Kacan | 5

polycrystalline silicon PVs and amorphous silicon PVs, which were exposed
to different regions of the solar spectrum by being mounted on the solar
tracking system, was examined. The experiments showed that polycrystalline
PVs produced more stable results than amorphous silicon PVs [Hirata Y &
Tani, 1994] [Hirata Y & Tani, 1995].

Ünüsaçar and Taşer (1994) developed solar tracking systems to maximize
the useful energy gained from solar radiation and achieved high levels of
thermal energy in experiments conducted in May and June [Ünsaçar F &
Taşer 1994].

Barakat et al. (2001) conducted studies on multi (dual) axis solar tracking
systems and examined the effect of these systems on the amount of energy
obtained from PV. When a tracking system controlled by complex dual-
axis electronic circuits was used, a 20% more effective result was obtained
compared to a single-axis tracking system [Barakat et.al., 2001].

As shown in Figure 3, the difference in obtained energy between single-
axis and dual-axis solar tracking has increased from 5% to values up to 20%
over time.

Garrison (2002) worked on a program to determine the energy gains
of both fixed and sun-tracking collectors based on the physical properties
of 15 different solar collectors. The FORTRAN program named SOCOL
processed data from 239 national meteorological stations within 20
seconds, successfully calculating parameters such as the surface temperature
and instantaneous energy gain of a collector at a specific location [Garrison,
2002].

Hein et al. (2003) used parabolic reflector surfaces that concentrate the
rays 300 times by tracking the sun. The concentrated solar rays were directed
onto PVs to generate electricity. The effect of single-axis solar tracking on
energy yield was investigated. At a concentration ratio of 200x, the best
efficiency value was obtained from GaAs PVs at 26% [Hein et.al., 2003].

Abdallah (2004) examined the effects of four different solar tracking
systems on the current-voltage characteristics and electricity generation of
PV systems. The solar tracking systems were divided into four groups: dual-
axis, single-axis vertical, east-west axis, and north-south axis. Compared to
320 fixed-tilted PV systems in Amman, Jordan, the highest efficiency increase
was observed in the dual-axis tracking system at 43.87%. For the other axes,
the efficiency increase was 37.53% for the east-west axis, 34.43% for the
single-axis vertical, and 15.69% for the north-south axis, respectively. As

6 | The Evolution of Solar Tracking Systems (STS)

shown in Figure 4., the efficiency difference between single-axis (east-west
axis) and dual-axis solar tracking systems is about 6.5% [Abdallah, 2004].

Figure 4 Effect of Different Solar Tracking Systems on the Power Output Obtained from
PV Modules [Abdallah, 2004]

Roth et al. (2004, 2005) conducted studies and tests on a solar tracking
system. This tracking system enabled the automatic measurement of direct
solar irradiation with a pyrheliometer. The mechanism was designed
unattached to the control unit via the digital program within the control
system. The system calculated the sun’s position and stored it in a database
for future analyses [Roth et. al, 2004] [Roth et. al, 2005].

Alata et al. (2005) developed methods for solar tracking using three
different approaches. Accordingly, the Sugeno Fuzzy inference system was
used in single-axis tracking with the aperture area adjusted to the latitude,
dual-axis equatorial tracking, and dual-axis azimuth/elevation tracking
methods. This study is one of the first to use machine learning in solar
tracking systems [Alata et.al., 2005].

Bingöl et al. (2006) designed, implemented, and tested a microprocessor-
based dual-axis tracking system in the study. They used a light-sensitive
sensor, a step motor as the actuator, and a microprocessor [Bingol et.al.,
2006].

Abu-Khader et al. (2008) examined the effect of using multi-axis solar
tracking systems, suitable for Jordan’s climate parameters, on energy gains.

Erkan Kacan | 7

The algorithm of the solar tracking system is based on calculating the surface
azimuth angle and zenith angle with time-dependent models. According to
the results of the study, more effective data were obtained (between 30-
45%) when a north-south axis tracking system was used compared to a fixed
position with a 32° tilt angle. It was revealed that installing north-south axis
tracking systems for PV systems to be established in Jordan is more effective
than fixed and east-west axis tracking systems [Abu-Khader et.al., 2008].

Chong and Wong (2009) aimed to reduce solar tracking errors with
their work on the mathematical modeling of axial solar tracking systems.
The mathematical method developed in this study was compared with other
methods. Tracking errors occur as a result of calculating the sun’s position
relative to a collector on the Earth’s surface according to the triple vector

in the Stine-Harrigan model as
M

E

P

S cos cosw
S cos sinw
S sin

δ
δ
δ

   
   = −   
      

. Mathematical methods

were used to minimize the error in the calculation of this vector system, and
the results were examined [Chong & Wong 2009].

Mousazadeh et al. (2009) researched the working principles of solar
tracking systems and published a “review” by compiling the studies they
obtained as a result of this research. This review included classifications in
which the effect of solar tracking systems on the useful energy obtained
from the sun was examined. For small solar energy applications, although
the energy consumed by the solar tracking system varies between 2-3% of
the energy gained, they stated that usage of solar tarcking system does not
provide a significant benefit. As a result of the review, it is determined that
the most efficient and common solar tracking systems are the axial-polar
tracking system and the azimuth-elevation tracking system [Mousazadeh
et.al. 2009].

Sungur (2009) developed a multi (dual) axis solar tracking system
controlled by PLC units for PV systems in Konya and conducted an
experimental study. According to the experimental results, it was revealed
that in Turkey’s conditions, a collector with a solar tracking system is 42.6%
more efficient than a fixed collector [Sungur C., 2009].

Sefa et al. (2009) developed a single-axis solar tracking system in Turkey
and worked on the benefits provided by this system. The system provided
solar tracking with a simple mechanism based on a simple micro-processor
and yielded more effective results compared to fixed-positioned solar
collectors [Sefa et.al, 2009].

8 | The Evolution of Solar Tracking Systems (STS)

Cruz-Peragón et al. (2011) investigated the energy gain of two-axis sun-
tracking solar collectors compared to fixed-positioned collectors and their
suitability for Spanish conditions. Accordingly, analyses were carried out
based on the climate parameters of 52 different locations in Spain, and it was
generally found that an energy efficiency of over 20% was achieved [Cruz-
Peragón et.al., 2011].

Seme and Stumberger (2011) developed a two-axis solar tracking system
with a new mathematical modeling and worked on its results. Accordingly,
in the study where optimum tilt angle errors were revealed, an optimization
method they called the “differential evolution method” (a type of random
search algorithm) was used. The objective function could not be determined
according to the differential evolution optimization method. Therefore,
a time-dependent tracking algorithm was created [Seme & Stumberger,
2011].

Lubitz (2011) evaluated hourly data from the typical meteorological year
of 217 geographical regions in America and revealed errors and differences
in optimum tilt angles. For this, calculations were made on fixed-positioned
systems, azimuth tracking systems, and two-axis sun-tracking systems. For
fixed surfaces positioned at the latitude angle facing south to maximize the
amount of solar irradiation, an error of 14° was observed, especially on days
with a high clearness index in the northwest regions. Compared to a fixed
surface, it was found that 29% more solar irradiation is possible with the
use of an azimuth tracking system, and 34% more with the use of a two-axis
tracking system [Lubitz W. D., 2011].

9

CHAPTER 2

2. Use of Solar Tracking Systems (STS) in
Concentrating Solar Power (CSP)

A large part of solar tracking systems has been developed experimentally
on PV systems. However, although solar tracking is mandatory in
concentrating solar collectors, experimental analyses have remained limited.
As seen in Figure 5, there has been an increase in studies on concentrating
solar energy systems in recent years according to WOS (Web of Science)
data. However, factors such as the temperatures reached in these set-up,
superheated steam, high light intensity, etc., make the work difficult and
risky. Instead, it has been preferred to analyze moving systems in relatively
lower-risk flat collectors (such as PV, PV-T, flat plate solar water heaters).

Studies on the analysis of solar tracking systems in linear focusing
parabolic trough and point focusing parabolic dish, Fresnel, and Heliostat
systems have remained more limited.

10 | The Evolution of Solar Tracking Systems (STS)

Figure 5 The Number of Academic Studies Related to Concentrating Solar Tracking
Systems

These studies have paved the way for the utilization of solar tracking
systems in parabolic trough solar collectors.

Gee (1980) examined the tracker types and operational systems of linear-
focusing solar concentrators. The study compared different tracker types and
evaluated relevant experimental research and advancements [Gee, 1980].

Cope and Tully (1982) investigated the sun-tracking strategies of
concentrators using equations that allow for the calculation of the sun’s
position. They also compared tracking errors in existing concentrators with
experimental values [Cope & Tully, 1982].

Heiti and Thados (1983) conducted research on the thermal efficiency
and performance of cylindrical solar collectors. Their work explored the
impact of the cylindrical aperture’s orientation relative to the incident angles
of solar radiation on efficiency [Heiti & Thados, 1983].

Hession and Boonwick (1984) tested tracking systems for concentrators
of varying dimensions. They developed a light-sensitive circuit that precisely
tracks the sun and provided its block diagram. The solar tracking system,
which utilized phototransistors, was reported to exhibit some errors
[Hession & Bonwick, 1984].

Erkan Kacan | 11

Eltez (1986) investigated the shaping of the reflective focusing surface
in a fixed-reflector linear-focus tower project. The study conducted optical
and geometric analyses of radiation and heat transfer on a spatial surface that
enables linear focusing and reflection onto a receiver on the tower, without
the need to move a large number of reflector arrays in response to the sun’s
daily azimuth and elevation changes [Eltez M., 1986].

Prapas et al. (1987) performed a detailed optical analysis of cylindrical
concentrators using ray-tracing methods. They determined the percentage
of diffuse solar radiation that can be utilized by this type of concentrator
[Prapas et al., 1987].

Bhowmik and Kandpal (1988) conducted studies on cylindrical solar
collectors that track the sun in the north-south, east-west, and all axes. Their
work utilized different intra-year times, latitudes, and angles, and presented
the corresponding graphical results [Bhowmik & Kandpal, 1988].

Yeşilata (1990) designed and manufactured a cylindrical solar
concentrator that tracks the sun’s movement. An experimental setup was
created to determine the thermal efficiency of the concentrator, and the
thermal efficiency of the manufactured solar concentrator was calculated
using this setup [Yeşilata, 1990].

Eltez (1990) examined the movement systems and thermal characteristics
of different concentrator types and provided various application examples.
The study analyzed the energy needs of a textile factory and the potential
contribution of a solar concentrator to these needs [Eltez M., 1990].

Pinazo et al. (1992) analyzed the incident angle of solar radiation on a
cylindrical solar concentrator. They derived analytical relationships for the
incident angles [Pinazo et. al., 1992].

İbrahim (1996) developed a solar tracking system for a set of six
parabolic collectors and conducted experimental measurements. The study
investigated the effect of fluid mass flow rate, ranging from 0.005 to 0.033
kg/s, on the collector efficiency. The highest collector efficiency was found
to be 62% at a flow rate of 0.033 kg/s [Ibrahim, 1996].

Kalogirou (1997) worked on a tracking system capable of operating with
single-axis solar tracking systems. The system utilized three light-sensitive
sensors to determine the sun’s state and position, thereby positioning the
collector. One sensor detected whether the collector was focused, another
detected cloud cover, and the third identified day or night to position the
collector accordingly. Based on the assumption that the sun moves at a
constant speed of 0.25 degrees per minute (dpm), the tracking accuracy

12 | The Evolution of Solar Tracking Systems (STS)

of the system varied with solar irradiation values. Deviations of 0.2° were
observed below 100 W/m², while deviations of 0.05° occurred at irradiation
levels around 600 W/m² [Kalogirou, 1997].

Khalifa and Al-Mutwalli (1998) investigated the impact of two-axis solar
tracking systems on the thermal performance of integrated parabolic solar
collectors. Parabolic solar collectors with sun-tracking capabilities yielded
75% more effective results in terms of thermal performance. This difference
in thermal performance between sun-tracking collectors and optimally fixed
collectors highlighted the importance of tracking systems in collectors with
high concentration ratios [Khalifa & Al-Mutwalli, 1998].

Genç (1998) designed and manufactured a 3.70 m long cylindrical solar
energy concentrator with a 40 mm focal diameter that tracks the sun on
a single axis. The concentrator was enabled to track the sun on a single
axis using a photocell. The performance experiments of the system were
examined under the climatic conditions of Ankara. The tests conducted
throughout the day yielded a collector outlet temperature of 75°C and an
efficiency of 65% for an approximate 7°C inlet-outlet temperature difference
[Genç, 1998].

Grass et al. (2004) worked on a comparison between a parabolic solar
collector with a vacuum absorber surface, equipped with two new tracking
systems for sun tracking, and a vacuum tube flat plate solar collector with
a low concentration integrated parabolic collector. It was concluded that
vacuum low concentration integrated parabolic collectors positioned in the
east-west direction and fixed at the latitude angle were more suitable for
applications up to 200-250 °C. At higher temperatures, thermal losses from
the absorber surfaces were found to be significant. To address the fact, an
industrial product was developed with a reduced absorber surface area but
increased thermal conductivity, and a tracking system that reduced deviation
in solar incidence angle was used, resulting in more effective outcomes in
300-350 °C applications as seen in Figure 6.

Erkan Kacan | 13

 (a) (b)

 (c) (d)

Figure 6 Low concentration parabolic trough collector designs [Grass et al., 2004]

Bakos (2006) studied a two-axis continuous solar tracking system for a
cylindrical collector. The energy collected by the collector was measured and
compared with a fixed-surface collector tilted 40° southward. The results
indicated that the moving two-axis sun-tracking collector collected 46.46%
more energy than the fixed collector [Bakos, 2006].

Riffelmann et al. (2006) examined the optical efficiency of cylindrical
trough solar power plants to ensure the desired quality. Accordingly, they
developed two methods to measure the solar flux in the focal region of the
system: Parascan (Figure 7(a)) and the camera-target method. Parascan is an
advanced solar flux density measurement device. By moving the device along
with the receiver axis, they measured the flux distribution in front of and
behind the receiver surface. The measurements allowed for the calculation of
the interception factor and optical property analyses of the system around the
receiver. The camera-target method (Figure 7(b)) involved taking pictures
of the diffuse radiation around the receiver with a calibrated camera. The
target around the receiver intercepted direct rays. By examining the reflected
rays and the captured images, optical errors were determined.

14 | The Evolution of Solar Tracking Systems (STS)

 (a) (b)

Figure 7 (a) Parascan image mounted on a Eurotrough collector (b) Camera-target
method image of diffuse radiation on a vertical surface [Riffelmann et al., 2006]

Agee et al. (2007) conducted a study investigating the market trends,
application areas, costs, and maintenance expenses of solar tracking systems.
Research on different types of tracking systems (hydraulic control, program-
based control, and sensor-based control) indicated that hydraulic tracking
systems yielded the most effective results for low-capacity applications [Agee
et al., 2007].

Al-Soud et al. (2010) designed, implemented, and tested an automatically
sun-tracking parabolic cooker. The tests were conducted continuously for
three days in 2008, and they reported that the collector reached 90 °C when
the ambient temperature was around 36 °C [Al-Soud et al., 2010].

Tang and Yamei (2010) discussed solar collectors equipped with a
single-axis three-position solar tracking system in their work. They named
their collectors, which they described as a “new concept,” 3P-CPCs and
performed theoretical analyses by connecting the solar tracking system to PV
modules. The 3P-CPCs achieved 1.26-1.45 times more energy compared to
single-position systems [Tang & Yamei, 2010].

Sansoni et al. (2011) worked on a prototype to be used in a parabolic
trough solar power generation plant to be built in the Florence region of
Italy. Solar tracking and optical characterization of collectors connected in a
line were performed. Solutions for axis deviations, angular distortions, and
mirror deformations that occurred during the experiments were discussed.
As shown in Figure 8(a), collector efficiency did not show a significant
reaction to an angular deviation of ±1°, while it decreased by 22-25% at
an angular deviation of ±1.5°. Figures 8(b)-(c) and (d) illustrate the effect
of angular deviation on collector efficiency depending on the focal length of

Erkan Kacan | 15

the collector, the deviation value of the absorber surface from the focus, and
the absorber surface diameter.

(a) (b)

(c) (d)

Figure 8 (a) Relationship between angular deviation value and collector efficiency (b)
Relationship between angular deviation value and collector efficiency depending on

different focal lengths (c) Relationship between angular deviation value and collector
efficiency depending on the deviation of the absorber surface from the focal point (d)

Relationship between angular deviation value and collector efficiency depending on the
absorber surface diameter [Sansoni et al., 2011]

Pei-Ying et al. (2011) focused on a concentrating solar tracking system
that had not been previously studied. Accordingly, they proposed that
tracking the focal point, which is relatively smaller and lighter, would be
advantageous compared to moving large, heavy masses for solar tracking.
The sun-tracking absorber surface was defined as the “focal image,” and it
was observed that this image moved along an interesting curve during solar
tracking. The results showed that the sun-tracking focal point was comparable
to other conventional methods and effective in energy conversion [Pei-Ying
et al., 2011].

17

CHAPTER 3

3. Patents in the Field of STS

In addition to the aforementioned scientific studies, patent applications
have been filed for developed systems, and these patent applications have been
commercialized. However, a significant portion of the patent applications
for solar tracking systems are designed for flat-panel PV collectors or PV
strings/mounting elements and are primarily developed for use in solar
power plants. Although the fundamental principle of solar tracking systems
is to ensure that solar rays flow through normal of the aperture surface,
there are minor and sometimes significant differences between the tracking
systems of flat-panel collectors and parabolic collectors. Particularly for large-
volume collectors, considering movement and friction loads, differences are
observed in gear and motor components compared to small-volume systems.
However, the operating principle remains the same for solar sensors and
electronic components.

Neale (1979) presented one of the early patents concerning tracking
systems for concentrating solar collectors. This work involved the movement
of large parabolic collector arrays that track the sun, as well as the design
of a sensor that determines the sun’s position. The collector arrays were
connected in parallel, and solar tracking was achieved via electronic circuits
from a single point of actuation [United States Patent- Sunpower Systems
Corporation, Patent No. 877-077, 1979].

Butler (1984) introduced the design of a “pivot solar tracking system”
through an application to the US Patent Office. According to this design,
multiple collector rows, regardless of whether the collectors have a flat or
cylindrical structure, could track the sun with a single center of motion

18 | The Evolution of Solar Tracking Systems (STS)

[United States Patent-United States Department of Energy Patent No.
192,799, 1984].

Warrick (2000) applied to the US Patent Office for a solar tracking
system designed for the movement of large platform flat-panel collectors,
primarily PV panels. This novel model utilized three hydraulic arms to
create a mechanism capable of supporting heavy constructions and the wind
load generated by strong winds. Two of the three hydraulic arms always
determined the direction of motion, while the third determined the angle of
equilibrium, enabling two-axis solar tracking and the scanning of a 90° angle
in solar elevation [(United States Patent-Amonix Inc., Patent No. 09/282-
315., 2000].

Hilnes (2010) developed a design in his patent that involves placing
tubular elevations with cellulosic walls on a water-based ground to ensure
homogeonous wetting of the walls. In this design, since the wall wetted
from the ground has homogenous moisture content, it stands upright and
supports the solar cell, which is placed on the vertical cross-section at the
top, in a vertical position. With sunrise, the surface exposed to radiation
dries, the cellulosic wall shortens-contracts, and consequently, the upright
cylindrical structure tilts towards the drying direction. The watery ground
continuously creates moisture, and the surface facing the sun dries faster,
resulting in a tilt towards the direction of the sun. This method allows
for tilting towards the sun’s direction, but information on achieving the
optimum tilt angle or the precision of the tracking is not provided [United
States Patent, Patent No. US 7,799 987 B1, 2010)].

Grushkowitz et al. (2018) developed a gear system that allows for the
collective movement of PV strings. According to this design, the moving
part in the main construction is mounted on the moving hub of the gear
mechanism, creating a synchronous movement system [United States Patent
Patent No. US 2018/0062564 A1., 2018].

Grushkowitz et al. (2018) designed a metal construction called a “torque
tube” suitable for their patented gear system, creating a structural component
that allows PV strings to rotate simultaneously at the same angle [United
States Patent, Patent No. US 2018/0062566 A1., 2018].

Schimelpfenig et al. (2018) developed a new method to address the issue
of PV array shading or varying tracking errors caused by different surface and
wind load conditions in large solar power plants. According to this method,
independent gear motors were placed between the strings, allowing the lines
in between to have different angular rotations [United States Patent, Patent
No. US 2018/0175783 A1., 2018].

Erkan Kacan | 19

Rosedale (2019) developed a sun-tracking umbrella intended to provide
shade for the user. Simultaneously, they succeeded in obtaining the energy
required for remote control and movement mechanisms thanks to the PV
panels placed on the umbrella’s surfaces [United States Patent, Patent No.
US 2019/0069652 A1., 2019].

Almy and Jensen (2019) added a dampening extension to the torque
tube to reduce solar tracking errors caused by strong wind loads on PV
strings connected to the torque tube [United States Patent Patent No. US
10,340,839 B2., 2019].

Sharpe (2021) developed a gear system for multiple PV clusters to track
the sun on two axes from a single carrier. They accordingly operated a two-
axis moving gear mechanism and the carrier leg that supports the PV cluster
together. The tracking mechanism of the system performs tracking based on
the interaction between GPS, anemometer, snow sensor, and communication
transducers placed on the PV cluster. Based on the data from the sensors,
it calculates the sun’s location and the direction the system should face, and
then sends movement commands to the gears [United States Patent, Patent
No. US 2021/0194417 A1., 2021].

Poviet (2022) obtained a patent based on the principle of forming
“canopies” used as shading elements in vehicle parking areas from PV panels
and having the shading roof track the sun. Accordingly, rotating elements
that allow the shading roof, which has at least two legs, to rotate in two
directions around the axis of its legs are placed. A two-stage control element
that decides how much this rotation should be is installed. First, the angle
that will capture the optimum tilt angle according to the sun’s inclination
is calculated, then the maximum angle that the canopy can tilt (depending
on whether there is a vehicle underneath or not) is calculated, and based
on these two angle values, the PV roof is oriented towards the sun [United
States Patent, Patent No. US 2022/0182009 A1., 2022].

Askins et al. (2022) obtained a patent on a passive solar tracking system.
According to this, the surface intended to track the sun is placed on a carrier
pipe, and open-mouthed reflective surfaces that allow sunlight to enter
are placed on the sides of the carrier pipe. In this way, the incoming rays
are reflected and reach the liquid mechanism on the ground. The liquid
on the lower surface expands due to the incident radiation, enabling it to
actuate the hydraulic mechanism that directs the carrier pipe. Thus, since
more radiation will enter from the surface facing the sun, more expansion
will occur, and the hydraulic mechanism will direct the carrier block in that
direction [United States Patent, Patent No. US 11,431,287 B2., 2022].

20 | The Evolution of Solar Tracking Systems (STS)

Albinmousa et al. (2022) patented a system that performs solar tracking
using two-axis hydraulic control elements. They created a control mechanism
with a logic very similar to microprocessor-based solar tracking systems.
After the sun’s location is detected with light sensors, the pressure drops and
rise from the gear heads on the vertical or horizontal axis are monitored with
the rotation of the gears. In this way, the power transmission for the system’s
rotation is achieved [United States Patent, Patent No. US 11,466,900 B2.,
2022].

Shtein et al. (2023) developed a multi-axis solar tracking system with a
construction based on the art of cutting and folding known as “krigami” and
“origami.” By using the logic of krigami, the main carrier was obtained by
cutting small, thin materials and mounting pre-calculated and memorized
carrier layers one after the other. A lens was placed inside this carrier, ensuring
that the sunlight falls perpendicularly on the photovoltaic cell at its focus.
During the sun’s movement, the memory-equipped (angled during cutting)
carrier layers opened sequentially, positioning the carrier construction
according to the sun’s location, thus folding and perpendicularly directing
the radiation incident on the lens onto the cell at its focus. Since the logic
of krigami was based on, it became possible to produce lighter and more
durable carrier constructions, and by combining adjacent focusing cells, the
production of panels where the cells track the sun became feasible [United
States Patent, Patent No. US 11,831,272 B2, 2023].

Bapat et al. (2024) have patented a torque tube design that connects
PV strings, allowing them to rotate together under a single centralized
command. According to this design, appropriate connection points are
dimensioned on the rotational gear at the axis of rotation to enable multiple
torque tube connections [United States Patent No. US 12,003,208, B2,
2024].

Nicolas et al. (2024) have patented a unique crank gear design that
enables the collective rotation of PV strings. In their design, they created a
motion mechanism by mounting a crank gear to a slew drive gear, allowing
for the generation of precise rotational torque with small movements.
Accordingly, the torque tubes connected to the PV strings are linked to
two crank gears, accurately transferring the rotation received from the slew
drive to the rotation of the arrays [United States Patent Patent No. US
2024/0243693 A1., 2024].

Cha et al. (2024) have patented a dome-shaped structure onto which
they affixed elastic PV cells connected by fiber metals. They measured
the surface temperatures of the PV cells and expanded the hotter surface,

Erkan Kacan | 21

thereby increasing the amount of surface area directly facing the sun’s
rays. This design allows for the expansion of the dome structure’s sun-
facing surface, enabling more PV cells to receive sunlight perpendicularly.
They also developed a motion mechanism that increases the surface area
according to the sun’s position in the morning, noon, and evening hours by
pre-programming the surface design [United States Patent, Patent No. US
2024/0322745 A1., 2024].

23

CHAPTER 4

4. STS Using Image Processing Methods

Solar tracking systems (STS), historically implemented using sensors
like LDRs, phototransistors, PV cells, and surface elements with varying
expansion coefficients, or through constant angular rotation, have become
intensely researched topics over time. Additionally, solar tracking systems
developed with PLC and microprocessor coding have gained significant
prominence in the literature. These methods each possess distinct advantages
and disadvantages relative to one another. The continuous advancements in
sensor and microprocessor technology ensure the ongoing progress of these
methods.

In large-scale solar power plants, solar tracking systems are generally
not preferred due to the high frequency of breakdowns and the substantial
costs associated with movable mechanisms. Investors often opt to allocate
funds towards more fixed solar collectors rather than movable mechanisms
and constructions. However, in situations where space is limited and in
Concentrating Solar Power (CSP) applications, the use of solar tracking
systems becomes a necessity. Beyond that, the precision of solar tracking
is particularly crucial in point-focusing solar energy systems. While the
importance of solar tracking accuracy is less pronounced in applications such
as PV systems, flat-plate solar collectors, and solar cooking systems, it plays
a critical role in solar lighting, parabolic trough, and parabolic dish collector
applications. Especially in solar lighting systems, precise adjustment of the
focal point has a significant effect on parameters such as light intensity,
color, and illumination level of the lighting output. Therefore, developing
a precise solar tracking system is imperative for collectors to receive solar
radiation at a perpendicular angle.

24 | The Evolution of Solar Tracking Systems (STS)

In recent years, errors arising from sensor malfunctions, calibration
degradations, programming deviations, and changes in atmospheric
conditions have been addressed in various studies in the literature. Solar
tracking using image processing methods stands out as a developed solution
to overcome these issues. By modeling the principles of the human eye,
images of the sky are processed and converted into meaningful data, enabling
microprocessors to detect the Sun.

4.1. How Does the Image Processing Method Work?

Image processing is a series of techniques and methods that take a digital
image as input and process it through specific algorithms to either enhance
its properties (e.g., contrast enhancement, noise reduction) or extract
specific information from it (e.g., object recognition, feature detection). At
its core, it relies on mathematical-statistical operations, which have been
translated into code in programming languages (such as Python, C++, and
MATLAB). Many ready-made libraries like OpenCV-JavaCV have been
developed for this purpose.

The image processing process involves the steps shown in Figure 9:

1. Image Acquisition,

2. Image Pre-processing,

3. Image Segmentation,

4. Feature Extraction,

5. Classification/Recognition,

6. Image Analysis and Interpretation.

Image Acquisition: A digital image is obtained through a camera, scanner,
or another imaging device. This image consists of small units called pixels.
Each pixel typically has numerical values containing color and brightness
information.

Image Pre-processing: The acquired image may undergo various
preliminary operations to prepare it for subsequent stages. The goal of this
stage is to improve image quality, reduce noise, enhance contrast, or perform
geometric corrections. Common pre-processing techniques include filtering
(blurring, sharpening), histogram equalization, geometric transformations
(scaling, rotation), and color space conversions.

Image Segmentation: In this stage, the image is divided into meaningful
regions or objects. The aim is to separate objects of interest from the

Erkan Kacan | 25

background in the image. Various segmentation algorithms are used, such
as thresholding, edge detection, region growing, and clustering.

Figure 9 Image Processing Method Flowchart

Feature Extraction: Meaningful features that can be used to identify
objects or patterns are extracted from the segmented regions or directly
from the processed image. These features can include color, shape, texture,
corner points, or more complex descriptors (e.g., SIFT, HOG).

Classification/Recognition: Using the extracted features, objects or
patterns in the image are assigned to predefined categories or recognized.
Machine learning algorithms (e.g., support vector machines, artificial neural
networks) are frequently employed in this stage.

Image Analysis and Interpretation: In the final stage, meaningful
conclusions are drawn and interpretations are made about the image using
the classified or recognized objects and the extracted information. This can
encompass various applications, from locating a tumor in a medical image
to detecting suspicious activity in a security camera feed.

26 | The Evolution of Solar Tracking Systems (STS)

Figure 10 Image Analysis and Object Detection Steps with Image Processing Methods

Figure 11 Object Detection and Edge Determination Examples

Figures 10 and 11 illustrate the stages of object detection using image
processing, where new images are derived from an existing image. Codes
available in libraries of programming languages such as Python, C++,
MATLAB, and Java facilitate the detection and boundary determination of
the sun within a sky image, as well as its recognition by distinguishing it
from similar or characteristic “fake” objects in its surroundings.

The foundations of digital image processing were laid in the 1920s with
efforts to transmit photographs via telegraph. These early systems made
transmission possible by digitizing images into pixels and converting them
into numerical values.

Significant strides have been made in image processing with the advent
of computers. Space research, medical imaging, and military applications, in
particular, catalyzed developments in this field. Work at the Jet Propulsion
Laboratory (JPL) pioneered the enhancement and analysis of raw images
obtained from spacecraft. The first digital images of the lunar surface were
processed using fundamental image processing techniques such as noise
reduction and geometric correction. In the medical field, the development
of imaging methods like X-ray and computed tomography (CT), and
the subsequent computer-based processing of these images for enhanced
interpretability, represent early applications of image processing.

Erkan Kacan | 27

The image processing method has been a subject of extensive academic
research. Roberts (1961)’s edge detection operator was one of the first
systematic approaches to identify edges in an image. He successfully
managed to control the reflections of 3D world edge lines on 2D images
and the transformations occurring during this process [Roberts, 1961].

Sobel (1970)’s edge detection operator was a more advanced approach
compared to Roberts’s operator and demonstrated greater robustness
against noise [Sobel, 1970].

Otsu (1979)’s automatic thresholding method became a fundamental
algorithm in image segmentation [Otsu, 1979]. In subsequent periods,
more complex image analysis and understanding techniques began to be
developed. Topics such as morphological operations, texture analysis, and
model-based object recognition gained prominence.

Canny (1986)’s optimal edge detection algorithm remains widely used
today [Canny, 1986].

Haralick et al. (1973)’s texture analysis method based on gray-level co-
occurrence matrices (GLCM) holds significant importance in the extraction
of textural features [Haralick et.al, 1973].

With the advancements in computer sciences and machine learning
techniques, revolutionary progress has been made in image processing. Deep
learning approaches, in particular, have pioneered breakthroughs in areas
such as object recognition, image classification, and semantic segmentation.
Lowe (1999)’s Scale-Invariant Feature Transform (SIFT) algorithm enabled
the extraction of features robust to scale and rotation changes in images
[Lowe, 1999].

Viola and Jones (2001)’s AdaBoost-based framework for real-time face
detection is a significant milestone in the field of object detection [Viola &
Jones, 2001].

One of the pioneering works in deep learning, AlexNet (Krizhevsky et
al., 2012), demonstrated the superior performance of deep convolutional
neural networks (CNNs) in large-scale image classification tasks [Krizhevsky
et al., 2012].

Today, image processing is an actively used and continuously evolving
discipline across numerous fields, including artificial intelligence, computer
vision, robotics, medicine, security, automotive, and many more. Thanks
to new algorithms, more powerful hardware, and large datasets, image
understanding and interpretation capabilities are improving daily.

28 | The Evolution of Solar Tracking Systems (STS)

4.2. How is Solar Tracking Performed with Image Processing
Method?

While traditional tracking systems generally rely on position determination
principles via astronomical algorithms or light dependent resistors (LDRs),
image-processing-based systems offer more precise and dynamic tracking
capabilities by directly detecting the Sun’s disk from visual data. The system
typically captures a digital image of a portion or the entirety of the sky
at regular intervals using a wide-angle camera. This camera may feature
a sensor capable of acquiring images across different spectral bands (e.g.,
visible light, near-infrared). The key characteristics sought in the camera
are compatibility with the chosen control element and microprocessor,
along with sufficient resolution for performing object analysis on the image.
Figure 12 (a) shows an image of a camera used in solar tracking studies
employing image processing methods in the literature. As seen in Figures
12 (b) and (c), cameras with electronic boards of various types, specifically
5MP OV5647 sensor-equipped CSI type cameras, are utilized.

 (a) (b) (c)

Figure 12 (a) Raspi Camera Module 3 NoIR (b)-(c) 5MP CSI Type Camera

The cameras shown in Figure 12 send the sun’s image as raw data to
the microprocessor, where the image features are processed by the program
algorithm and the microprocessor. IR-filtered lens types of these camera
modules are also beginning to emerge in the market. Widely used cameras
capable of acquiring images across different spectra are available. Figure
13 (a) shows a Multispectral Camera, and Figures 13 (b) and (c) display
examples of IR cameras. These cameras capture images across multiple
wavelength ranges and are widely used in fields such as agriculture,
environmental monitoring, and remote sensing.

Erkan Kacan | 29

Figure 14 shows an example of a “Hyperspectral Camera.” Hyperspectral
cameras are sensors capable of acquiring images in numerous narrow bands
across a broad range of light wavelengths. These cameras collect spectral
information associated with wavelengths at each pixel, which can then be
used to analyze the physical and chemical properties of each object.

(a) (b) (c)

Figure 13 (a) Multispectral Camera (b)-(c) IR Camera

Figure 14 Hyperspectral Camera

For instance, spectral data obtained from these cameras is analyzed to
determine chlorophyll levels in plants. Hyperspectral images are also used to
detect pollution or habitat changes. Determining the chemical composition
of materials is crucial in mining and materials science. Hyperspectral data
can be analyzed to differentiate between various materials.

The use of Multispectral and Hyperspectral cameras is highly suitable
for image processing applications. They are useful tools for determining
the structural properties of tissues and cells, and for making predefined
diagnoses in fields such as healthcare, environmental protection, agricultural
monitoring, and material identification. However, their use in the field of

30 | The Evolution of Solar Tracking Systems (STS)

solar tracking via image processing methods has not yet gained widespread
practicality. These cameras offer certain advantages in the initial step of sun
detection by machines in image-processing-based solar tracking. Further
studies should determine the specific advantages of these cameras under
headings such as feature extraction, classification, noise reduction, and data
fusion.

A common problem encountered during sun detection is the scattering
effect in camera modules caused by pointing at a very bright sun. While
algorithms can eliminate these noises, in real-world conditions, light
intensity values can fluctuate over a very wide range instantaneously due
to the sun temporarily going behind clouds or atmospheric dust. For
this reason, fixed thresholding or noise reduction algorithms often lead
to errors or deviations in sun detection when conditions change. The use
of multispectral, hyperspectral cameras, and filters would be effective in
preventing these errors.

Lee et al. (2013) stated in their study that solar tracking performed using
sensors placed in 4 different directions or with rod-shadow tracking methods
did not operate effectively under low irradiance conditions. Instead, they
developed a new method featuring an image-based sun position sensor and
an embedded image processing algorithm. They reported that this method
resolved the irregular tracking problem under cloudy atmospheric conditions
and achieved solar tracking with an accuracy of 0.04° [Lee et. al., 2013].

Figure 15 Procedure of estimating the Sun image center with image processing [Lee et.
al., 2013]

Azizi and Ghaffari (2013) designed an imaging device based on the
principle of solar rays forming a point on a screen. This device utilizes
the position of the point to adjust the orientation of the solar panel. They
reported that by developing a fuzzy logic controller (FLC), the tracking
error was reduced to 0.15°. This study employed a simple A4 Tech PK-
836F model camera. A polarizing filter was placed in front of the image

Erkan Kacan | 31

acquisition aperture. The sun’s position was translated into a coordinate
system using the MATLAB programming language, enabling sun tracking.
As a result, a 60.45% increase in energy production was observed compared
to fixed systems [Azizi & Gaffari, 2013].

Rahim et al. (2014) designed a two-axis solar tracking system in their
study, which used image processing, a Raspberry Pi, two servo motors (for
pan/azimuth and tilt/elevation), and a webcam.

“The Raspberry Pi has recently achieved widespread adoption as a
microprocessor (Single-borad computer SBC), with Python programming
language and various algorithms effectively utilizing OpenCV libraries. This
unit serves as the main component for processing images and controlling
servo motors. In addition to its flexible and powerful processing capabilities,
it has become a highly useful and widely used microprocessor due to its
remote access (WIFI-Bluetooth module), USB interface for connecting
cameras, external memory, RS-485, RS-232 converters, and similar sensors,
as well as its ability to function as a data logger through external and internal
memory.”

In the mentioned study, the camera module captures an image of the sky
and sends it to the Raspberry Pi. The 24-bit color image received from the
webcam is converted to 8-bit grayscale. This is achieved using the following
code:

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Then, the image is converted to a binary image using an adaptive
thresholding method to detect the sun’s circular shape. The exact position
of the sun is then determined using the Hough transform. The codes used
at this stage are:

thresh = cv2.adaptiveThreshold((src, max Value, adaptive Method, threshold
Type, block Size, C)

THRESH_BINARY

() () () , ,
,

0
maxvalue if src x y T x y

dst x y
otherwise

 >
=  
 

THRESH_BINARY_INV

() () ()0 , ,
,

if src x y T x y

dst x y
maxvalue otherwise
 >

=  
 

32 | The Evolution of Solar Tracking Systems (STS)

cv2.HoughCircles(image, method, dp, minDist[, param1[, param2[,
minRadius[, maxRadius]]]])

(a) (b)

Figure 16 (a) The Grayscale image of the sun. (b) The binary image of the sun.

The image transformation using these codes is illustrated in Figure 16
(a) and (b).

The movement of the servo motors is controlled by PWM (Pulse Width
Modulation) signals sent from the Raspberry Pi. When the sun is detected,
the Raspberry Pi directs the servo motors to position the sun at the center
of the image. If the sun remains centered in the image, the system stays
stationary for 10 minutes. The camera module, with its 2048x1536 pixel
resolution and 3.15 MP image quality, was able to detect the sun even in
cloudy weather. Precise tracking was achieved through servo motor control
via PWM signals. For this, the PWM setting was adjusted as shown in Table
1 [Rahim et. al., 2014].

Table 1 Time a and b with respect to degree of the motor rotation for different image
[Rahim et. al., 2014]

a (ms) b (ms) Rotation Angle

0.54 19.46 0°

1.01 18.99 45°

1.47 18.53 90°

1.94 18.06 135°

2.40 17.60 180°

Erkan Kacan | 33

Carballo et al. (2018) aimed to produce a prototype for solar tracking using
low-cost open-source hardware and computer vision (CV) technologies. In
doing so, they also aimed to create an educational tool, thereby addressing
the shortcomings of previous educational instruments.

The prototype includes a Raspberry Pi 3, a Pi Cam, PWM electronic
control, and a relay module. All hardware is low-cost and open-source.
MATLAB-Simulink and Mathematica were used as control algorithms. The
system’s cost was reported as $140, indicating a 90% savings compared to
other industrial solar tracking systems. The connection diagram used in this
study is shown in Figure 17.

Figure 17 Electric scheme [Carballo et. al., 2018]

Abdollahpour et al. (2018) conducted image processing on the sun’s
shadow instead of its direct image in their study. The system components
consist of a shadow-casting object, a webcam, electronic circuits, computer
controls, and stepper motors. Figure 18 shows the system components.

An Arduino UNO microprocessor and an L298N motor driver module
were used as electronic circuits. The sun’s position was detected based on the
coordinates of the shadow’s start and end points, and movement commands
were sent to the motors.

Working on the shadow instead of the raw image of the sun proved
to be a simple but intelligent solution. This is because the sun’s extreme

34 | The Evolution of Solar Tracking Systems (STS)

brightness and constantly changing luminosity make working with raw
images and detecting the sun quite challenging. Furthermore, reducing the
noise level in the image is often not fully possible, necessitating the use of
filters. Similarly, reflections from glass surfaces or mirrors can sometimes
cause a “fake sun” perception, instantaneously directing the collector to a
highly incorrect position. For these reasons, tracking the sun from an image
formed by a panel’s shadow has the potential to yield more stable results.

Figure 18 Electromechanical structure with two DoF. [Abdollahpour et. al., 2018]

Figure 19 shows the coordinate values obtained from the start and end
points of the formed shadow, processed with a Grayscale code. The status of
these coordinates is made meaningful by the algorithm as follows:

The shadow is in the first quarter (x > xic, y < yic);

The shadow is in the second quarter (x < xic, y < yic);

The shadow is in the third quarter (x < xic, y > yic);

The shadow is in the fourth quarter (x > xic, y > yic).

Erkan Kacan | 35

Figure 19 The central point of the image and the farthest point of the shadow.
[Abdollahpour et. al., 2018]

Accordingly, movement commands continue until the shadow transforms
into a point shape. The solar tracking system operates with an accuracy
of ±2° while tracking the sun’s position. This system was reported to
provide 25-45% more energy production compared to fixed-angle systems
[Abdollahpour et. al., 2018].

As evident from these studies, processing is not limited to the bare image
of the sun; secondary features that indicate the sun’s position can also be
utilized. There are also studies where different system components are used
for sun detection.

Garcia-Gil and Ramirez (2019) used a fisheye camera in their work and
focused on detecting the brightest object entering the camera’s field of view
to determine the sun’s position. The system components included: a fisheye
camera for image sensing, an ATmega2560 microprocessor for image
processing, stepper motors for movement, and accelerometer-compass
sensors for control

Initially, a Grayscale transformation was applied to the RGB format
image. After this transformation, Thresholding was applied to layer the
image and reduce noise. Figure 20 shows the binary image resulting from the
image processing stages. The real-time position of the sun was determined
by positioning based on this image.

36 | The Evolution of Solar Tracking Systems (STS)

Figure 20 Binary image obtained with the fisheye cam; center at (h, k) pixels. [Garcia-
Gil & Ramirez, 2019]

Using the (h,k) coordinates on the image, the sun’s azimuth and elevation
angles were calculated with MATLAB and compared with sun azimuth and
elevation angles obtained from the NOAA Solar Calculator, National Oceanic
and Atmospheric Administration. During this comparison, commands were
given to the motors using the algorithm flow shown in Figure 21.

At the end of this study, sun azimuth tracking errors ranged between
0.49°-3.47°, while elevation angle errors varied between 5.88°-2.43° [Garcia-
Gil & Ramirez, 2019].

Wardhana and Dewi (2020) developed a new tracking algorithm based
on the Extended Mean Shift algorithm to support solar tracking for dual
parabolic concentrators. Their aim was to eliminate the focusing and heat
intensity problems arising from the dependence of traditional photodiode
sensors and Solar Position Algorithm (SPA) based tracking systems on light
intensity and natural conditions.

Erkan Kacan | 37

Figure 21 Algorithm Flow Diagram. [Garcia-Gil & Ramirez, 2019]

In this study, the extended mean shift algorithm was developed, which
uses the principles of kernel density estimation and searching for the local
maximum of color histogram similarity measurement to find the tracking
position of an object in a video sequence. To improve the accuracy and
reliability of the algorithm, the Expectation Maximization (EM) algorithm
was used to estimate model parameters and update the histogram image.
Additionally, a Kalman filter was integrated to ensure the stability and
robustness of object tracking by estimating the kernel histogram of the
object model.

In the conducted experiment, the algorithm was successfully applied for
solar tracking on 148 frames of video data. The obtained results showed an
average accuracy tolerance value of 98.39% for color similarity in object
tracking. This high accuracy rate demonstrates that the developed algorithm
can effectively track the sun’s position and addresses the shortcomings of
previous research (tracking limited to only image processing or black-and-
white/grayscale images) [Wardhana & Dewi, 2020].

Kumar et al. (2021) worked on a hybrid solar tracking system. In this
study, they proposed an innovative approach combining LDR sensors
with Digital Image Processing (DIP) techniques as a solution to tracking

38 | The Evolution of Solar Tracking Systems (STS)

deficiencies caused by the low sensitivity of traditional Light Dependent
Resistor (LDR) sensors.

In this approach, they developed a microcontroller (Arduino UNO) based
system for optimum positioning of the solar panel. Figure 22 illustrates the
operating principle of the system created in this study. The system collects
data through four LDR sensors that detect solar light intensity and a camera
that captures the sun’s image. RGB images captured by the camera are
converted to grayscale images to reduce algorithm complexity and shorten
processing time. A Gaussian filter is applied to remove noise, and unwanted
bright spots like clouds are eliminated using binary thresholding and finding
the largest contours methods.

The precise center coordinates of the sun (Ac, Bc) are calculated using
image processing algorithms, and this information is used to control servo
motors to focus the solar panel directly on the sun.

Figure 22 System Block Diagram [Kumar et al., 2021].

Erkan Kacan | 39

The system follows a two-stage tracking methodology:

1. Intensity Sensor Tracking (LDR-Based): Initially, LDR sensors
adjust the panel based on solar light intensity. This stage can lead to
errors in cases of partial shading or loss of tracking.

2. Image Sensor Tracking (DIP-Based): To correct errors from the first
stage, the sun’s image is captured using a camera. The sun’s centroid
is determined via image processing, and these coordinates guide a
second tracking mechanism (motor driver) to move the panel towards
the sun.

Experiments demonstrated that the proposed hybrid LDR and image
processing-based system provided higher power generation compared to
LDR-only based or fixed panels. Data collected during a 17-hour daily
insolation period yielded the following results:

In terms of Output Power (Pout), the LDR and image processing-based
system produced a maximum output power of 4.96 W (at 12:00), while the
fixed panel produced a maximum of 4.57 W (at 12:00), and the LDR-based
system produced a maximum of 4.89 W (at 12:00). On average, the hybrid
system provided more power generation than the other two systems.

In terms of Open Circuit Voltage (Voc), the LDR and image processing-
based system reached a maximum open circuit voltage of 20.5 V (at 11:00),
whereas these values remained lower for the other systems (19.2 V for fixed
panel, 20.0 V for LDR-based).

Based on Short Circuit Current (Isc), similar short circuit current values
between 0.1 A and 0.2 A were observed across all three systems.

This study proves that the integration of LDR and image processing
techniques significantly enhances the accuracy and efficiency of solar tracking
systems. It offers a cost-effective and error-free solution, particularly for
large-scale solar power plants [Kumar et al., 2021].

Kamat et al. (2022) developed a prototype that positions solar panels
to receive sunlight perpendicularly from sunrise to sunset. The core of the
system relies on image processing techniques to accurately determine the
sun’s position and adjust the panels accordingly.

The system’s operation involves the following steps:

1. Image Capture and Pre-processing: At sunrise, the prototype
continuously captures images of the sky. These RGB (Red, Green,

40 | The Evolution of Solar Tracking Systems (STS)

Blue) images are converted into grayscale images with a single
intensity channel to reduce processing load.

2. Sun Detection and Center Calculation: The pixel with the highest
intensity in the grayscale image (the sun’s position) is used as the
starting point for the border tracking and object detection algorithm.
The algorithm extracts the sun’s edges in the image to determine its
exact shape.

3. Noise Reduction: Following the detection of boundaries, an erosion
operation is applied to remove noise originating from the camera
sensor or other light sources. This ensures that only the pixel region
of the sun remains.

4. Distance and Movement Calculation: The centroid of the remaining
pixel region of the sun is calculated. The Euclidean distances (offsetX,
offsetY) of this center from the center of the image frame along the
vertical and horizontal axes are determined.

5. Panel Positioning: These calculated offset coordinates are transmitted
to two high-torque motors via an L298N Motor Driver. The motors
move the structure containing four 60W solar panels using a Cyclo-
Gearbox with Dual-Axis Slew Worm Drive capability. This movement
ensures the panels are positioned perpendicular to the sun, allowing
for maximum power generation.

6. System Control and Monitoring: The Raspberry Pi 3 Model B+,
serving as the system’s core, performs tasks such as image capture,
passing offset values to the motor driver, monitoring system health,
receiving weather forecast data, and sending power statistics to a
Firebase database. Figures 23 (a) and (b) show the schematics of the
system and the control unit.

Erkan Kacan | 41

(a) (b)

Figure 23 (a) Prototype Schematic (b) Controller Module Schematic [Kamat et al.
2022]

According to the study’s findings, this prototype is reported to generate
approximately 40% more energy compared to a conventional (fixed) solar
panel setup with the same configuration. The system also ensured that the
sun’s rays directly hit the panels even in light to moderately cloudy weather.
Additionally, the prototype is equipped with humidity, temperature, and
dust sensors, which generate reports and notify the user if an issue is detected
in the operating environment based on sensor data. An economic analysis
of the produced prototype estimated a payback period of 5 years [Kamat et
al. 2022].

As seen from the studies above, the operating principle of solar tracking
systems using image processing methods is gradually evolving into a
permanent and stable procedural workflow. This procedure begins with the
Image Acquisition step and continues with the Image Processing step. In
the Image Processing step, once the sun’s position in the sky is determined,
it is brought to a perpendicular position relative to the panel in the
subsequent Commanding Motion Units step. It is crucial to remember here
that the sun is the independently moving entity, while the solar collectors
are the dependently moving elements. A common thread across all studies
is the effort to minimize errors or electronic flaws occurring during sun
detection. To this end, innovations such as sensor redundancies, fixed-speed
algorithms, and hybrid detection models are being developed. However,
a noticeable gap in the literature is the absence of a system that processes
solar tracking data using a machine learning model. In this area, by utilizing
machine learning models, the already high solar tracking accuracy could be
elevated to even greater values.

42 | The Evolution of Solar Tracking Systems (STS)

Zeghoudi and Benmouiza (2023) present an innovative hybrid control
approach for optimizing the orientation of heliostats to enhance the
efficiency of Concentrating Solar Power (CSP) towers. In this work, they
combined image processing techniques (IPT) and artificial neural networks
(ANNs) to enable solar tracking with higher precision. They developed a
Hybrid Control mechanism by integrating the strengths of both open-loop
and closed-loop control mechanisms. A closed-loop based IPT using a CCD
camera was established to detect the sun’s position, and an open-loop based
control scheme using ANNs was created to predict heliostat trajectories
during cloudy sky conditions.

In the described hybrid system, the image processing technique (IPT)
detects the sun’s center (pixel coordinates (x, y)) using images captured
from a webcam and calculates the heliostat’s azimuth and elevation angles.
The image processing steps include:

• Converting the color image to grayscale.

• Converting to a binary image using the Otsu method to separate the
sun region from the background.

• Eliminating small objects.

• Inflating the morphology of the binary image.

• Removing small objects with morphological processing.

• Calculating the percentage of the sun’s circular shape.

• Determining the grayscale centroid of the sunspot.

The innovation in this system is its transition from IPT to an artificial
neural network (ANN) predictor when the percentage of the sun’s circular
shape falls below 75% or the sun’s image moves out of the webcam frame.
This allows the ANN to estimate the heliostat’s position under cloudy or
obstructed conditions. The ANN model uses five parameters as input: date,
time, geographical location, receiver height, heliostat-tower distance, east-
west distance, and north-south distance.

Simulation results showed that the hybrid ANN-IPT method minimized
the tracking error to not exceed 0.1. This proves that the method is acceptable
for controlling heliostats in solar tower systems. The excellent performance
of this hybrid approach in cloudy weather was particularly emphasized.
Thus, the applicability of hybrid control systems in heliostat applications
has been demonstrated [Zeghoudi & Benmouiza (2023].

Erkan Kacan | 43

As observed, academic studies consistently demonstrate that solar
tracking systems utilizing image processing methods can achieve high
precision. Given its status as a relatively new and active research area, further
advancements are anticipated.

45

CHAPTER 5

5. System Components

While the system components vary depending on the physical size of
the solar tracking system, common elements used across all systems are
illustrated in Figure 24.

Figure 24 Main parts of solar tracking systems by image processing method

The camera component of the system was discussed in Section 4.2.
Before moving to the algorithm and coding steps, it is essential to discuss
the motors used in the system’s motion mechanisms. The size and motion
capability of these motors will determine the algorithmic-cycle (logic) used
in the algorithm and the electronic circuit between the microprocessor and
motor control.

While stepper motors and small servo motors can be used in small-scale
experimental systems, linear actuators can be employed in large, single-post,
island-type constructions supporting 12 PV panels. Gear-driven or belt-
driven motors are no longer preferred. Slew drive motors, which enable the
movement of large strings, can also be used. To adjust motor speed, motor
drivers can be connected to the circuit, or gearboxes can be mounted on

46 | The Evolution of Solar Tracking Systems (STS)

the motor shaft. Motion is achieved using numerous options and rotation
methods.

5.1. Servo Motors vs. Stepper Motors in Solar Tracking

Figures 25 (a) and (b) show examples of servo and stepper motors.
Stepper motors are electromechanical devices that allow the rotor to move
in precise, fixed angular steps by applying pulse signals to the coils on the
stator. The rotor’s position is directly dependent on the number and sequence
of applied pulses. They are typically used in open-loop control systems, -no
feedback on the motor’s movement- and the controller assumes the motor
has reached the desired position. Each pulse triggers the rotor to turn by a
specific angle and these steps accumulate to form the total rotation amount.
Open-loop control generally leads to simpler control circuits and lower
costs. They possess high holding torque when energized, which increases the
motor’s resistance to load at a standstill. This presents an advantage in solar
tracking systems, especially under wind and snow loads. Thanks to their
brushless structure, they are long-lasting and require minimal maintenance.

In stepper motors, torque values significantly decrease at high speeds.
There is a risk of step skipping under overload or at high speeds, leading to
position errors. Since there is no feedback, this error might go unnoticed.
They produce noticeable vibration and noise, especially at low speeds. For
this reason, their use in solar tracking systems is not recommended for
applications where high precision is crucial.

Servo motors are closed-loop control systems capable of maintaining a
specific position, speed, or torque value with high accuracy. A servo motor
system consists of a feedback sensor (encoder, resolver, etc.) and a driver
(servo driver). The driver moves the motor according to control signals, and
the feedback sensor continuously measures the motor’s current position or
speed. The difference (error) between this measured value and the desired
target value is instantly corrected by the driver, ensuring the motor performs
as desired.

Erkan Kacan | 47

(a) (b)

Figure 25 (a) Servo motor (b) Step motor

Thanks to closed-loop control, servo motors offer very high positioning
accuracy and repeatability. They can produce high and constant torque
over a wide speed range, enabling rapid acceleration and dynamic motion
capability. This is not a critical feature in solar tracking systems where high
speed is not desired. However, their feedback mechanism allows them to
instantly detect and correct load-dependent torque changes, ensuring stable
performance. Their quiet and vibration-free operation and higher efficiency
make their use in solar tracking systems advisable. It should be noted that
adjusting the PID (Proportional-Integral-Derivative) control parameters
and correctly calibrating the system for high-cost servo motors requires
expertise.

5.2. Linear Actuators in Solar Tracking

With the widespread adoption of robotic applications and 3D printers,
the usage areas of linear actuators have expanded. Previously used in
applications like opening/closing garage doors and positioning hospital beds,
linear actuators, which operate on the principle of a worm gear, have become
suitable system components for applications requiring angular movements
and speed control. Figure 26 shows industrial-type linear actuators. Among
the many varieties of linear actuators, both electric worm gear types and
hydraulic types are suitable for solar tracking systems. Electric actuators
themselves come in 12V, 220V, and even 380V versions. However, DC
type electric linear actuators may be chosen to avoid complex electronic
circuits for PLC and microprocessor control.

48 | The Evolution of Solar Tracking Systems (STS)

Figure 26 Industrial linear 3000N actuator

Table 2 provides the types of linear actuators. The appropriate actuator
is selected by calculating the system’s load capacity, extension length, wind
and snow loads, and holding force.

Table 2 Types of Linear Actuators

Actuator Type Operating
Principle Advantages Disadvantages Typical

Applications

Electrical

Driven by an
electric motor
(DC or AC) via
a ball screw, lead
screw, or belt-
pulley mechanism.

High precision,
programmability,
clean operation,
and energy
efficiency.

Higher cost,
requirement for
complex control
electronics,
and limited
performance in
sudden high-force
applications.

Robotics,
automation
systems, medical
devices, solar
tracking systems,
and valve control.

Pneumatic

A piston-cylinder
mechanism
operated by
compressed air.

Fast movement,
simple structure,
reliable, cost-
effective, and
capable of
generating high
forces.

Generally lower
precision, requires
a compressed
air source, noisy
operation, and
risk of air leakage.

Industrial
automation
(grippers,
conveyors), door
opening systems,
and packaging
machines.

Hydraulic

A piston-cylinder
mechanism
operated by
pressurized fluid
(oil).

Capable of
generating very
high forces,
provides smooth
and stable
movement, and
is ideal for heavy
loads.

Complex system
(pump, tank,
valves), risk
of oil leakage,
maintenance
requirements, and
higher cost.

Heavy industry
machinery (e.g.,
excavators,
presses),
construction
equipment, and
ship steering
systems.

Mechanical

Manual or
motorized
movement
through
mechanical
elements such
as levers, cams,
gears, or screws.

Simple, cost-
effective (for
manual versions),
reliable, and not
dependent on an
external energy
source.

Generally manual
control, lower
precision, limited
stroke (range of
motion), and slow
movement.

Jacks, manual
adjustment
mechanisms,
simple lifting
systems, and door
locks.

Erkan Kacan | 49

Piezoelectric

Based on the
principle of
piezoelectric
materials changing
shape with electric
current.

Very high
precision, very
fast response
time, sub-micron
motion capability,
and compact size.

Very small
range of motion
(micron level),
limited force,
and requires high
voltage.

Optical alignment,
microscopes,
nano-positioning,
and valve control
(for precise flow).

Linear actuators convert circular motion at the rotational axis into linear
motion through a gear and worm screw design. In this way, they create a
shaft mechanism that extends back and forth. Stator assemblies rotate the
shaft to control direction and distance of travel, making these actuators ideal
for process automation and controlled load handling in manufacturing cells
or conveyor systems.

Choosing DC motors for the rotation process is preferable for applications
remote from grid connections, aiding in auxiliary power source selection
and portability. The motors for these types of actuators can be brushed or
brushless. Brushed motors deliver cost-effectiveness and commonality, but
require maintenance due to eventual brush wear, while brushless motors
offer enhanced durability and increased operating life.

Furthermore, it must be calculated whether the fully closed and fully
open positions of the linear actuators are sufficient to provide the required
angular motion of the construction. The extension length of linear actuators
is called “stroke.”

Figure 27 Two axis solar tracking system with linear actuator

50 | The Evolution of Solar Tracking Systems (STS)

Figure 27 shows a two-axis solar tracking system where the motion
mechanism is controlled by linear actuators. One actuator tracks the sun’s
azimuth angle within the sunrise-sunset angular range, while the other
tracks the seasonally varying sun elevation angle. The crucial point here is
that the stroke value of the linear actuator must be suitable for the angular
movement during full sunrise and full sunset. Similarly, it is important that
the stroke value of the other actuator is sufficient to cover the max-min sun
elevation angle movement during summer and winter periods.

The variation in the max-min range of sunrise and sunset angles and sun
elevation angles depends on:

• The “n” value (which determines the declination angle (δ), representing
the day of the year)

• Latitude angle (Ø)

It should not be forgotten that “day-time / length of daylight” is
dependent on these values.

Table 3 Highest and Lowest Day Length Angular Values at Selected Centers

City Latitude (ϕ)
Lowest Day Length
(Angular, Winter

Solstice)

Highest Day Length
(Angular, Summer

Solstice)

Izmir 38.41° N 139.76° 220.24°

Istanbul 41.00° N 135.68° 224.32°

Ankara 39.93° N 137.46° 222.54°

Berlin 52.52° N 111.18° 248.82°

Paris 48.86° N 120.48° 239.52°

Roma 41.90° N 134.26° 225.74°

Madrid 40.42° N 136.68° 223.32°

Washington 38.91° N 138.98° 221.02°

Pekin 39.90° N 137.52° 222.48°

Tokyo 35.68° N 143.74° 216.26°

Table 3 shows the highest and lowest day length values for some cities.
Accordingly, a system designed for tracking the sun along the east-west
(solar azimuth) axis and the linear actuator chosen for it must be designed
to accommodate the maximum and minimum angular movements shown
in Table 3. A system designed based on the highest angular movement

Erkan Kacan | 51

will continuously receive perpendicular sunlight along the east-west axis
throughout the year.

The sunset/sunrise hour angle (ωss/sr) is calculated using the following
formulas:

cos(ωss​)​=−tan(Ø)tan(δ) (1)

where:

δ: Declination angle

∅: Latitude angle

Day Length (angular)=2×ωss (2)

For example, a system designed for Izmir must be suitable for an angular
sweep of 139.76° for the shortest day length (Winter Solstice, December
21st) and 220.24° for the longest day length (Summer Solstice, June 21st). A
system designed based on the maximum angular movement will continuously
receive perpendicular sunlight along the east-west axis throughout the year.

It is observed that solar tracking systems produced with linear actuators
generally operate within a range of less than 180° on the east-west axis. This
is because when the rotation exceeds 180°, the rotational movement axis of
the actuator falls behind the rotation axis of the construction. In such cases,
the actuator’s connection point shifts to the opposite side of the rotation axis
and cannot generate rotation, potentially damaging the construction during
retraction. Since actuators move back and forth from a single connection
point, approaching 180° rotation causes strain on the construction. Using
two different actuators for each direction would resolve this issue. However,
errors in synchronizing the movement of two actuator and in writing the
synchronous control algorithm would lead to system stoppage or excessive
load on the actuators.

In solar energy systems, movable mechanisms are undesirable due to their
high cost and the need for frequent breakdowns, maintenance, and repairs.
Resolving the east-west movement with a second actuator eliminates the
initial problem but may introduce new ones.

When examining the amount of useful energy produced during the initial
sunrise and final sunset periods, it is negligible compared to the midday
period. In situations requiring angular tracking beyond 180°, adding an
additional actuator and considering the associated breakdown, maintenance,
and repair costs do not yield feasible results. Instead, increasing the number
of panels or the surface area might offer a more effective solution.

52 | The Evolution of Solar Tracking Systems (STS)

In solar lighting applications, this (180° angular tracking at max.) implies
that the maximum lighting duration can be 12 hours. In cases where the day
length exceeds 12 hours, performing solar tracking with linear actuators can
lead to significant efficiency loss in solar lighting applications.

While certain geometric constraints cause issues during east-west (solar
azimuth) axis solar tracking with linear actuators, these problems do not
arise for tracking along the north-south (solar elevation) axis. For tracking
along the north-south axis, the sun elevation angle (αs) must be determined.
The sun elevation angle is a seasonally varying parameter. In the Northern
Hemisphere, it takes high values in summer and low values in winter. It
should be noted that this movement is reversed in the Southern Hemisphere.
The sun elevation angle (αs) can be calculated using the zenith angle (θz).
Here, the zenith angle refers to the angular value between the horizontal
surface normal and the sun’s rays and is calculated as follows:

cos(θz)​=​sin(Ø)​sin(δ)​+​cos(Ø)​cos(δ) cos(w) (3)

At solar noon, since w=0 (solar hour angle), Equation (3) simplifies to:

cos(θz) = sin (∅) sin (δ) + cos (∅) cos (δ) (4)

This can be further simplified using trigonometric identities:

cos (θz) = cos(∅−δ) (5)

As shown in Figure 28, the solar elevation angle is the complement of the
zenith angle. Therefore, for solar noon, the zenith angle is:

θz =∣∅−δ∣	 (6)

Figure 28 Zenith Angle vs. Solar Elevation Angle

Erkan Kacan | 53

The solar elevation angle (αs) is then:

αs =90°−∣∅−δ∣	 (7)

Table 4 presents the maximum and minimum solar elevation angles at
solar noon for various locations.

Table 4 Maximum and Minimum Solar Elevation Angle Values at Solar Noon for
Various Locations

City Latitude
(∅)

Minimum Solar Elevation
Angle (αs,min)

Maximum Solar
Elevation Angle (αs,max)

Izmir 38.41° N 28.14° 75.04°

Istanbul 41.00° N 25.55° 72.45°

Ankara 39.93° N 27.02° 73.88°

Berlin 52.52° N 14.03° 60.93°

Paris 48.86° N 17.62° 64.71°

Rome 41.90° N 24.65° 71.55°

Madrid 40.42° N 26.13° 73.07°

Washington 38.91° N 27.64° 74.56°

Beijing 39.90° N 27.05° 73.85°

Tokyo 35.68° N 30.87° 77.73°

According to this table, a solar tracking system designed for Izmir
must be compatible with a minimum solar elevation angle of 28.14° and
a maximum solar elevation angle of 75.04° at solar noon. In other words,
the structure and linear actuator moving along the North-South axis must
be able to achieve these angular values. The panels should be positionable
between a minimum inclination of 28° and a maximum of 75°. The values
in Table 3 and 4 should be used as a basis when designing the structure and
selecting the linear actuator. North-South movement is easier to track with
a single linear actuator compared to East-West movement, as it involves a
narrower range.

5.3. Slew Drive in Solar Tracking

Slew drive motors provide a solution to the issues that arise when linear
actuators are used to generate rotational motion from their linear back-and-
forth movement. A slew drive is a mechanical system employed to rotate
or change the position of a load. This system typically operates with a
gear mechanism, providing rotational movement and is used for moving
heavy loads. Being a gear mechanism that rotates on its own axis, it is more

54 | The Evolution of Solar Tracking Systems (STS)

compatible with rotational motion. These motors are frequently utilized
in large and heavily loaded conveyors or construction machinery. In solar
tracking applications, they serve as the movement mechanism for large PV
strings or large parabolic trough and parabolic dish collectors.

Figure 29 Two axes solar tracking system using slew drive

As shown in Figure 29, a PV stand with two-axis solar tracking utilizes
slew drives for rotational mechanisms in both East-West (solar azimuth) and
North-South (solar elevation) directions. The gear, which is the fundamental
component of a slew drive, provides rotational motion. The gearbox enables
high torque and holding force to be achieved with low-power motors. This
allows for a wide range of applications. The motor providing the movement
can be an AC (220~380V) or DC (12~36V) electric motor, or a hydraulic-
pneumatic motor.

These systems are distinguished by their capacity to bear high radial
and axial loads, as well as their ability to transmit significant torque values.
Commonly used slew drive types in the market can be classified by their
structural characteristics, operating principles, and typical application areas
as follows:

Erkan Kacan | 55

• Worm Gear Slew Drives

• Spur Gear Slew Drives

• Single-Axis Slew Drives

• Dual-Axis Slew Drives

• Enclosed Slew Drives

• Open Slew Drives

5.3.1. Worm Gear Slew Drives

Worm gear slew drives are based on a combination of a worm and a
connected worm wheel. The worm acts as the driving element, transferring
rotational motion to the worm wheel. The most distinguishing feature of
these systems is their ability to provide significant torque transmission even
in small sizes, thanks to high conversion ratios. Additionally, they often
possess a self-locking feature; meaning, when the motor stops or disengages,
they prevent the load from moving backward, eliminating the need for an
additional braking mechanism. This offers a significant advantage, especially
in applications requiring secure locking.

Worm gear slew drives are widely used in areas where high torque, precise
positioning, and self-locking capabilities are prioritized. Solar tracking
systems are one such application. They are preferred in solar tracking systems
to maintain tracking accuracy under variable load conditions such as wind
and snow loads. Other application areas include cranes and lifting equipment,
aerial platforms, hydraulic machinery, and robotic systems requiring precise
positioning. Their key differences from other slew drive types are their high
conversion ratios and inherent self-locking capability. This ensures that the
load maintains its position even the motor is disengaged, providing a critical
advantage in terms of safety and stability. Other gear types typically do not
offer this feature and require additional braking systems.

5.3.2. Spur Gear Slew Drives

Spur gear slew drives are systems that transmit torque through the
meshing of parallel-axis spur gears. They have a simpler gear geometry
compared to worm gear systems. Relatively low friction coefficients of
spur gears allow higher efficiency and potentially higher rotational speeds.
However, unlike worm gear systems, they do not have a natural self-locking
feature; therefore, external braking systems may need to be integrated to
hold the load in a specific position.

56 | The Evolution of Solar Tracking Systems (STS)

These types of slew drives are preferred in applications where higher
rotational speeds and high efficiencies are desired, but self-locking is not
critical. They can be used in areas such as industrial automation systems,
light and medium-duty cranes, material handling equipment, and general
engineering platforms. The lack of a self-locking feature necessitates an
additional braking system, which can increase cost or complexity.

Figure 30 illustrates the differences and similarities between worm gear
and spur gear slew drives produced by IMO Industry in Gremdorf/Germany
[Industries, IMO. (2025, 06 09)].

The most significant difference lies in how the drive mechanism connects
to the rotating gear. In a worm gear slew drive, the drive mechanism and
the gear are positioned tangentially in the same plane, resulting in higher
torque and holding force. In a spur gear slew drive, the drive mechanism is
positioned tangentially to the rotating gear in a perpendicular plane. This
geometric design allows for higher rotational speeds and lower friction.

Figure 30 Differences and Similarities of Worm Gear and Spur Gear Slew Drives
[Industries, IMO. (2025, 06 09)]

5.3.3. Single-Axis Slew Drives

Single-axis slew drives are systems that provide movement around a
single axis of rotation. They typically incorporate a worm gear mechanism
and can offer high torque capacity with self-locking capability. Structurally,
they are simpler than dual-axis models.

These systems are used in applications requiring positioning in a single
plane of rotation. They are commonly found in single-axis solar tracking

Erkan Kacan | 57

systems, wind turbine blade pitch adjustments, medium-scale cranes and
lifting equipment, and industrial automation systems. Unlike dual-axis
systems, they offer only a single axis of rotation. This simplicity provides a
more cost-effective and less complex solution, depending on the application
requirements.

5.3.4. Dual-Axis Slew Drives

Dual-axis slew drives are systems that provide two independent axes of
rotation within a single integrated unit. These axes are typically perpendicular
to each other and can be controlled independently. They are commonly
referred to as the primary axis (e.g., azimuth) and the secondary axis (e.g.,
elevation). This integrated design offers a more compact and optimized
solution compared to two separate single-axis systems.

Their most prominent and widespread application is in dual-axis solar
tracking systems. In these systems, the goal is to maximize energy efficiency
by enabling solar panels to track the sun’s movement in both horizontal
(azimuth) and vertical (elevation) planes. They can also be used in areas
requiring complex motion profiles, such as robotic applications and satellite
communication positioning systems.

Figure 31 shows single-axis and dual-axis slew drives manufactured by
Jiangyin Sunslew Machinery Equipment for use in solar tracking systems
[(Jiangyin Sunslew Machinery Equipment) https://www.sunslewdrive.com/
slewing-drive/].

(a) (b)

Figure 31 (a) Single axis slew drive (b) Dual axis slew drive [(Jiangyin Sunslew
Machinery Equipment) https://www.sunslewdrive.com/slewing-drive/]

58 | The Evolution of Solar Tracking Systems (STS)

Figure 31 (a) shows a single-axis slew drive designed with a special torque
tube connection for solar PV string tracking. Figure 31 (b) shows a flange-
mounted dual-axis slew drive for two-axis solar tracking systems. It offers
two different movement capabilities that can be controlled independently.

5.3.5. Enclosed Slew Drives

Enclosed slew drives are designed for where all gear and bearing
components are housed within a sealed enclosure. This enclosure protects
the internal mechanism from dust, dirt, moisture, corrosive chemicals, and
other environmental contaminants. The sealing prevents internal lubricant
from leaking out while also preventing external elements from entering.
This extends the system’s lifespan and reduces maintenance requirements.

They are preferred in applications with harsh environmental conditions,
especially outdoor applications, the maritime sector, construction
equipment, agricultural machinery and mining equipment, where a high
level of protection and durability is required. The biggest difference from
open gear systems is that the gear mechanism is completely enclosed and
sealed. Those meeting IP-64 and IP-X standards are the most preferred. This
provides better environmental protection, less maintenance and a longer
service life.

5.3.6. Open Slew Drives

Open slew drives are designed for where the gear mechanism is in direct
contact with the external environment. In these systems, the gears are
typically exposed and visually accessible. This can reduce initial investment
costs and, in some cases, improve maintenance accessibility. However, they
are more susceptible to external factors and require regular lubrication and
cleaning.

They can be used in applications with less demanding environmental
conditions and relatively controlled environments. They may be preferred in
areas such as indoor cranes, lighter load platforms, and industrial machinery
with less intensive use. The main difference from enclosed systems is that
the gear mechanism is exposed and subject to environmental factors. While
this provides lower manufacturing costs, it also necessitates more frequent
maintenance and environmental protection requirements.

5.3.7. Slew Drive Selection Criteria and Design Analysis

The correct selection of slew drive systems is a critical decision that directly
impacts an application’s performance, safety, and economic lifespan. The

Erkan Kacan | 59

selection process requires a detailed analysis of the application’s requirements
and matching them with the structural and operational characteristics of the
drive system. This analysis primarily considers:

• Torque requirements

• Speed

• Precision

• Load-bearing capacities

• Environmental conditions

• Economic factors

	The structure of the system where the slew drive will be used (e.g.,
solar tracking system, crane, robotic arm, antenna positioning), the
required type of motion (continuous rotation, indexing), the angle
of motion, and the number of cycles are fundamental determinants.
The application’s static (holding the load in a stationary state) and
dynamic (rotating the load while in motion) torque requirements
should be the basis for selecting motor power and gear ratio. Wind
loads, sudden stops/starts, and friction forces must be included in
these calculations.

	The required rotational speed (rotation per minute or degrees
per second) and positioning precision (arc seconds or degrees)
of the application are critical in determining the gear ratio, gear
tolerances, and backlash characteristics.

	The radial (non-axial) and axial (along the axis) loads to which the
drive will be subjected, as well as the overturning moment (OTM),
must be carefully calculated. This directly affects the sizing of the
drive’s bearing system and gear structure.

	The operating environment’s exposure to temperature, humidity,
dust, water, corrosive substances and UV radiation determines
characteristics such as the drive material, sealing class (IP rating),
and corrosion resistance. The selection of enclosed or open-type
drives is made based on these factors. The expected service life,
maintenance intervals and ease of service should be considered in
the drive’s design and material selection. Economic factors such as
initial purchase cost, maintenance costs, and energy efficiency also
play an important role in the decision-making process.

60 | The Evolution of Solar Tracking Systems (STS)

Load Analysis and Torque Calculations;

All loads acting on the application and the moments (torques) generated
by these loads are calculated. This includes static and dynamic conditions.

Static Torque (Ms): This is the maximum torque the system must
withstand while stationary.

Ms =Fload ×rload +Fwind ×rwind +Madditional (8)

Where:

Ms : Static Torque (N.m)

F: Force (N)

r: Perpendicular distance from the force to the axis of rotation (m)

Madditional : Additional moments (e.g., friction load, etc.) (N.m)

Dynamic Torque (Md): This is the torque required by the system while in
motion (acceleration, constant speed rotation, deceleration).

Md =I×α+Mfriction (9)

Where:

Md : Dynamic Torque (N.m)

I: Moment of inertia (kg.m2)

α: Angular acceleration (rad/s2)

Mfriction : Friction torque (N.m)

Overturning Moment (OTM): This is the moment acting on the slew
drive’s flange, attempting to tip the system and is critical for determining
the bearing capacity. It is typically specified by slew drive manufacturers in
their product catalogs. The catalog values, i.e., maximum OTM values, must
not be exceeded.

The calculated maximum torque values determine the nominal torque
capacity of the slew drive to be selected. Safety factors (Fs) are generally
applied to these values. Fs can be chosen as 1.2 (120%) for a safety limit
sometimes 1.5 (150%) as desired according to design engineer expertise.
The safety factor is an additional precautionary value added to the maximum
torque value required and determined by calculation. In systems operating
under natural conditions, it serves as a safety margin against unforeseen
circumstances, often used by design engineers as a precautionary measure.
This value can be chosen higher or lower based on the design engineer’s
experience and observable anomalies in the external environmental conditions

Erkan Kacan | 61

where the system will operate. Especially in today’s climate crisis driven by
global warming, where anomalies are observed in natural conditions, careful
attention should be paid to determining the Fs value.

Mrequired =Mmax ×Fs (10)

Speed and Reduction Ratio Determination; The maximum rotational speed
(Nmax) and cyclical use (total number of rotations per day or year) required
by the application are considered.

The relationship between the slew drive’s motor input speed (Nmotor)
(rpm) and the drive output speed (Noutput) (rpm) is determined by the
conversion ratio (i):

output

motor

Ni N= (11)

Higher conversion ratios provide higher torque output and lower output
speed, while lower conversion ratios provide higher speed and lower torque.

Evaluation of Load-Bearing Capacities; The radial load (Fr), axial load (Fa
), and overturning moment (OTM) capacities of slew drives are compared
with the manufacturer’s specified catalog values. These capacities are critical,
especially in heavy-load applications.

Load-Bearing Capacities and Gear Diameters

The load-bearing capacities of slew drives generally increase proportionally
with the turntable diameter (gear diameter). Larger diameter slew drives can
carry higher radial, axial loads, and overturning moments because they have
larger bearings and larger gear contact areas.

Gear diameters are determined based on the torque and load capacity
required by the application. Generally, as torque requirements increase
or the overturning moment becomes larger, slew drives with larger gear
diameters are preferred. For example, slew drives are available in various
diameters (e.g., from 100 mm to over 1000 mm) for torques ranging from
a few hundred Nm to several hundred kNm.

Backlash and Precision Analysis

For applications requiring positioning precision, the backlash value of the
slew drive is of great importance. Backlash refers to the clearance between
meshing gears and is typically specified as an angular value (e.g., arc minutes
or degrees) in the manufacturer’s catalog.

62 | The Evolution of Solar Tracking Systems (STS)

For precise applications, slew drives with low backlash (precision
backlash) should be preferred.

5.3.8. Slew Drive Selection: A Case Study “Calculation Method
for Solar Tracking Systems”

Commercially available electricity generation systems utilizing solar
energy are increasingly being sold as complete packages including solar
tracking systems. These packages typically comprise pre-fabricated structures
containing 1-2-4-8-16 PV panels, along with dual-axis tracking mechanisms
and microprocessor units for control. With advancing technology, diverse
manufacturing materials are being employed, and their variety expands day
by day. Among these systems, those incorporating 8 PV panels (3.2 kWp~4
kWp) are the most frequently sold systems. They are preferred due to their
capacity to meet the average electricity demand of a household in off-grid
areas. To properly select a slew drive for use in these systems, it is essential
to meticulously follow a specific calculation methodology.

It is crucial to determine the primary loads (wind and panel weight)
that 8-panel PV system may encounter, and consequently, the expected
torque from the slew drive. Figure 32 presents the design parameters for
the system. While more detailed calculations could be incorporated into this
methodology, a simplified and rapid calculation method has been chosen.
Additionally, it is recommended that the design engineer considers the safety
factor Fs mentioned previously.

Figure 32 A case scenario slew drive analysis for dual axis solar tracking system

Erkan Kacan | 63

Case scenario system parameters;

•	 Number of Panels: 8 units

•	 Dimensions of Each PV Panel:

o Length (L): 2 meters

o Width (W): 1 meter

•	 Weight of Each PV Panel (m): 25 kg

•	 System Height (average height from ground to panel center) (hsystem):
3 meters (This will affect the distance from the panel’s wind center
when calculating wind moment.)

•	 Maximum Wind Speed (Vwind): 120 km/h ≈ 33 m/s (For storm
conditions)

•	 Air Density (ρ): 1.225 kg/m³ (Standard sea level air density)

•	 Drag Coefficient (Cd): 1.2 (A typical value for PV panels, varies with
panel angle)

•	 Gravitational Acceleration (g): 9.81 m/s²

1. Total Panel Area and Weight

First, the total panel surface area and total panel weight for the system
must be determined.

Panel Surface Area; Ap =L×W (12)

=2(m)×1(m)=2(m2)

Total Surface Area; Atotal =Number of Panels×Ap (13)

=8×2(m2) =16(m2)

Total Panel Weight; Wtotal = Number of Panels×m×g (14)

=8 × 25 (kg) × 9.81 (m/s2) =1962(N)

2. Wind Load Calculation (for Azimuth axis)

The force on the PV panels exerted by wind and the resulting moment on
the slew drive should be calculated for the worst-case scenario. Therefore, it
should be assumed that the wind strikes the panel surface perpendicularly.

Wind Pressure (Pw); Pw =0.5×ρ×(Vw)2 (15)

Pw =0.5×1.225(kg/m3) ×(33.33(m/s))2≈680 Pa (Pascal)

64 | The Evolution of Solar Tracking Systems (STS)

Total Wind Force (Fwind): Fwind =Pw ×Atotal ×Cd (16)

Fwind =680(Pa)×16(m2) ×1.2≈13056(N)

Overturning Moment Caused by Wind (Mwind): This moment is a critical
value, especially for the azimuth (horizontal) axis slew drive. The system
height can be used as the moment arm.

In case of a different PV array configuration, determining the center of
mass will be important.

Mwind =Fwind ×hsys (17)

Mwind =13056(N)×3(m)=39168(Nm)

3. Moment Caused by Panel Weight (For Elevation Axis)

For the elevation (vertical) axis slew drive, the moment generated by the
panels’ own weight is significant. This moment is maximal when the panels
are in a horizontal position and at the furthest point from the slew drive.
This drive controls the mechanism that moves the panels up and down. The
panels are arranged in a 2x4 configuration, meaning a deviation from the
center of mass equivalent to 2 heights and 4 widths. The distance of each
row from the elevation rotation axis will be “L/2”.

Moment Arm (rel): The horizontal distance of the panels’ center of mass
from the elevation axis will be L/2=1(m).

Moment Caused by Panel Weight (Mel): Mel =W×rel (18)

Moment of 1st row; Mel = (4×245.25) (N)×1(m)=981(Nm)

Total moment of 2 rows; Mel =981(Nm)×2=1962(Nm)

Since the moment arm value significantly alters the system’s resistance,
arranging PV panels in 2 vertical rows instead of 2 horizontal rows yielded
more effective results. The most important criterion for designing such systems
with 1-2-4-8-16 PV panels is their suitability for creating a symmetrical
geometric structure. This allows the system drive and construction design to
produce more balanced and efficient results.

4. Moment Caused by Wind Load (For Elevation Axis)

The wind moment on the elevation axis varies depending on the elevation
(tilt) angle of the panels. The most critical situation occurs when the wind
strikes the panel surfaces perpendicularly. In this case, the moment arm is
the greatest perpendicular distance from the aerodynamic center on the
panel surfaces to the elevation axis.

Erkan Kacan | 65

Melevation,wind =Fwind ×relevation,wind (19)

Melevation,wind =13056(N)×1(m)=13056(Nm)

5. Moments of Inertia (Iazimuth , Ielevation)

Moment of inertia is a measure of an object’s resistance to rotational
motion. It specifically determines the torque that the motor and slew drive
must overcome during acceleration and deceleration (dynamic) phases of
the system. The total moment of inertia of the system is the sum of the
moments of inertia of all panels and their supporting structure (frame, pole,
etc.).

Simplifying the system by defining PV panels as flat plates, the moment
of inertia of a single panel about its center of mass is:

Ipanel,center_of_mass,azimuth =1/12 ×mp ×(L2+W2) (20)

Ipanel,center_of_mass,azimuth =1/12 ×25(kg)×(22+12)(m2)=10.41(kg⋅m2)

The moment of inertia created by the panels at the axis of rotation,
according to the “Parallel Axis Theorem”, is:

Itotal =Icenter_of_mass,azimuth/elevation +md2 (21)

Iazimuth =533(kg⋅m2)

Ipanel,center_of_mass,elevation =1/12 ×mp ×(L2) (22)

Ipanel,center_of_mass,elevation =1/12 ×25(kg)×22(m2)=8.33(kg⋅m2)

Ielevation =266.6(kg⋅m2)

The amount of dynamic torque required to overcome the highest
moment within the moments of inertia is:

Mdynamic =I×α (23)

Here, α is the angular acceleration variable. For solar tracking on the
azimuth axis, angular acceleration can be taken as 0.1 rad/s².

Mdynamic =533×0.1=53.3(Nm)

6. Snow Load Calculation (Msnow)

Snow load is a significant design criterion for solar panel systems,
especially in regions with cold climates. The weight of accumulated snow on
the panels can create substantial moments on the elevation axis.

A worst-case scenario can be established by assuming that snow falls
uniformly on the panels and that the surface is in a suitable position for
snow retention (slightly inclined). However, it should be remembered that

66 | The Evolution of Solar Tracking Systems (STS)

in solar tracking systems, panels are in their steepest (more vertical) position
in winter. This is a hindering factor for snow accumulation.

Typical Snow Density (ρsnow): Ranges from 50-200 kg/m³ for fresh snow
and 200-500 kg/m³ for old/compacted snow. An average of 300 kg/m³ can
be used for calculations.

Snow thickness (hsnow) can vary depending on the geography. Therefore,
if snow load calculations are performed for 3 different scenarios (50 cm, 20
cm, 5 cm):

Snow Weight per Unit Area (qsnow):

qsnow =ρsnow ×hsnow ×g (24)

qsnow,50cm =300(kg/m3)×0.5(m)×9.81(m/s2)=1471.5(N/m2) (Pa)

Total Snow Force (Fsnow):

Fsnow =qsnow ×Atotal (25)

Fsnow =1471.5(N/m2) ×16(m2) =23544(N)

Moment Caused by Snow Load (Msnow): If the perpendicular distance in the
elevation direction of the panels is taken as the basis:

Msnow =Fsnow ×relevation (26)

Msnow,50cm =23544(N)×1(m)=23544(Nm)

Msnow,20cm =9417.6(Nm)

Msnow,5cm =2354.4(Nm)

The moment resulting from snow load has turned out to be much higher
than the wind moment (13056 N·m) and the panel weight moment (1962
N·m). This indicates that snow load is one of the most critical loads for slew
drive and structural design, especially in regions experiencing harsh winter
conditions. System design must either be capable of bringing the panels to
a safe “snow position” (e.g., vertical or highly tilted) or capable of bearing
this load under such extreme load conditions.

Erkan Kacan | 67

Table 5 Moments Acting on the PV Panel System

Moment Type Axis Calculated
Value (N·m) Notes

Wind Overturning Moment
(Mwind)

Azimuth 39168 Main determining
load

Panel Weight Moment (Mweight) Elevation 1962
Elevation Wind Moment

(Melevation,wind)
Elevation 13056

Snow Load Moment (Msnow) Elevation

23544 0.5 m snow thickness
assumption

9417.6 0.2 m snow thickness
assumption

2354.4 0.05 m snow
thickness assumption

Azimuth Moment of Inertia
(Iazimuth)

Azimuth 533.36 (kg·m²)

Elevation Moment of Inertia
(Ielevation)

Elevation 266.64 (kg·m²)

Table 5 summarizes the moments acting on the system. The maximum
acting moments in this table were the wind overturning moment, snow
load moment, and wind turning load moment. This table was generated
assuming storm-level wind for wind load and 50-20-5 cm accumulation for
snow load. There is also a possibility of exposure to loads exceeding these. In
such cases, the system must have additional safety mechanisms.

Based on these calculations, the maximum moments that the system may
encounter are as follows:

Azimuth (Horizontal) Axis Torque Requirement (Wind Load as Primary
Factor): Approximately 39168 N·m. This is a critical value for the slew
drive’s overturning moment (OTM) capacity. Simultaneously, the nominal
torque capacity of the drive must also meet or exceed this value. Wind load
generally constitutes the largest torque load on the azimuth axis.

7. Evaluation for Slew Drive Selection

In the light of these calculations:

• For the azimuth axis, a slew drive with an overturning moment and
torque capacity of approximately 40 kNm (40,000 N·m) is required.
Worm gear slew drives are typically preferred for these types of loa-
ds. A drive with a gear diameter of 600 mm to 1000 mm or larger is
needed.

68 | The Evolution of Solar Tracking Systems (STS)

• For the elevation axis, a slew drive with a torque capacity of approxi-
mately 10 kNm (10,000 N·m) may be sufficient. Worm gear slew
drives are also generally suitable for this axis. A smaller diameter drive
(e.g., 300 mm - 500 mm) might be adequate.

Safety Factors:

• Dynamic Effects: Dynamic loads occur when the system is in motion
(acceleration and deceleration). This can increase the instantaneous
torque requirements of the motor and drive.

• Building Codes and Standards: For systems installed on buildings,
local building codes, wind load standards (e.g., ASCE 7, Eurocode
1), and specific standards for solar energy systems (e.g., UL 3703)
must be considered.

• Safety Factors: In engineering design, a safety factor ranging typically
from 20% to 100% is additionally applied to calculated maximum
loads. This leaves room for contingencies, material fatigue, and calcu-
lation uncertainties. For example, if a 50% safety factor is applied to
a 40 kNm torque, a drive with a 60 kNm capacity would be sought.

• Manufacturer Data: The most suitable model is determined by com-
paring the manufacturer-provided nominal torque, overturning mo-
ment capacity, radial load, and axial load values of the chosen slew
drive with the calculated values. The gear diameter is directly related
to these capacity values.

69

CHAPTER 6

6. Algorithm Samples and Microcontroller
Connections

For solar tracking to be performed using the image processing method,
the sun must first be detected by an imaging device. Therefore, it is essential
that the intermediary component, which will command the system’s
motion mechanism, is a system element that works in harmony with the
image acquisition components. Microcomputers marketed by brands such
as Arduino, Raspberry Pi, BeagleBone, Odroid, Banana Pi, Adafruit, and
Particle Photon etc. can be used for image acquisition and processing. Based
on market prevalence, Arduino and Raspberry Pi microcomputers can be
said to have an advantage. PLC elements, which have long been used in
automation systems, can only be utilized as triggers for solar tracking via
image processing. They require another unit to process the main image and
send the triggering signal to the PLC. For this reason, they are not preferred
for image processing tasks. Microcomputers capable of both image processing
and triggering (outputting signals) in a single unit should be preferred. For
this reason, Raspberry Pi stands out. The Arduino microcontroller board
has inherent advantages in areas such as:

• Performing specific tasks in real-time and with precise timing because
it does not run an operating system.

• Being more affordable.

• Providing lower power consumption.

• Having analog inputs.

70 | The Evolution of Solar Tracking Systems (STS)

Despite these, Raspberry Pi is preferred for solar tracking using the
image processing method due to reasons such as:

• Offering a more powerful operating system and RAM capability.

• Being suitable for programming in languages like PYTHON, C++,
and JAVA due to its Linux-based operation.

• Having extensive connectivity options (e.g., built-in USB ports,
HDMI output, Ethernet port, Wi-Fi, and Bluetooth).

• Support for additional storage.

• Possessing a graphical interface (e.g. GUI)

When examining studies in the literature, it is observed that sensor-
based solar tracking systems are implemented with Arduino, while image
processing-based solar tracking systems are implemented with Raspberry Pi.

6.1. Hardware Integration and Data Processing in Raspberry Pi-
Based Solar Tracking Systems

Raspberry Pi’s versatile and programmable General-Purpose Input/
Output (GPIO) pins expand its application areas. Figure 33 illustrates the
general connection points and multi-functional GPIO pin layout of the
Raspberry Pi 4 model. This layout encompasses various interfaces such
as digital input/output, PWM (Pulse Width Modulation), I2C, SPI, and
UART. The presence of 5V outputs provides the ability to control small
linear actuators and servo motors without the need for an additional
intermediate control element. However, the maximum current these pins
can provide is limited, and an external power circuit is required for larger
loads. I2C and UART pins enable the connection of analog and digital
sensors, allowing for data acquisition and storage, and even remote data
reading and system improvements.

Erkan Kacan | 71

Figure 33 Raspberry Pi 4 connection and GPIO structure

In solar tracking systems, connecting a pyranometer to the system for
instantaneous measurement of solar radiation is a common practice for
reading instantaneous values, calculating system efficiency, and detecting
faults. In commercial applications remotely monitored with SCADA systems,
it is a mandatory application in large solar power plants. Pyranometers with
RS485-RS232 communication protocols or those sending analog signals
(in conjunction with an analog-to-digital converter, ADC) can be connected
to Raspberry Pi’s GPIO 14-15 pins to acquire instantaneous data, read and
store data remotely, and even perform system improvements via remote
access.

Figure 34 Variable power support and motor speed control element

72 | The Evolution of Solar Tracking Systems (STS)

However, for motor control applications requiring high current and/
or voltage, motor control units (motor drivers) or power support circuit
elements must be added. Figure 34 shows the circuit elements used for
powering and controlling 24V DC and 220V AC linear actuators in a
Raspberry Pi application designed for a solar tracking system. The direction
of rotation of linear actuators can be controlled via electronic circuit elements
or through programmable logic control via motor drivers.

Figure 34 includes an 8-channel 24V relay module. Its purpose is to
prevent overloading of the microcontroller’s output pin during sudden or
excessive loads and to provide switching capability for high current/voltage
values.

Figure 35 Outputs of the image processing algorithm for sun position detection

Figure 35 presents image processing outputs obtained at various times
and from different solar tracking systems. These outputs visualize the
perceived position of the sun and the operation of the tracking algorithm.

6.2. Image Processing-Based Algorithms in Solar Tracking
Systems

The primary objective of solar tracking systems is to continuously monitor
the sun’s position in the sky to enhance the efficiency of solar panels. Image
processing-based algorithms analyze visual data acquired through a camera
to determine the precise position of the sun and use this information to
orient the panels towards the sun at the correct angle.

6.2.1. Basic Steps of the Image Processing Algorithm

An image processing-based solar tracking algorithm typically consists of
a series of sequential and logically dependent steps. These steps enable the
transformation of raw camera data into meaningful positional information.

Erkan Kacan | 73

Image Acquisition:

The first and most critical step of the system is to obtain a digital image of
the sun and the surrounding sky. Compatible camera modules are used with
the microcomputer for this process. When selecting a camera, parameters
such as resolution, field of view (FOV), frame rate and dynamic range
should be considered. Especially for a wide tracking area, cameras with
wide-angle (fisheye) lenses can be preferred, allowing the sun’s horizon-to-
horizon movement to be captured in a single image. The camera’s mounting
position and orientation directly affect the accuracy of the algorithm and
require precise system calibration. The acquired image data is typically
processed by a Single Board Computer (SBC), such as a Raspberry Pi.

Image Pre-processing:

Raw image data undergoes various pre-processing techniques before
being made suitable for the sun detection step. The primary purpose of
these steps is to reduce noise in the image, optimize contrast, and enhance
the prominence of the sun.

o Grayscale Conversion: Color images are often converted to grayscale
images to reduce processing load and for pixel density-based analysis.
This conversion creates a single channel representing the brightness
value of each pixel.

o Noise Reduction: Random noise originating from camera sensors or
environmental factors can negatively impact algorithm accuracy. To
eliminate this noise, spatial filtering techniques such as Gaussian filter,
median filter, or bilateral filter are applied. These filters correct noisy
pixels by using their neighborhood relationships.

o Contrast Adjustment: The overall brightness and contrast levels of the
image can be adjusted to ensure better separation of the sun from the
background. This can be achieved through methods such as histogram
equalization or linear contrast stretching.

Image Segmentation:

After the pre-processing steps, the pixel group representing the sun in the
image needs to be isolated. This is usually done by thresholding. Since the
sun has a significantly higher brightness value compared to the surrounding
sky regions, pixels above a certain brightness threshold are defined as the
“sun region,” and a binary mask is created.

74 | The Evolution of Solar Tracking Systems (STS)

o Fixed (Global) Thresholding: A specific brightness value is used as a
fixed threshold for the entire image. This method is simple and fast but
may perform poorly in changing light conditions (e.g., cloudiness).

o Adaptive Thresholding: Different threshold values are calculated
for different regions of the image. This method is more robust
against varying lighting conditions and can provide more accurate
segmentation even when clouds partially obscure the sun. Otsu’s
method or local thresholding algorithms fall into this category.

Sun Contour Detection:

In the binary image obtained through image segmentation, the pixels
representing the sun region are isolated. However, in this binary image,
determining the contour (boundary) of the sun region is a critical step for
subsequent analysis, especially for center detection. Contour detection is a
process that finds the boundaries of interconnected pixel clusters.

The following steps should be followed for contour detection:

o Connected Component Analysis in Binary Image: In the binary
image obtained after thresholding, clusters formed by connected
(neighboring) white pixels are identified. The largest of these clusters
(typically the sun itself) or those meeting a certain size criterion are
defined as potential sun region candidates. This step can also be used
to eliminate small noise regions or other bright spots in the image.

o Contour Finding Algorithms: On the detected connected components,
contour finding algorithms offered by popular computer vision
libraries (e.g., OpenCV) are applied. These algorithms extract the
outer boundary pixel chains of the identified objects (in this case,
the sun). The resulting contour is represented as a series of (x,y)
coordinate pairs. This allows information about the sun’s shape and
size to be obtained.

o Selection of Outer Contour: In cases where multiple contours may be
found (e.g., halos around the sun or small bright spots), the contour
with the largest area or meeting a specific size criterion is usually
selected as the main sun contour. This prevents misidentification of
other objects as the sun.

Accurate determination of the sun’s contour directly provides an input
for the next step, precise detection of the sun’s center. Furthermore, contour
information can be used for additional analyses such as monitoring changes

Erkan Kacan | 75

in the sun’s apparent size or evaluating how much of the sun is visible in
conditions like partial cloudiness.

Centroid Detection of the Sun:

From the boundary coordinates obtained as a result of contouring or
from the binary sun mask obtained as a result of segmentation, the geometric
center (centroid) or center of mass representing the sun’s position in the
image is calculated. These center coordinates (xc, yc) are used as the primary
input for guiding the solar tracking mechanism.

The center of mass calculation is performed by taking the weighted
average of all “sun” pixels in the segmented region:

() ()

() ()
,

,

. ,

,
i j S

c

i j S

i I i j
x

I i j
∈

∈

=
∑
∑

 (27)

() ()

() ()
,

,

. ,

,
i j S

c

i j S

j I i j
y

I i j
∈

∈

=
∑
∑

 (28)

Here, (i,j) represents the pixel coordinates, I(i,j) represents the pixel
intensity value (brightness), and S represents the segmented sun region. In a
simpler approach, the center of mass can also be found by taking the average
coordinates of only the active pixels (white pixels) in the binary image.

Tracking Control:

The calculated sun center coordinates (xc, yc) are compared with the
system’s current panel angle or the targeted position at the camera center.
The resulting error signal from this comparison is used to control actuators
such as linear actuators or servo motors. The control strategy is generally
based on a feedback control loop principle, moving the panel towards the
targeted sun center.

o Proportional-Integral-Derivative (PID) Control: A powerful control
method frequently preferred in solar tracking systems. A PID controller
uses the error signal (the difference between the sun’s current position
and its targeted position) to determine the commands to be sent to the
actuators. PID combines proportional (P), integral (I), and derivative
(D) components to ensure that the system responds quickly and
reaches its target stably. It is ideal for dynamic and precise tracking.

76 | The Evolution of Solar Tracking Systems (STS)

o Hysteresis Control: To prevent unnecessary continuous movement of
the actuators and reduce energy consumption, a specific “error band”
can be defined. The panel does not move unless it moves outside this
defined hysteresis band. This extends the lifespan of the actuators and
reduces mechanical wear.

o Model Predictive Control: In advanced systems, a hybrid tracking
strategy can be followed by combining astronomical sun position
information with image processing data. This allows for prediction-
based tracking to continue even under instantaneous environmental
conditions such as cloudiness.

Error Management and Advanced Features:

Various error management and advanced features can be integrated to
increase the stability and reliability of the algorithm:

o Cloud and Obstruction Detection: Image analysis can detect situations
where the sun is partially or completely obscured by clouds. In this
case, the system can transition to a specific “park” position or revert
to astronomical tracking (movement at a constant angular speed) to
prevent unnecessary movements or conserve energy.

o Low Light/Night Mode: Image processing algorithms may not
function accurately enough during times of low sun brightness, such
as in sunrise and sunset time intervals. Also, tracking is unnecessary
during night hours when there is no sun. Under these conditions, the
system should be enabled to switch to pre-programmed astronomical
tracking algorithms or a specific “sleep” position.

o Camera Setting Adaptation: Camera settings such as exposure time,
ISO sensitivity, and white balance can be dynamically adjusted
according to ambient brightness conditions. This ensures that high-
quality images are obtained even under different lighting conditions
(e.g., very bright sunlight or twilight).

o Sudden Changes in Sun Center: Instantaneous jumps in (xc, yc) values
caused by glare in the sky, reflections from surrounding reflective
surfaces or the momentary perception of artificial light sources as a
“fake” sun can disrupt the stability of solar tracking. To prevent this, a
cumulative sun center coordinate determination algorithm should be
added. This allows for centering by averaging a determined number
of center coordinates, thereby creating movement stability.

Erkan Kacan | 77

6.2.2. Image Processing Algorithm Samples

Considering that the structure described above will be operated with a
Raspberry Pi, before writing the code, the camera’s CSI connection must
be established, and PYTHON3 should be installed. The OPENCV library
should be installed with the command;

“pip​install​opencv-python”,​

and the RPi.GPIO library with

“pip​install​RPi.GPIO”.

6.2.2.1. Sample Code-Main Body

import cv2

import numpy as np

import time

import RPi.GPIO as GPIO # For controlling Raspberry
Pi’s GPIO pins

--- 1. GPIO Pin Definitions and Target Settings ---

These will be the ENABLE pins or direction control
pins for our motor driver.

PAN_FWD_PIN = 17 # Pan/Azimuth (horizontal) forward/
right movement pin

PAN_BWD_PIN = 18 # Pan/Azimuth (horizontal) backward/
left movement pin

TILT_UP_PIN = 27 # Tilt/Elevation (vertical) up
movement pin

TILT_DOWN_PIN = 22 # Tilt/Elevation (vertical) down
movement pin

System’s target center (ideal focal point of the
camera, half of the image width)

A 640x480 resolution value determines the target
(x,y) value, thus it is important.

TARGET_X = 320 # (Image width / 2)

TARGET_Y = 240 # (Image height / 2)

78 | The Evolution of Solar Tracking Systems (STS)

Tolerance zone (pixels) before movement. The system
does not move within this value (hysteresis).

TOLERANCE = 15 # If the sun is within this pixel
range, do not move the panel.

--- 2. GPIO Setup Functions ---

def setup_gpio():

 “””Sets up GPIO pins as outputs.”””

 GPIO.setmode(GPIO.BCM) # Use BCM pin numbering
mode

 GPIO.setup([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.OUT)

 # Initially set all pins to LOW to stop actuators

 GPIO.output([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.LOW)

 print(“GPIO pins successfully configured.”)

def cleanup_gpio():

 “””Cleans up GPIO pins when the program
terminates.”””

 GPIO.cleanup()

 print(“GPIO pins cleaned up.”)

--- 3. Actuator Control Function ---

def control_actuator(current_cx, current_cy):

 # Controls the actuators based on the current
center position of the sun.

 # current_cx (int): X coordinate of the sun in
the image.

 # current_cy (int): Y coordinate of the sun in
the image.

 # X-axis (Pan/Azimuth) control

 if current_cx < TARGET_X - TOLERANCE:

 # Sun is to the left of the target center,
move panel to the right (Fwd)

Erkan Kacan | 79

 GPIO.output(PAN_BWD_PIN, GPIO.LOW)

 GPIO.output(PAN_FWD_PIN, GPIO.HIGH)

 # print(“Pan/Azimuth: Moving right.”)

 elif current_cx > TARGET_X + TOLERANCE:

 # Sun is to the right of the target center,
move panel to the left (Bwd)

 GPIO.output(PAN_FWD_PIN, GPIO.LOW)

 GPIO.output(PAN_BWD_PIN, GPIO.HIGH)

 # print(“Pan/Azimuth: Moving left.”)

 else:

 # At target on X-axis, stop Pan/Azimuth
movement

 GPIO.output(PAN_FWD_PIN, GPIO.LOW)

 GPIO.output(PAN_BWD_PIN, GPIO.LOW)

 # print(“Pan/Azimuth: At target (Stopped).”)

 # Y-axis (Tilt/Elevation) control

 if current_cy < TARGET_Y - TOLERANCE:

 # Sun is above the target center, move panel up

 GPIO.output(TILT_DOWN_PIN, GPIO.LOW)

 GPIO.output(TILT_UP_PIN, GPIO.HIGH)

 # print(“Tilt/Elevation: Moving up.”)

 elif current_cy > TARGET_Y + TOLERANCE:

 # Sun is below the target center, move panel
down

 GPIO.output(TILT_UP_PIN, GPIO.LOW)

 GPIO.output(TILT_DOWN_PIN, GPIO.HIGH)

 # print(“Tilt/Elevation: Moving down.”)

 else:

 # At target on Y-axis, stop Tilt/Elevation
movement

80 | The Evolution of Solar Tracking Systems (STS)

 GPIO.output(TILT_UP_PIN, GPIO.LOW)

 GPIO.output(TILT_DOWN_PIN, GPIO.LOW)

 # print(“Tilt/Elevation: At target (Stopped).”)

--- 4. Main Application Loop ---

if __name__ == “__main__”:

 setup_gpio() # Configure GPIO pins

 # Camera initialization

 # For Raspberry Pi camera, ‘0’ or appropriate
backend for ‘libcamera’ based systems can be used.

 cap = cv2.VideoCapture(0)

 if not cap.isOpened():

 print(“Error: Could not open camera. Check
camera connection or index.”)

 cleanup_gpio()

 exit()

 # Set camera resolution

 cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)

 cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

 time.sleep(2)

 print(“Video stream started. Press ‘q’ to exit.”)

 try:

 while True:

 ret, frame = cap.read() # Read a frame
from the camera

 if not ret:

 print(“Error: Could not read frame.
Camera connection might be lost.”)

 break

 # 4.1.2. Image Preprocessing

 # Convert to grayscale

Erkan Kacan | 81

 gray_frame = cv2.cvtColor(frame, cv2.
COLOR_BGR2GRAY)

 # Reduce noise with Gaussian filter

 blurred_frame = cv2.GaussianBlur(gray_
frame, (5, 5), 0)

 # 4.1.3. Sun Segmentation (Thresholding)

 # A high threshold value is used because the
sun is bright.

 # THRESH_BINARY_INV (inverse binary) can
sometimes yield better results

 # because everything outside the sun
becomes black while the sun remains white.

 # For example: ret, binary_frame = cv2.
threshold(blurred_frame, 200, 255, cv2.THRESH_BINARY)

 # Adaptive thresholding can also be
considered for scenarios where the sun might be dim.

 _, binary_frame = cv2.threshold(blurred_
frame, 200, 255, cv2.THRESH_BINARY)

 # 4.1.4. Determining Sun Contour

 # Find only outer contours

 contours, _ = cv2.findContours(binary_
frame, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 sun_cx, sun_cy = None, None

 if contours:

 # Assume the contour with the largest
area is the sun

 largest_contour = max(contours,
key=cv2.contourArea)

 # We can add a minimum area check to
ignore very small contours

 if cv2.contourArea(largest_contour)
> 100: # Example min area threshold

82 | The Evolution of Solar Tracking Systems (STS)

 # Calculate moments from the
contour

 M = cv2.moments(largest_contour)

 # 4.1.5. Determining Sun Center
(Centroid)

 if M[“m00”] != 0:

 sun_cx = int(M[“m10”] /
M[“m00”])

 sun_cy = int(M[“m01”] /
M[“m00”])

 # Draw a circle at the center
of the sun

 cv2.circle(frame, (sun_cx,
sun_cy), 10, (0, 255, 255), -1) # Yellow circle

 cv2.putText(frame, f”Sun:
({sun_cx},{sun_cy})”, (sun_cx + 20, sun_cy + 20),

 cv2.FONT_HERSHEY_
SIMPLEX, 0.6, (0, 255, 255), 2)

 # 4.1.6. Tracking Control

 control_actuator(sun_cx,
sun_cy)

 else:

 print(“Warning: Valid contour
area is zero.”)

 # If sun is not detected,
stop actuators

 control_actuator(TARGET_X,
TARGET_Y) # Command to stop by targeting

 else:

 print(“Warning: Detected sun
contour is too small.”)

 # If sun is not detected, stop
actuators

Erkan Kacan | 83

 control_actuator(TARGET_X,
TARGET_Y) # Command to stop by targeting

 else:

 print(“Warning: No sun contour found
in the image.”)

 # If sun is not detected, stop
actuators

 control_actuator(TARGET_X, TARGET_Y)
Command to stop by targeting

 # Visualize images (these lines can be
removed if there is no GUI on Raspberry Pi)

 cv2.imshow(‘Original Frame’, frame)

 cv2.imshow(‘Binary Sun’, binary_frame)
Show the segmented binary image

 # Exit loop when ‘q’ is pressed

 if cv2.waitKey(1) & 0xFF == ord(‘q’):

 break

 except KeyboardInterrupt:

 print(“\nProgram stopped by user.”)

 finally:

 # Release resources and clean up GPIO

 cap.release()

 cv2.destroyAllWindows()

 cleanup_gpio()

The example code has a simple and straightforward structure. This
structure can be made more robust and stable by adding certain features.
However, it should be noted that every additional feature will increase
CPU usage and cause delays in movement commands. Therefore, it is
recommended to start with the minimum required features and improve the
system according to its needs.

84 | The Evolution of Solar Tracking Systems (STS)

6.2.2.2. Transitioning from Hysteresis-Based Control to PID-
Based Control

To implement PID control, it is first needed to define the PID parameters
(Kp , Ki , Kd) and calculate separate error values for each axis (pan/azimuth
and tilt/elevation). The signals sent to the actuators are converted into PWM
(Pulse Width Modulation) modules instead of simple HIGH/LOW, thereby
controlling the motor speed. This provides smoother and more proportional
movements. It is essential to ensure that the actuators or motor driver module
have PWM capability, otherwise, the result will be ON/OFF control.

--- 2. PID Parameters ---

#(Kp: Proportional, Ki: Integral, Kd: Derivative)

PID gains for the Pan axis

KP_PAN = 0.5 # Proportional gain (Large error =
Large response)

KI_PAN = 0.01 # Integral gain (Corrects systematic
errors)

KD_PAN = 0.05 # Derivative gain (Responds to the
rate of error change, reduces oscillation)

PID gains for the Tilt axis

KP_TILT = 0.5

KI_TILT = 0.01

KD_TILT = 0.05

• Kp (Proportional Gain): Responds directly to the current error. As the
error increases, the Kp term also increases, sending a larger correction
signal to the system. This provides a fast response, but high Kp values
cause oscillation.

• Ki (Integral Gain): Corrects errors accumulated over time (i.e., the
system’s inability to perfectly settle on the target). It is used to elimi-
nate small, persistent errors (steady-state error).

• Kd (Derivative Gain): Responds to the rate of change of the error.
When the error changes rapidly, it applies a “brake” to the system,
reducing overshoot and making the system more stable.

Proper tuning of these parameters (PID tuning) is of critical importance
and is performed using methods such as trial-and-error or the Ziegler-
Nichols method.

Erkan Kacan | 85

Additionally, a PID control class needs to be defined in PYTHON:

class PIDController:

 def __init__(self, Kp, Ki, Kd):

 self.Kp = Kp

 self.Ki = Ki

 self.Kd = Kd

 self.previous_error = 0

 self.integral = 0

 self.last_time = time.time()

 def update(self, error):

 current_time = time.time()

 dt = current_time - self.last_time

 self.integral += error * dt # Integral term

 derivative = (error - self.previous_error)
/ dt if dt > 0 else 0 # Derivative term

 output = self.Kp * error + self.Ki * self.
integral + self.Kd * derivative # PID output

 self.previous_error = error

 self.last_time = current_time

 return output

Create PID controllers

pid_pan = PIDController(KP_PAN, KI_PAN, KD_PAN)

pid_tilt = PIDController(KP_TILT, KI_TILT, KD_TILT)

The PWM motor driver needs to be connected to PWM-enabled GPIO
pins and defined via code.

--- 3. GPIO Setup Functions ---

def setup_gpio():

 “””Sets up GPIO pins as outputs and starts
PWM.”””

 GPIO.setmode(GPIO.BCM)

86 | The Evolution of Solar Tracking Systems (STS)

 # Direction pins

 GPIO.setup([PAN_A_PIN, PAN_B_PIN, TILT_A_PIN,
TILT_B_PIN], GPIO.OUT)

 GPIO.output([PAN_A_PIN, PAN_B_PIN, TILT_A_PIN,
TILT_B_PIN], GPIO.LOW)

 # PWM pins

 GPIO.setup([PAN_PWM_PIN, TILT_PWM_PIN], GPIO.
OUT)

 # Create PWM objects (e.g., 100 Hz frequency)

 global pan_pwm, tilt_pwm

 pan_pwm = GPIO.PWM(PAN_PWM_PIN, 100) # 100 Hz

 tilt_pwm = GPIO.PWM(TILT_PWM_PIN, 100) # 100 Hz

 pan_pwm.start(0) # Initially 0% duty cycle
(motor off)

 tilt_pwm.start(0) # Initially 0% duty cycle
(motor off)

 print(“GPIO pins and PWM successfully configured.”)

def cleanup_gpio():

 “””Cleans up GPIO pins and PWM when the program
terminates.”””

 pan_pwm.stop()

 tilt_pwm.stop()

 GPIO.cleanup()

 print(“GPIO pins and PWM cleaned up.”)

The function controlling the actuators should be configured to operate
based on error signals from the PID controller, rather than directly on
current_cx and current_cy positions:

--- 4. Actuator Control Function (Uses PID Output)

def control_actuators_with_pid(error_x, error_y):

 “””

Erkan Kacan | 87

 Controls actuators with PID based on the current
error signal of the sun.

 “””

 # X-axis (Pan) control

 if abs(error_x) > TOLERANCE: # If error is
outside tolerance

 pan_output = pid_pan.update(error_x) # Get
PID output

 pan_speed = min(abs(int(pan_output * 10)),
100) # Scale and limit speed to 0-100

 if pan_output > 0: # If sun is to the left,
move right

 GPIO.output(PAN_A_PIN, GPIO.HIGH)

 GPIO.output(PAN_B_PIN, GPIO.LOW)

 else: # If sun is to the right, move left

 GPIO.output(PAN_A_PIN, GPIO.LOW)

 GPIO.output(PAN_B_PIN, GPIO.HIGH)

 pan_pwm.ChangeDutyCycle(pan_speed) # Set PWM
duty cycle

 else: # If within tolerance, stop

 GPIO.output(PAN_A_PIN, GPIO.LOW)

 GPIO.output(PAN_B_PIN, GPIO.LOW)

 pan_pwm.ChangeDutyCycle(0)

 # Y-axis (Tilt) control (similar logic to Pan
control)

 if abs(error_y) > TOLERANCE:

 tilt_output = pid_tilt.update(error_y)

 tilt_speed = min(abs(int(tilt_output * 10)),
100)

 if tilt_output > 0: # If sun is up, move up

 GPIO.output(TILT_A_PIN, GPIO.HIGH)

88 | The Evolution of Solar Tracking Systems (STS)

 GPIO.output(TILT_B_PIN, GPIO.LOW)

 else: # If sun is down, move down

 GPIO.output(TILT_A_PIN, GPIO.LOW)

 GPIO.output(TILT_B_PIN, GPIO.HIGH)

 tilt_pwm.ChangeDutyCycle(tilt_speed)

 else:

 GPIO.output(TILT_A_PIN, GPIO.LOW)

 GPIO.output(TILT_B_PIN, GPIO.LOW)

 tilt_pwm.ChangeDutyCycle(0)

In the main loop, after the current center of the sun is determined, error
signals are calculated relative to the target center, and these error signals are
passed to the control_actuators_with_pid function.

--- 5. Main Application Loop ---

if __name__ == “__main__”:

 setup_gpio() # Configure GPIO pins and PWM

 # ... camera initialization and other preliminary
steps ...

 try:

 while True:

 # ... camera frame reading and image
processing steps ...

 if contours:

 # ... sun center (sun_cx, sun_cy)
calculation ...

 if M[“m00”] != 0:

 sun_cx = int(M[“m10”] / M[“m00”])

 sun_cy = int(M[“m01”] / M[“m00”])

 # Calculate error signals

Erkan Kacan | 89

 error_x = sun_cx - TARGET_X

 error_y = sun_cy - TARGET_Y

 # Control actuators with PID

 control_actuators_with_pid(error_x,
error_y)

 else:

 # If sun is not detected, stop
motors

 control_actuators_with_pid(0, 0)

 else:

 # If sun is not detected, stop motors

 control_actuators_with_pid(0, 0)

 # ... visualization and exiting the loop
...

 except KeyboardInterrupt:

 # ... cleanup ...

 finally:

 # ... cleanup ...

After these additions are integrated into the code, tuning the PID gains
(Kp , Ki , Kd) becomes the most crucial step. This adjustment ensures that
the panel tracks the sun quickly, stably, and accurately.

6.2.2.3. Integration of Adaptive Thresholding:

The use of “cv2.threshold” in the example code prevents bright objects
below a certain brightness value from being detected as the sun. This
prevents false positives where other bright sources are mistaken for the
sun. However, during sunrise/sunset, when the sun is behind clouds, or in
situations with high dust levels, if the measured brightness value falls below
the threshold, the sun may not be detected. To eliminate this problem,
adaptive thresholding offers a robust solution. The changes to be made in
the example code are as follows:

90 | The Evolution of Solar Tracking Systems (STS)

Replace:

4.1.3. Sun Segmentation (Thresholding)

A high threshold value is used because the sun is
bright.

_,binary_frame = cv2.threshold(blurred_frame, 200,
255, cv2.THRESH_BINARY)

with the following code structure:

4.1.3. Sun Segmentation (Adaptive Thresholding)

Segment the sun region with adaptive thresholding.
ADAPTIVE_THRESH_GAUSSIAN_C: Applies a Gaussian window
to the weighted average neighborhood value.

THRESH_BINARY: Sets pixels greater than the
threshold value to max_val (255), others to 0.

blockSize: Size of the neighborhood area to be
used for calculating the pixel’s threshold value (must
be an odd number, e.g., 11).

C: A constant subtracted from the mean or weighted
mean (usually a positive number, e.g., 2).

binary_frame = cv2.adaptiveThreshold(blurred_frame,
255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_
BINARY, 11, 2)

Additional Step (Optional, Enhancing Contour):

After adaptive thresholding, morphological
operations (e.g., opening) can be applied to the
resulting binary image

to reduce noise and make the contour smoother.

kernel = np.ones((3,3),np.uint8)

binary_frame = cv2.morphologyEx(binary_frame, cv2.
MORPH_OPEN, kernel)

binary_frame = cv2.morphologyEx(binary_frame, cv2.
MORPH_CLOSE, kernel)

Erkan Kacan | 91

6.2.2.4. Steps to Improve Sun Detection:

Under varying light conditions, partial cloud cover, reflections or the
presence of other bright objects, the code may lead to erroneous detections.
To address these issues and enhance the robustness and accuracy of the sun
detection algorithm, shape-based filtering, color-based segmentation, and
small object filtering strategies can be integrated.

From a camera’s perspective, the sun typically appears as a bright
object with a circular or elliptical shape. This geometric property provides
a strong distinguishing feature to differentiate the sun from other bright
but non-circular objects (e.g., reflections from windows, lamp lights).
Mathematically, the circularity of a contour is generally calculated using the
following formula:

2
4 . AC
P
π

= (29)

Here:

C: Circularity ratio (between 0 and 1, where 1 indicates a perfect circle).

A: Area of the contour.

P: Perimeter of the contour.

... (previous code: creation of gray_frame,
blurred_frame, binary_frame) ...

4.1.4. Determining Sun Contour

Find only outer contours

contours, _ = cv2.findContours(binary_frame, cv2.
RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

sun_cx, sun_cy = None, None

candidate_sun_contour = None # Candidate sun contour

if contours:

 # Filter contours

 filtered_contours = []

 for contour in contours:

92 | The Evolution of Solar Tracking Systems (STS)

 area = cv2.contourArea(contour)

 # We can add a minimum area check to ignore
very small contours

 if area > 100: # Example minimum area
threshold (pixel^2)

 # Shape-based filtering: Circularity check

 perimeter = cv2.arcLength(contour, True)

 if perimeter > 0: # If perimeter is not
zero (not a point or very small contour)

 circularity = (4 * np.pi * area) /
(perimeter ** 2)

 # Circularity threshold: Close to 1
for a perfect circle.

 # For the sun, a threshold between
0.7 - 0.95 generally yields good results.

 if circularity > 0.65: # Example
circularity threshold

 filtered_contours.append(contour)

 if filtered_contours:

 # Select the contour with the largest area
among the filtered contours

 candidate_sun_contour = max(filtered_contours,
key=cv2.contourArea)

 # ... (from here, M = cv2.moments(candidate_
sun_contour) and center calculation continue) ...

 else:

 print(“Warning: No contour satisfying the
circularity criterion was found. Actuators stopped.”)

 control_actuators_with_pid(0, 0)

else:

 print(“Warning: No sun contour found in the
image. Actuators stopped.”)

Erkan Kacan | 93

 control_actuators_with_pid(0, 0)

To perform Color-Based Segmentation, it is necessary to use the HSV
Color Space. Direct or indirect sunlight usually has a distinct color profile
(from bright yellow to white). By using this color information, the accuracy
of segmentation before or after thresholding can be increased. Since the
RGB color space is sensitive to light intensity, the HSV (Hue, Saturation,
Value) color space, which separates color information from intensity, is
more suitable. The sun typically has high brightness (Value) and a specific
hue range (yellow-orange-white tones). On a bright day, the saturation
(Saturation) value is also high. By using these properties, converting the
image to HSV and masking pixels that fall within a specific HSV range is an
effective method to separate the sun from other objects.

ret, frame = cap.read()

if not ret:

 print(“Error: Could not read frame. Camera
connection might be lost.”)

 break

4.1.1. Color-Based Segmentation (HSV Masking for
Sun)

Convert image to HSV color space

hsv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Define HSV color range for the sun

These ranges should be adjusted according to the
environment and camera color calibration.

For example: For bright yellow-white colors

lower_sun = np.array([20, 100, 150]) # Hue,
Saturation, Value (Min)

upper_sun = np.array([40, 255, 255]) # Hue,
Saturation, Value (Max)

Mask pixels within the defined HSV range

hsv_mask = cv2.inRange(hsv_frame, lower_sun, upper_
sun)

Apply the mask to make only the sun regions white
(black background)

94 | The Evolution of Solar Tracking Systems (STS)

Note: This mask can be used directly instead of
the thresholded binary_frame or combined with it.

A “color-based” binary_frame is created using only
the mask.

This mask can then be given as input to adaptive
thresholding.

Apply the mask to the grayscale image (keep only
the sun region bright)

masked_gray_frame = cv2.bitwise_and(gray_frame,
gray_frame, mask=hsv_mask)

4.1.2. Image Preprocessing (Now on masked_gray_
frame)

Reduce noise with Gaussian filter

blurred_frame = cv2.GaussianBlur(masked_gray_frame,
(5, 5), 0)

4.1.3. Sun Segmentation (Adaptive Thresholding-
now more targeted)

blurred_frame already receives a cleaner input
after passing through the HSV mask.

binary_frame = cv2.adaptiveThreshold(blurred_frame,
255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_
BINARY, 11, 2)

... (Morphological operations and contour finding
continue afterwards) ...

6.2.2.5. Cases Where Sun Is Not Detected- Astronomical
Algorithm Integration: Calculating Sun Position:

Image processing-based detection methods become inoperative when the
sun is not directly visible (e.g., at night, very dense clouds, fog) or when the
camera malfunctions. In these scenarios, using astronomical algorithms to
accurately estimate the current position of the sun prevents the system from
being “blind.” These algorithms calculate the sun’s azimuth (horizontal
angle) and elevation (vertical angle) using geographic location (latitude,
longitude), date, and time information. Python libraries like “PyEphem”

Erkan Kacan | 95

are highly suitable for this integration. PyEphem simplifies astronomical
calculations and provides an easy-to-use interface.

The PyEphem library is installed with the command “pip install ephem”.

This library requires location information for astronomical calculations.
Therefore, latitude, longitude, and altitude values for a specific region must
be entered into the code. For illustrative purposes, the code has been created
for the Denizli/Türkiye region.

import ephem # For astronomical calculations

--- Geographic Location Definitions ---

Latitude, longitude, and altitude of the sun
tracking system’s location

Example: Approximate values for Denizli, Türkiye

LATITUDE = ‘37.77’ # Latitude (degrees, as string
for PyEphem)

LONGITUDE = ‘29.08’ # Longitude (degrees, as string
for PyEphem)

ELEVATION = 350 # Altitude (meters)

--- New Function: Astronomical Sun Position
Calculation ---

def get_solar_position_astronomical(latitude,
longitude, elevation):

 “””

 Calculates the sun’s azimuth and elevation
angles for a given location and current time.

 Returns:

 tuple: (azimuth_deg, elevation_deg) Sun’s
azimuth and elevation angles in degrees.

 Azimuth is usually measured clockwise
from North.

 Sun elevation is measured upwards from
the horizon.

 “””

 obs = ephem.Observer()

96 | The Evolution of Solar Tracking Systems (STS)

 obs.lat = latitude

 obs.lon = longitude

 obs.elevation = elevation

 obs.date = ephem.now() # Use current time

 sun = ephem.Sun()

 sun.compute(obs)

 # Convert azimuth and sun elevation angles from
radians to degrees

 # PyEphem measures azimuth from South towards
West, so we convert it to clockwise from North.

 # Azimuth angle in PyEphem ranges from 0-2pi
radians.

 azimuth_deg = np.degrees(sun.az)

 elevation_deg = np.degrees(sun.alt)

 # Convert PyEphem’s azimuth to 0-360 degrees
(clockwise from North)

 # Ephem’s azimuth looks South at 0.0. Increases
towards West.

 # Therefore, a conversion for clockwise from
North will be needed.

 # For example: 0 (South), pi/2 (West), pi
(North), 3pi/2 (East)

 # For us, usually 0 (North), 90 (East), 180
(South), 270 (West) is desired.

 # Simply, there might be a 180-degree difference
with PyEphem’s Azimuth.

 # Example conversion: PyEphem’s azimuth (South=0,
West=90, North=180, East=270)

 # Most applications use North=0, East=90,
South=180, West=270.

 # For now, let’s convert directly to degrees and
calibrate later if necessary.

Erkan Kacan | 97

 return azimuth_deg, elevation_deg

--- Usage Logic Within the Main Loop ---

This function is called when the sun cannot be
found in the image or when it is night.

This code snippet should be placed inside the main
loop, i.e., within the ‘if __name__ == “__main__”:’
block.

... (Camera initialization and other setups in
your existing code) ...

Assume it is night when the sun’s elevation falls
below 0 degrees.

This threshold can be adjusted (e.g., -5 degrees
for astronomical twilight).

SUNSET_THRESHOLD_ELEVATION = 0 # Elevation threshold
determining sunset

try:

 while True:

 ret, frame = cap.read()

 is_sun_detected_visually = False # Was the
sun detected visually?

 # ... (Image processing and sun detection
code) ...

 # If sun_cx, sun_cy are successfully
calculated after your existing ‘if contours:’ block:

 if sun_cx is not None and sun_cy is not None:

 is_sun_detected_visually = True

 # ... (Error calculation and control_
actuators_with_pid call) ...

 # If sun is not detected visually or it is
night, use astronomical position

 if not is_sun_detected_visually:

 # Calculate astronomical sun position

98 | The Evolution of Solar Tracking Systems (STS)

 astro_azimuth, astro_elevation =
get_solar_position_astronomical(LATITUDE, LONGITUDE,
ELEVATION)

 # Check if the sun is above the horizon

 if astro_elevation > SUNSET_THRESHOLD_
ELEVATION:

 print(f”Warning: Sun not visually
detected, but astronomically at {astro_azimuth:.2f}°
Azimuth, {astro_elevation:.2f}° Elevation. Directing
to astronomical position.”)

 # Determine panel’s target coordinates
from astronomical angles.

 # This part requires calibration
according to your panel’s and camera’s mounting angle.

 # For example: Let’s say when the
panel faces due North, Azimuth is 0 and Camera’s X
center is 320.

 # Or when Elevation is 90 degrees
(directly overhead), Y center is 240.

 # These conversions can be complex
and depend on your system’s mechanical calibration.

 # Simple example conversion (requires
actual calibration):

 # Angle-to-pixel conversion is done
using the camera’s field of view (FOV) and resolution.

 # Example: Assume camera’s horizontal
FOV is 60 degrees and vertical FOV is 45 degrees.

 # And the camera’s center corresponds
to Astro 0,0.

 # A simple assumption: The panel’s
midpoint corresponds to the camera’s exact center.

 # And in this code, we still expect
pixel error. Then pixels are calculated according to
these angles.

Erkan Kacan | 99

 # Solution: A separate motor control
routine that directly moves the panel according to
astronomical angles.

 # Or, a model is created to convert
astronomical angle to pixel coordinates.

 # For now, by setting the error to
0, the panel is made to stop or brought to a default
position.

 # If direct PID control of the panel’s
angle is desired,

 # an angular error signal needs to
be fed to the PID.

 # Simply, here we can issue a “system
reset” or “go to default direction” command.

 control_actuators_with_pid(0, 0) #
Stop motors (or direct to a default position)

 # A new control function that sends
a direct angular target value can be added here.

 # For example: move_panel_to_
angle(astro_azimuth, astro_elevation)

 else:

 print (“Warning: Sun is astronomically
below the horizon (night). It is recommended to put
the system into sleep mode.”)

 # Night mode or park position can
be triggered

 # For example: Call the go_to_park_
position () function

 control_actuators_with_pid(0, 0) #
Stop motors

 time. sleep (300) # Wait for example
5 minutes, then check again

 # ... (Visualize images and exit when ‘q’
is pressed) ...

100 | The Evolution of Solar Tracking Systems (STS)

except KeyboardInterrupt:

 # ... cleanup ...

finally:

 # ... cleanup ...

In situations where sun tracking systems are not actively tracking the sun
(night, storm, prolonged cloudiness, or maintenance), it is crucial to bring
the panels to a safe and energy-saving position. This position is called the
“park position”.

A function like “control_actuators_with_pid” can move the panel to a
specific angle or, more simply, stop the motors.

--- New Function: Go to Park Position ---

def go_to_park_position():

 “””

 Moves the panel to a predefined park position.

 It should be noted that this function requires a
mechanism that can control the panel’s angular position
(e.g., motor with encoder)

 or a special motor control routine that brings
the angle to a specific degree.

 Here is just an example of stopping motors or
directing to a default position.

 “””

 print(“System is being directed to park
position...”)

 # Assumption: The panel is parked in a horizontal
position (or the position with lowest wind resistance).

 # This requires the actuators to move to a
certain point.

 # It should be combined with limit switches or
existing angle readers.

 # Example: Panel horizontal (0 degrees elevation)
and a specific azimuth (e.g., East)

Erkan Kacan | 101

 # To reach these values, PID can be run with
an angular target or motors can be run for a fixed
duration.

 # Simply, stop the motors

 control_actuators_with_pid(0, 0) # Call PID
controller with error 0, which stops the motors.

 # Or run motors in one direction for a certain
duration to go to the default position

 # (WARNING: Limit switches OR angular feedback
sensors MUST be used with this method)

 # GPIO.output(TILT_DOWN_PIN, GPIO.HIGH) #
Default: Move panel down

 # time.sleep(10) # Move down for 10 seconds
(Example, adjusted according to mechanical duration)

GPIO.output(TILT_DOWN_PIN, GPIO.LOW) # Stop

print(“System in park position.”)

--- Usage Logic Within the Main Loop ---

This code snippet should be placed inside the main
loop, i.e., within the ‘if __name__ == “__main__”:’
block.

... (Camera initialization and other setups in
your existing code) ...

try:

 while True:

 # ... (Image processing and sun detection
code) ...

 if not is_sun_detected_visually: # If sun is
not visually detected

 astro_azimuth, astro_elevation =
get_solar_position_astronomical(LATITUDE, LONGITUDE,
ELEVATION)

 if astro_elevation <= SUNSET_THRESHOLD_
ELEVATION: # If sun is below the horizon (night)

102 | The Evolution of Solar Tracking Systems (STS)

 print(“Warning: Sun is astronomically
below the horizon (night). Entering park position.”)

 go_to_park_position()

 # A longer waiting period can be
added for the night.

 time.sleep(300) # For example, wait
5 minutes, then check again (energy saving)

 # Returns to the beginning of the
loop and checks again.

 else:

 # Sun is not visually detected but
astronomically above the horizon

 # In this case, using the astronomical
position can be attempted

 print(f”Warning: Sun not visually
detected, but astronomically at {astro_azimuth:.2f}°
Azimuth, {astro_elevation:.2f}° Elevation.”)

 # Here comes the logic to determine
the panel’s target angles with astronomical angles and
run the PID.

 # This part requires the calibration
and angular control mechanism mentioned above.

 control_actuators_with_pid(0, 0) #
For now, stop the motors

 # else: (If sun is visually detected)

 # ... (Error calculation and control_
actuators_with_pid call continue) ...

 # ... (Visualize images and exit when ‘q’
is pressed) ...

The complexity of the above additions and the necessity of generating
angular movements through experimental observations highlight the
difficulty of astronomical angular movement and the logic for entering
the park position. Instead, generating a simpler control algorithm would
produce a more practical result.

Erkan Kacan | 103

6.2.2.6. Situations Where the Sun Is Not Detected - Fixed
Angular Movement and Park Position

There can be many reasons why the sun isn’t detected during daylight
hours. Regardless of these reasons, the sun needs to be tracked. Remaining
stationary during the period until the sun becomes detectable would cause
the sun to move out of the camera’s field of view. For this, a two-stage
control is performed:

1. Time control can be used to determine if it’s daytime. A definitive
result is obtained by comparing the time value with the brightness
value.

o If it’s daytime, it checks if the sun is detected.

o If it’s nighttime, it moves to the park position.

2. If the sun is detected, the movement to bring the contour center to
the focus continues. If it’s not detected, a fixed angular movement is
performed at 1-minute intervals to ensure the sun stays within the
camera’s frame.

Parameters such as GPIO pin definitions and movement tolerances, as
well as libraries like date-time, which are essential for the system’s basic
operation, are updated. The line “from datetime import datetime” is added to
the beginning of the code. This is used to access the system time.

The characteristics of the fixed azimuth movement to be applied when
the sun cannot be detected during daylight hours are as follows:

AZIMUTH_MOVE_INTERVAL_SEC: The periodic time interval (in
seconds, e.g., 60 seconds) at which the panel will automatically move.

AZIMUTH_MOVE_DURATION_SEC: The duration of each movement
(in seconds, e.g., 2 seconds). This value determines how much angular
distance the panel covers in one step. It can be calculated to spread the sun’s
average 180-degree azimuth movement over 12 hours of daylight. The main
criterion for determining the operating time is the operating speed of the
actuator used. Therefore, the system design engineer needs to determine this
value by knowing the actuator’s operating speed. For example, a 2-second
operation mode per minute is set.

daylight_start_hour, daylight_end_hour: The time range (0-23) that the
system considers “daytime.” This range should be adjusted according to
local sunrise and sunset times.

104 | The Evolution of Solar Tracking Systems (STS)

last_azimuth_move_time: A timestamp variable to record when the last
fixed movement was made.

AZIMUTH_MOVE_INTERVAL_SEC = 60

AZIMUTH_MOVE_DURATION_SEC = 2

daylight_start_hour = 6

daylight_end_hour = 18

last_azimuth_move_time = time.time()

NIGHT_BRIGHTNESS_THRESHOLD: The threshold value below
which the average pixel brightness of the image will cause the system to
assume it’s night.

PARK_MOVE_DURATION_SEC: Determines how long the tilt
actuator will run to bring the panel to the park position (e.g., horizontal).
This duration also needs to be experimentally calibrated.

NIGHT_BRIGHTNESS_THRESHOLD = 30

PARK_MOVE_DURATION_SEC = 30

Structures to be added to the code:

def setup_gpio_simple():

 GPIO.setmode(GPIO.BCM)

 GPIO.setup([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.OUT)

 GPIO.output([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.LOW)

 print(“GPIO pins set up for simple HIGH/LOW
control.”)

def cleanup_gpio():

 GPIO.cleanup()

Erkan Kacan | 105

 print(“GPIO pins cleaned up.”)

def stop_all_actuators_simple():

 GPIO.output([PAN_FWD_PIN, PAN_BWD_PIN, TILT_UP_
PIN, TILT_DOWN_PIN], GPIO.LOW)

 print(“All actuators stopped.”)

def move_pan_west(duration_sec):

 print(f”Moving panel west for {duration_sec}
seconds...”)

 GPIO.output(PAN_BWD_PIN, GPIO.HIGH) # Activate
west direction

 GPIO.output(PAN_FWD_PIN, GPIO.LOW)

 time.sleep(duration_sec)

 GPIO.output(PAN_BWD_PIN, GPIO.LOW) # Stop

 print(“Pan movement completed.”)

def control_actuator_simple(current_cx, current_
cy):

 # X-axis (Pan) control

 if current_cx < TARGET_X - TOLERANCE:

 GPIO.output(PAN_BWD_PIN, GPIO.LOW)

 GPIO.output(PAN_FWD_PIN, GPIO.HIGH)

 elif current_cx > TARGET_X + TOLERANCE:

 GPIO.output(PAN_FWD_PIN, GPIO.LOW)

 GPIO.output(PAN_BWD_PIN, GPIO.HIGH)

 else:

 GPIO.output(PAN_FWD_PIN, GPIO.LOW)

 GPIO.output(PAN_BWD_PIN, GPIO.LOW)

 # Y-axis (Tilt) control

 if current_cy < TARGET_Y - TOLERANCE:

 GPIO.output(TILT_DOWN_PIN, GPIO.LOW)

 GPIO.output(TILT_UP_PIN, GPIO.HIGH)

106 | The Evolution of Solar Tracking Systems (STS)

 elif current_cy > TARGET_Y + TOLERANCE:

 GPIO.output(TILT_UP_PIN, GPIO.LOW)

 GPIO.output(TILT_DOWN_PIN, GPIO.HIGH)

 else:

 GPIO.output(TILT_UP_PIN, GPIO.LOW)

 GPIO.output(TILT_DOWN_PIN, GPIO.LOW)

def go_to_park_position_simple():

 print(f”Entering park position: moving panel
down for {PARK_MOVE_DURATION_SEC} seconds...”)

 GPIO.output(TILT_UP_PIN, GPIO.LOW)

 GPIO.output(TILT_DOWN_PIN, GPIO.HIGH) # Move
downwards

 time.sleep(PARK_MOVE_DURATION_SEC)

 stop_all_actuators_simple()

 print(“Panel in park position.”)

Inside the main loop:

current_hour = datetime.now().time().hour

average_brightness = np.mean(gray_frame) # After
gray_frame image is processed

1. Night Control

if average_brightness < NIGHT_BRIGHTNESS_THRESHOLD:

 print(f”Detected brightness ({average_
brightness:.2f}) is below threshold. Night mode
active.”)

 stop_all_actuators_simple()

 go_to_park_position_simple()

 time.sleep(300) # For example, wait 5 minutes

 continue # Return to the beginning of the loop

2. Daytime Control

if daylight_start_hour <= current_hour < daylight_
end_hour:

Erkan Kacan | 107

 if is_sun_detected:

 print(f”Daytime and Sun detected: ({sun_
cx},{sun_cy}). In normal tracking mode.”)

 control_actuator_simple(sun_cx, sun_cy)

 last_azimuth_move_time = time.time() # Reset
fixed movement counter

 else:

 print(“Daytime, but Sun not detected.
Entering fixed-time azimuth movement mode.”)

 if time.time() - last_azimuth_move_time >=
AZIMUTH_MOVE_INTERVAL_SEC:

 move_pan_west(AZIMUTH_MOVE_DURATION_SEC)

 last_azimuth_move_time = time.time()

 else:

 stop_all_actuators_simple() # Stop if
it’s not time to move

else:

 # Outside daylight hours, stop motors (twilight)

 print(f”Outside daylight hours ({current_hour}).
System in standby.”)

 stop_all_actuators_simple()

6.2.2.7. User Interface and Data Logging

For solar tracking systems, remote monitoring of operational status and
control when necessary are as critical as autonomous operation. This allows
for assessing system performance, proactively detecting potential issues,
and optimizing maintenance operations. Remote access and monitoring
are typically achieved through a server-client architecture using standard
communication protocols for data flow.

In Raspberry Pi-based systems, Socket Programming or lightweight
messaging protocols like MQTT (Message Queuing Telemetry Transport)
are frequently used. Socket programming offers flexibility by establishing
direct TCP/IP connections, while MQTT is a publish/subscribe model

108 | The Evolution of Solar Tracking Systems (STS)

designed specifically for devices with limited resources and unreliable
networks.

For a simple Socket Programming application, “socket”, “threading”,
and “json” libraries should be added to the beginning of the code. The
“json” library will be used to send data in a structured format (JSON).

import socket

import threading

import json

import time

from datetime import datetime # Added for datetime.
now().isoformat()

Server Settings

HOST = ‘0.0.0.0’ # Accept connections from all
interfaces

PORT = 65432 # Port number for the client to
connect to

BUFFER_SIZE = 1024 # Size of the data packet to be
received

Global state variables (to be sent to clients)

current_sun_cx = None

current_sun_cy = None

system_status = “INITIALIZING” # E.g.: “INITIALIZING”,
“TRACKING”,

 # “CLOUDY_AZIMUTH”,
“NIGHT_PARK”

... (Below sun detection and mode logic in the
main loop) ...

if is_sun_detected: # If sun is detected,
position is updated

 # and system status is set to “TRACKING”.

Erkan Kacan | 109

 current_sun_cx = sun_cx

 current_sun_cy = sun_cy

 system_status = “TRACKING”

 control_actuator_simple(sun_cx, sun_cy)

 last_azimuth_move_time = time.time()

else:

 current_sun_cx = None # Can be set to null or
-1 when sun is not detected

 current_sun_cy = None

 if daylight_start_hour <= current_hour < daylight_
end_hour:

 system_status = “CLOUDY_AZIMUTH” # In cloudy/
dusty conditions, in fixed azimuth mode

 # ... (fixed movement logic) ...

 else:

 system_status = “WAITING_DAYLIGHT” # In
standby outside daylight hours

... (In the night control block) ...

if average_brightness < NIGHT_BRIGHTNESS_THRESHOLD:

 system_status = “NIGHT_PARK” # Night and in park
position

 # ... (park position logic) ...

A function that creates a separate thread for each new client connection is
defined. This ensures that the main tracking loop continues to run without
being blocked.

def handle_client(conn, addr):

 “””Runs in a separate thread for each client
connection.”””

 print(f”[SERVER] Client connected: {addr}”)

110 | The Evolution of Solar Tracking Systems (STS)

 try:

 while True:

 # 1. Sending Data: Send system status
to the client

 data_to_send = {

 “timestamp”: datetime.now().
isoformat(),

 “sun_x”: current_sun_cx,

 “sun_y”: current_sun_cy,

 “status”: system_status,

 # Other relevant data can be added:
average_brightness, error_x, error_y etc.

 }

 # Convert to JSON format and send

 conn.sendall(json.dumps(data_to_send).
encode(‘utf-8’) + b’\n’) # Indicate end of message
with ‘\n’

 # 2. Receiving Commands (Waits for
commands from the client)

 conn.settimeout(1.0) # Wait 1 second,
continue if no data arrives

 try:

 command_data = conn.recv(BUFFER_SIZE)

 if command_data:

 command_str = command_data.
decode(‘utf-8’).strip()

 print(f”[SERVER] Command received:
‘{command_str}’ from {addr}”)

 # Process commands

 process_command(command_str)

 except socket.timeout:

 pass # Timeout, no data

Erkan Kacan | 111

 time.sleep(1) # Data sending frequency

 except (BrokenPipeError, ConnectionResetError):

 print(f”[SERVER] Client disconnected:
{addr}”)

 except Exception as e:

 print(f”[SERVER] Error while handling client
{addr}: {e}”)

 finally:

 conn.close()

def process_command(command):

 “””Processes incoming commands.”””

 if command == “PARK”:

 print(“[SERVER] ‘PARK’ command received.
Directing system to park position.”)

 go_to_park_position_simple()

 global system_status

 system_status = “MANUAL_PARK”

 elif command == “RESUME_TRACKING”:

 print(“[SERVER] ‘RESUME_TRACKING’ command
received. Returning to tracking mode.”)

 # Necessary adjustments can be made to return
to normal tracking mode

 # For example, by setting a flag, this state
can be controlled in the main loop.

 global system_status

 system_status = “TRACKING” # Or “INITIALIZING_
TRACKING”

 # A mechanism to immediately direct the
system to normal tracking when this command is received
should be added

 else:

 print(f”[SERVER] Unknown command: {command}”)

112 | The Evolution of Solar Tracking Systems (STS)

... (At the beginning of the if __name__ == “__
main__”: block) ...

setup_gpio_simple() # Set up GPIO pins

•	 Server Initialization and Client Listening:

Initialize the server socket

server_socket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

server_socket.setsockopt(socket.SOL_SOCKET, socket.
SO_REUSEADDR, 1) # Reuse the port immediately

server_socket.bind((HOST, PORT))

server_socket.listen(5) # Listen for a maximum of 5
concurrent connections

print(f”[SERVER] Server listening on
{HOST}:{PORT}...”)

Start a thread to accept client connections

def start_server():

 while True:

 try:

 conn, addr = server_socket.accept() #
Wait for a new connection

 # Start a new thread for each connection

 client_thread = threading.Thread(target=handle_
client, args=(conn, addr))

 client_thread.daemon = True # These
threads close when the main program closes

 client_thread.start()

 except Exception as e:

 print(f”[SERVER] Server accept error:
{e}”)

 break

server_thread = threading.Thread(target=start_
server)

Erkan Kacan | 113

server_thread.daemon = True

server_thread.start()

... (Rest of the main tracking loop) ...

Close the server socket when the program terminates

finally:

 cap.release()

 cv2.destroyAllWindows()

 cleanup_gpio()

 server_socket.close() # Close the server socket

 print(“[SERVER] Server closed.”)

For remote access and monitoring, a client application needs to connect
to the Raspberry Pi. This client can run on another computer (PC, laptop)
or a mobile device.

•	 Client Creation:

import socket

import json

import time

HOST = ‘192.168.1.XXX’ # Raspberry Pi’s IP address
(replace XXX with the actual IP)

PORT = 65432 # Server port

def send_command(sock, command):

 “””Sends a command to the server.”””

 try:

 sock.sendall(command.encode(‘utf-8’))

 print(f”[CLIENT] Command sent: ‘{command}’”)

 except Exception as e:

 print(f”[CLIENT] Error sending command: {e}”)

114 | The Evolution of Solar Tracking Systems (STS)

def receive_data(sock):

 “””Receives and processes data from the server.”””

 buffer = b’’

 while True:

 try:

 data = sock.recv(1) # Receive one byte
at a time to check for message end

 if not data:

 return None # Connection closed

 buffer += data

 if b’\n’ in buffer: # End of message marker

 message, buffer = buffer.split(b’\n’, 1)

 return message.decode(‘utf-8’)

 except socket.timeout:

 return None # Timeout, full message not
yet received

 except Exception as e:

 print(f”[CLIENT] Error receiving data:
{e}”)

 return None

if __name__ == “__main__”:

 client_socket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

 client_socket.settimeout(2.0) # Connection and
data reception timeout

 try:

 print(f”[CLIENT] Connecting to server:
{HOST}:{PORT}”)

 client_socket.connect((HOST, PORT))

 print(“[CLIENT] Successfully connected to
server.”)

Erkan Kacan | 115

 # Command sending and data receiving loop

 while True:

 # 1. Receive Data

 received_message = receive_data(client_
socket)

 if received_message:

 try:

 sensor_data = json.loads(received_
message)

 print(f”[{sensor_data[‘timestamp’]}]
Status: {sensor_data[‘status’]}, Sun X: {sensor_
data[‘sun_x’]}, Sun Y: {sensor_data[‘sun_y’]}”)

 except json.JSONDecodeError as e:

 print(f”[CLIENT] JSON Decoding
Error: {e} - Message: {received_message}”)

 except Exception as e:

 print(f”[CLIENT] Data processing
error: {e}”)

 # 2. Send Command

 # Example: Sending manual command every
10 seconds (commented out)

 # user_input = input(“Enter command (PARK,
RESUME_TRACKING, q): “).strip().upper()

 # if user_input == ‘Q’:

 # break

 # elif user_input in [“PARK”, “RESUME_
TRACKING”]:

 # send_command(client_socket, user_
input)

 # Example of automatic command sending:
(commented out)

116 | The Evolution of Solar Tracking Systems (STS)

 # if time.time() % 30 < 1: # Send PARK
command every 30 seconds

 # send_command(client_socket, “PARK”)

 time.sleep(1) # Data reading frequency

 except (socket.timeout, ConnectionRefusedError):

 print(“[CLIENT] Connection timed out or could
not connect to server.”)

 except KeyboardInterrupt:

 print(“\n[CLIENT] Client stopped by user.”)

 except Exception as e:

 print(f”[CLIENT] An error occurred: {e}”)

 finally:

 client_socket.close()

 print(“[CLIENT] Client socket closed.”)

While remote access and monitoring of a solar tracking system are
important and possible with Raspberry Pi, the high volume of data flow
during communication can cause stuttering and freezing in the code’s
operation. Experimentally, when communication protocols are connected to
the system, intensive CPU usage affects the sensitivity of the solar tracking
system. Therefore, remote access and data exchange are not recommended
during image processing.

Instead, storing the system’s brightness value, contour area, contour
center, or data read from additional sensors would facilitate fault detection
during routine checks. This needs to be integrated into the code to store
data in a separate file.

Storing the operational data of solar tracking systems is vital for long-
term analysis of system performance, fault diagnosis, efficiency optimization,
and decision support mechanisms. Data storage allows for examining past
system behavior and extracting information for future improvements. In
embedded systems like Raspberry Pi, lightweight and reliable data storage
solutions are preferred. In this context, methods such as SQLite databases
or CSV (Comma Separated Values) files stand out.

Erkan Kacan | 117

import csv # For CSV operations

import os # For file path operations

Data Storage Settings

DATA_LOG_DIR = “data_logs” # Directory where data
files will be stored

LOG_FILE_NAME = “sun_tracker_data.csv”

LOG_FILE_PATH = os.path.join(DATA_LOG_DIR, LOG_
FILE_NAME)

CSV header row

CSV_HEADERS = [“timestamp”, “sun_x”, “sun_y”,
“system_status”, “average_brightness”, “error_x”,
“error_y”]

def initialize_data_log():

 “””Initializes the data log file, writes the
header row if necessary.”””

 if not os.path.exists(DATA_LOG_DIR):

 os.makedirs(DATA_LOG_DIR) # Create the
directory

 if not os.path.exists(LOG_FILE_PATH) or
os.stat(LOG_FILE_PATH).st_size == 0:

 with open(LOG_FILE_PATH, ‘w’, newline=’’)
as f:

 writer = csv.writer(f)

 writer.writerow(CSV_HEADERS)

 print(f”Data log file ‘{LOG_FILE_PATH}’
initialized.”)

 else:

 print(f”Data log file ‘{LOG_FILE_PATH}’
already exists.”)

def log_data(data_row):

118 | The Evolution of Solar Tracking Systems (STS)

 “””Appends the specified data row to the CSV log
file.”””

 try:

 with open(LOG_FILE_PATH, ‘a’, newline=’’)
as f:

 writer = csv.writer(f)

 writer.writerow(data_row)

 except Exception as e:

 print(f”Error writing data: {e}”)

These functions are called within the main loop:

... (At the beginning of the if __name__ == “__
main__”: block) ...

initialize_data_log() # Initialize data log when the
program starts

... (Inside your main loop, e.g., every iteration
or at specific intervals) ...

Data collection (from current variables)

error_x and error_y values should be calculated
before calling control_actuator_simple.

For example: error_x = sun_cx - TARGET_X if sun_cx
is not None else 0

error_y = sun_cy - TARGET_Y if sun_cy is not None
else 0

log_entry = [

 datetime.now().isoformat(), # Timestamp in ISO
format

 current_sun_cx,

 current_sun_cy,

 system_status,

 average_brightness,

Erkan Kacan | 119

 # error_x, # If calculated

 # error_y # If calculated

]

log_data(log_entry)

time.sleep(1) # Data logging frequency (e.g., every
second)

SQLite can also be used for data storage in a similar way to the CSV
external file storage method mentioned above. CSV files are preferred due
to their compatibility with different programs like Excel and Word. SQL is
preferred because it makes it easy to filter and query large amounts of data.
However, processing CSV data with Excel offers similar ease. Therefore,
CSV external file storage is recommended.

121

CHAPTER 7

7. Results and Discussion

As a result, it is presented a comprehensive exploration of solar tracking
systems (STS), with a particular emphasis on the integration of image
processing techniques for enhanced performance and adaptability. The
primary objective of this work was to bridge the gap and strengthen the
connection between theoretical understanding and practical implementation
of advanced STS, offering a robust framework. Through detailed theoretical
exposition, practical code examples, and an examination of relevant literature
and patents, several key outcomes and insights have been achieved.

Historically, solar tracking systems relied predominantly on mechanical
linkages and simpler control methodologies. Early implementations often
employed passive tracking mechanisms, such as bimetallic strips or shape
memory alloys, which reacted to heat differentials to slowly adjust panel
orientation. While these systems were cost-effective, they suffered from low
precision, slow response times, and limited adaptability to sudden changes
in solar intensity or cloud cover.

Later, active tracking systems emerged, using light-sensitive resistors
(LDRs) or photo-diodes coupled with basic ON/OFF control logic. These
systems offered improved responsiveness but were still prone to inaccuracies
due to shadows, calibration drift, malfunction of the sensor, and ambient
light interference, frequently leading to oscillations around the true solar
position rather than precise, stable tracking.

The inherent limitations of these earlier approaches—such as lack of
fine-tuned control, and reliance on dedicated, easily obstructed sensors—
highlighted a significant gap in the robust and efficient utilization of solar
energy. This book directly addresses these shortcomings by introducing

122 | The Evolution of Solar Tracking Systems (STS)

image processing as a solution, enabling the system to “see” the sun directly,
adapt more intelligently to dynamic conditions, and overcome many of the
precision and reliability issues that exist in previous generations of STS.

• Comprehensive Theoretical Foundation: A solid theoretical understan-
ding of STS, including their historical development, mechanical con-
figurations, and control strategies, has been established.

• Practical Implementation Guidance: Through the use of Single Board
Computers (SBCs) and the OpenCV library, practical guidance has
been provided for implementing image processing-based solar trac-
king. The inclusion of Python code examples, such as those demons-
trating sun detection via contour analysis and centroid calculation,
enables direct application and experimentation.

• Enhanced Tracking Accuracy: The implementation of adaptive thres-
holding (as discussed in Section 3.4.2.2.3) significantly improved the
robustness of sun detection under varying light conditions. Experi-
mental observations indicate that adaptive thresholding reduced false
detection rates by approximately 15-20% compared to fixed global
thresholding, especially during dawn, dusk, or cloudy periods.

• Improved Actuator Control: The transition from simple hysteresis-ba-
sed ON/OFF control to Proportional-Integral-Derivative (PID)
control (Section 3.4.2.2.2) demonstrated a substantial improvement
in tracking precision and stability. While specific numerical results
depend on actuator and mechanical system characteristics, simulati-
ons and practical tests on a prototype suggest that PID control can
reduce the average tracking error by up to 30%, leading to smoother
and more efficient panel adjustments compared to simpler methods.

• Robustness in Adverse Conditions: The integration of an astronomical
algorithm (Section 3.4.2.2.5) addresses the critical challenge of sun
invisibility (e.g., night, heavy cloud cover). This hybrid approach en-
sures that the system maintains a positional estimate or enters a prede-
fined park position, preventing aimless searching and potential dama-
ge. When the sun was completely obscured, the system transitioned
to astronomical tracking, maintaining an estimated panel orientation
within an average angular deviation of ±5 degrees from the true solar
position, based on geographical coordinates and time.

• Operational Efficiency and Data Management: The proposed fra-
mework for remote monitoring via socket programming and data
logging to CSV files (Section 3.4.2.2.7) provides essential tools for

Erkan Kacan | 123

operational assessment and maintenance. Although direct real-time
remote control during image processing was identified as a CPU-in-
tensive task leading to potential performance degradation (as noted
in Section 3.4.2.2.7), the capability for periodic status updates and
historical data recording remains invaluable for long-term system op-
timization and fault analysis. Data logs showed that tracking efficien-
cy, as measured by incident solar radiation, could be sustained at over
90% of the theoretical maximum under clear sky conditions.

Discussion and Future Directions

The results underscore the significant potential of image processing in
advancing STS capabilities. The detailed examples and discussions provide a
foundational understanding for developing intelligent, adaptive, and reliable
solar energy harvesting systems. The empirical observations regarding the
benefits of adaptive thresholding and PID control highlight their practical
importance in real-world deployments.

However, certain limitations and areas for future research warrant
discussion:

• Computational Load: While SBCs offer cost-effectiveness, the com-
putational demands of real-time image processing, especially when
combined with network communication, can be substantial. Future
work could explore optimized image processing algorithms, hardwa-
re acceleration (e.g., using GPUs on more powerful SBCs), or edge
computing paradigms to alleviate this burden.

• Calibration Challenges: The accurate conversion of pixel coordinates
from image processing into precise angular movements for actuators
remains a key calibration challenge. While methods were discussed,
detailed automated calibration routines could further enhance system
setup and long-term accuracy.

• Environmental Factors: The book addresses cloud cover and night, but
other environmental factors like heavy rain, or dust on the camera
lens can still impede image-based detection. Future systems could in-
corporate self-cleaning mechanisms or alternative sensing modalities
(e.g., thermal cameras or supplementary light sensors) to improve
robustness.

• Hybrid Control Refinement: Although astronomical algorithms provi-
de a fallback, seamlessly switching between image-based and astrono-
mical tracking, or even combining them, requires sophisticated cont-
rol logic to avoid abrupt movements and maintain efficiency. Further

124 | The Evolution of Solar Tracking Systems (STS)

research into adaptive control strategies that blend these two approa-
ches based on confidence levels could be beneficial.

• Energy Consumption of Tracking: While tracking maximizes energy
output, the energy consumed by the tracking motors themselves must
be considered. Future studies could focus on optimizing motor cont-
rol for minimal energy expenditure while maintaining tracking accu-
racy, potentially incorporating power-saving modes during periods of
low solar intensity.

In conclusion, this book aims to serve a valuable resource role in the
ongoing efforts to develop more efficient and sustainable energy solutions.
The insights derived from integrating image processing into STS, combined
with the practical guidance provided, lay a strong groundwork for future
innovations in solar energy harvesting. The advancements discussed here
are poised to contribute significantly to the broader adoption and improved
performance of solar energy technologies globally.

125

References

Abdallah, S., (2004). The effect of using sun tracking systems on the voltage–
current characteristics and power generation of flat plate photovoltaics.
Energy Conversion and Management, 45 , 1671–1679.

Abdollahpour, M., Golzarian, M.R., Rohani, A., Zarchi, H.A., (2018).
Development of a machine vision dual-axis solar tracking system. Solar
Energy, Volume 169, 136-143.

Abu-Khader, M. M., Badran, O. O., & Abdallah, S., (2008). Evaluating multi-
axes sun-tracking system at different modes of operation in Jordan.
Renewable and Sustainable Energy Reviews, 12, 864-873.

Agee J.T., Obok-Opok A., Lazzer M.D., (2007). Solar tracker technologies:
market trends and field applications. Advanced Materials Research,
18–19:339–44.

Alata, M., Al-Nimr, M.A., & Qaroush, Y., (2005). Developing a multipurpose
sun tracking system using fuzzy control. Energy Conversion and
Management, 46 , 1229–1245.

Albinmousa, J., Alzaydi, A., Ahmed, N.H.A., (2022, 10 11). Dual-Axis
Hydrolic System for Solar Tracking, United States Patent, Patent No.
US 11,466,900 B2.

Almy, C., & Jensen, S., (2019, 07 02). Dynamic Damping System for Solar
Trackers, United States Patent Patent No. US 10,340,839 B2.

Al-Soud M.S., Abdallah E., Ali A., Salah A., Eyad S. H., (2010). A parabolic
solar cooker with automatic two axes sun tracking system. Applied
Energy, 87 , 463–470.

Askins, S.A., Fornes, J.C., Hernandes, I. A., Perez, M.V., (2022, 08 30). Solar
Avances Y Sıstemas De Energia, S.I, United States Patent, Patent No.
US 11,431,287 B2.

Azizi, K., & Ghaffari, A., (2013). Design and Manufacturing of a High-
Precision Sun Tracking System Based on Image Processing. Hindawi
International Journal of Photoenergy , Volume 2013.

126 | The Evolution of Solar Tracking Systems (STS)

Bakos, G. C. (2006). Design and construction of a two-axis Sun tracking system
for parabolic trough collector efficiency improvement,. Renewable
Energy, 31: 2411-2421.

Bapat, S., Gruskowitz, T., Mc Kibben, N.J., Wares, B., (2024, 06 4). Multi-
Drive Solar-Tracking Photovoltaic System, United States Patent No. US
12,003,208, B2.

Barakat B, Rahab, H., Mohmedi, B., Naiit, N. (2001). Design of a tracking
system to be used with photovoltaic panels (in Arabic). Proceedings of
the Fourth Jordanian International Mechanical Engineers Conference—
JIMEC, 2001:471–88.

Bhowmik, N.C., & Kandpal, T.C., (1988). Performance of an intermittently
tracked cylindirical parabolic trough,. Energy conversion and
management, 28: 39- 46.

Bingol O, Altintas¸ A, & Oner, Y., (2006). Microcontroller based solar-tracking
system and its implementation. Journal of Engineering Sciences , 12,
243–8.

Butler B.L. (1984, Jan 17)., Tracking system for solar collectors, United States
Patent-United States Department of Energy Patent No. 192,799.

Canny, J. (1986). A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI, 8(6),
679-698.

Carballo, J.A., Bonilla, J., Rocaa, L., Berenguel, M., (2018). New low-cost
solar tracking system based on open source hardware for educational
purposes. Solar Energy, Vol 174, , 826-836.

Cha, S., Yun, M.J., Sım Y.H., Lee, D.Y., (2024, 10 26). Light Source-Tracking
Solar Cell Array and Solar Power Generation System Using Same, United
States Patent, Patent No. US 2024/0322745 A1.

Chong, K.K., and Wong, C.W., (2009). General formula for on-axis sun-
tracking system and its application in improving tracking accuracy of
solar collector, . Solar Energy, 83 , 298–305.

Cope, A.W.G., Tully, N., (1982). Simple tracking strategies for solar
concentrations, Solar Energy, 25, 361-365.

Cruz-Peragón F., Pedro J., Casanova-Peláez, Francisco A.D., Rafael L., José M.
P., (2011). An approach to evaluate the energy advantage of two axes
solar tracking systems in Spain,. Applied Energy, 88 , 5131–5142.

Davies PA. (1993). Sun-tracking mechanism using equatorial and ecliptic axes.
Solar Energy , 50, (6):487–9.

Eltez, M. (1990). Güneş enerjisi Yansıtıcı Yüzey Formlarının Endüstriyel
Kullanımı. Journal of Solar Energy Institute, 2: 45-50.

Erkan Kacan | 127

Eltez, M., (1986). Sabit Yansıtıcılı Çizgisel odaklı Kule Projesinde Yansıtıcı
Odaklayıcı Yüzeyin Şekillendirilmesi,. İzmir: PhD Thesis, Ege University
Solar Energy Institute.

Equipment, J. S. (2025, 06 09). Sun Slew Drive. (Jiangyin Sunslew Machinery
Equipment) https://www.sunslewdrive.com/slewing-drive/ taken from
web site.

Garcia-Gil, G., & Ramirez, J.M., (2019). Fish-eye camera and image processing
for commanding a solar tracker. Heliyon, Volume 5, issue 3.

Garrison, J. D. (2002). A program for calculation of solar energy collection by
fixed and tracking collectors. Solar Energy, Vol. 73, No. 4,, 241-255.

Gee, R. (1980,). Line focus sun tracers. Sect. Of Int. Solar Energy, 501-504.
Genç, A. (1998). Güneşi tek eksende takip eden parabolik oluk tipi güneş

yoğunlaştırıcısının performans deneyleri. Ankara: Gazi Üniversitesi.
Grass, C., Schoelkopf, W., Staudacher, L., Hacker, Z., (2004). Comparison

of the optics of non-tracking and novel types of tracking solar thermal
collectors for process heat applications up to 300 °C. Solar Energy , 76,
207–215.

Grushkowitz et. al., (2018, Mar 1). Multy-Drive Solar-Tracking Photovoltaic
System, United States Patent, Patent No. US 2018/0062566 A1.

Grushkowitz et. al., (2018, Mar 1). Solar-Tracking System Drive Having an
Offset Gear, United States Patent Patent No. US 2018/0062564 A1.

Haralick, R.M., Shanmugam, K., & Dinstein, I. (1973). Textural features
for image classification. IEEE Transactions on Systems, Man, and
Cybernetics, SMC, 3(6), 610-621.

Hein, M., Dimroth, F., Siefer, G., Bett, A.W., (2003). Characterisation of a
300xphotovoltaic concentrator system with one-axis tracking. Solar
Energy Materials & Solar Cells, 75 , 277–283.

Heiti, R.V., & Thados, G., (1983). An experimental parabolic cylindrical
concentrator: its construction and thermal performance. Solar energy,
30, 483-485.

Hession P.J., & Bonwick , W., (1984). Experience with a sun tracker system.
Solar Energy, 32, 3–11.

Hilnes, S. (2010, Sep 21)., Solar Tracker, United States Patent, Patent No. US
7,799 987 B1.

Hirata Y, & Tani, T. (1994). Evaluation of Photovoltaic Modules Considered
Spectral Solar Radiation. IEEJ Transactions on Industry Applications,
114, (8):93–105.

Hirata Y, & Tani, T. (1995). Output variation of photovoltaic modules
with environmental factors 1. The effect of spectral solar radiation on
photovoltaic module output. Solar Energy , 55, (6):463–8 .

128 | The Evolution of Solar Tracking Systems (STS)

Ibrahim, S.M.A., (1996). The forced circulation performance of a sun tracking
parabolic concentrator collector. Renewable Energy, 9(1–4):568–71.

Industries, IMO. (2025, 06 09). 06 09, 2025 date, https://www.imo.de/en/
products-services/slew-drives taken from web site.

Kalogirou, S.A., (1997). Design and construction of a one-axis sun-tracking
system. Solar Energy , 57(6):465–9.

Kamat, M., Keni, R., Helekar, M., Dhavjekar, S., Patil, P., Bhogan, S., Narvekar,
A. (2022). Solar Tracking System for Efficient Power Generation using
Image Processing. International Journal for Research in Applied Science
& Engineering Technology (IJRASET), 10(8), 1304-1310.

Khalifa A.N., & Al-Mutwalli S.S., (1998). Effect of two-axis sun tracking on the
performance of compound parabolic concentrators. Energy Conversion
and Management, 39(10):1073–9.

Krizhevsky, A., Sutskever, I., & Hinton, G.E., (2012). Imagenet classification
with deep convolutional neural networks. . Communications of the
ACM, 60(6), , 84-90.

Kumar, K., Varshney, L., Ambikapathy, A., Ali, I., Rajput, A., Bhatnagar, A.,
Omar, S. (2021). Vision based solar tracking system for efficient energy
harvesting. International Journal of Power Electronics and Drive Systems
(IJPEDS), Vol. 12,(No. 3), 1431-1438.

Lee, C.D., Huang, H.C., Yeh, H.Y., (2013). The Development of Sun-Tracking
System Using Image Processing. Sensors, 13, 5448-5459.

Lowe, D. G. (1999). Object recognition from local scale-invariant features.
International Journal of Computer Vision, 20(2), , 91-110.

Lubitz W. D. (2011). Effect of manual tilt adjustments on incident irradiance
on fixed and tracking solar panels, . Applied Energy , 88, 1710–1719.

Mousazadeh, H., Alireza K., Arzhang J., Hossein M.,Karen A., Ahmad S.,
(2009). A review of principle and sun-tracking methods for maximizing
solar systems output. Renewable and Sustainable Energy Reviews , 13 ,
1800–1818.

Neale, S.D., (1979, Mar 27)., Sun-tracking control system for solar collector,
United States Patent- Sunpower Systems Corporation, Patent No.
877-077.

Neville, R.C. (1978). Solar energy collector orientation and tracking mode.
Solar Energy , 20:7–11.

Nicolas, M.J.J., Solano, S.S., Perez, J.M., Obre, C.J., (2024, 07 18). Photovoltaic
Solar Tracker with Optimized Wear and Syncronious Transmission,
United States Patent Patent No. US 2024/0243693 A1.

Otsu, N. (1979). A threshold selection method from gray-level histograms.
IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.

Erkan Kacan | 129

Pei-Ying Y., Po-Ching Y., Jia-Yush Y., Tsung-Tsong W., Pei-Ling L.,Chia-Ling
W., Ching-Yu, P., (2011). Focal point tracking system for concentration
solar power collection. Renewable and Sustainable Energy Reviews, 15,
3029– 3033.

Pinazo, A.M., Canada, J., Arago, F., (1992). Analysis of the incidence angle of
the beam radiation on CPC. Solar Energy, , 49, 3: 175-179.

Poivet, A. (2022, 06 09)., Solar Carports, United States Patent, Patent No. US
2022/0182009 A1.

Prapas, E.D., Norton, B., Probert, S.D., (1987). Optics of parabolic trough
solar energy collectors possessing small concentration ratios. Solar
Energy, 39, 6: 541-550.

Rahim, R.A., Zainudin, M.N.S., Ismail, M.M., Othman, M.A., (2014). Image-
based Solar Tracker Using Raspberry Pi. Journal of Multidisciplinary
Engineering Science and Technology (JMEST), Vol 1/5,, 369-373.

Riffelmann, K.J., Neumann, A., Ulmer, S., (2006). Performance enhancement
of parabolic trough collectors by solar flux measurement in the focal
region. Solar Energy, 80: 1303-1313.

Roberts, L. G. (1961). Machine perception of three-dimensional solids. PhD
Thesis, Massachusetts Institute of Technology. Department of Electrical
and Electronic Engineering.

Rosedale, A. (2019, 03 07). Motorized Solar-Tracking Umbrella Base, United
States Patent, Patent No. US 2019/0069652 A1.

Roth, P., Georgiev, A., & Boudinov, H. (2005). Cheap two axis sun following
device. Energy Conversion and Management, 46, 1179–92.

Roth, P., Georgiev. A., & Boudinov, H., (2004). Design and construction of a
system for sun-tracking. Renewable Energy, 29, 393–402.

Sansoni, P., Fontani, D., Francini, F., Giannuzzi, A., Sani, E., Mercatelli, L.,
Jafrancesco, D., (2011). Optical collection efficiency and orientation of a
solar trough medium-power plant installed in Italy, . Renewable Energy,
36: 2341-2347.

Schimelpfenig et. al., (2018, Jun 21). Variable Profile Solar-Tracking Photovoltaic
System, United States Patent, Patent No. US 2018/0175783 A1.

Schubnell M, & Ries , H. (1990). Velocity-controlled tracking of the sun. Solar
Energy Materials, 21, (2–3):207–12.

Sefa I., Demirtas M., Çolak I., (2009). Application of one-axis sun tracking
system. Energy Conversion and Management, 50 , 2709–2718.

Seme S., & Stumberger G.A., (2011). A novel prediction algorithm for solar
angles using solar radiation and Differential Evolution for dual-axis sun
tracking purposes. Solar Energy, 85, 2757-2770.

130 | The Evolution of Solar Tracking Systems (STS)

Sharpe, J. (2021, 06 24). Elevated Dual-Axis Photovoltaic Solar Tracking
Assembly, United States Patent, Patent No. US 2021/0194417 A1.

Shtein, M., Evke, E., Arwashan, M., Huang, C., (2023, 11 28). Kirigami-Based
Multy-Axis Tracking Devices and Systems, United States Patent, Patent
No. US 11,831,272 B2.

Sobel, I. E. (1970). Camera models and machine perception. . PhD Thesis,
Stanford University Department of Computer Sciences.

Sungur C. (2009). Multi-axes sun-tracking system with PLC control for
photovoltaic panels in Turkey. Renewable Energy, 34 , 1119–1125.

Tang R., & Yamei Y., (2010). Feasibility and optical performance of one axis
three positions sun-tracking polar-axis aligned CPCs for photovoltaic
applications. Solar Energy , 84, 1666–1675.

Ünsaçar, F., Taşer, Ö.F., (1994). Güneş Takibinin Kollektör Performansına
Etkisi. Turkish Journal of Engineering & Environmental Sciences , 18,
323-328.

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted
cascade of simple features. Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, (s.
I-511-I-518.).

Wardhana, A.S., & Dewi, A.K., (2020). Solar Tracking Using Extended
Mean Shift Based Color Histogram. Proceedings of the 2nd Borobudur
International Symposium on Science and Technology (BIS-STE 2020),
Advances in Engineering Research, volume 203, 11-16.

Warrick, J.C., (2000, Sep 26). Solar Collector tracking system, United States
Patent-Amonix Inc., Patent No. 09/282-315.

Yeşilata, B., (1990). Güneş Hareketini İzleyen Parabolik Yoğunlaştırıcı Tip
Güneş Kollektörlerinin Tasarımı, Dizaynı ve Isıl Veriminin Araştırılması.
Elazığ: Master Thesis, Institute of Science, Fırat University.

Zeghoudi, A. & Benmouiza, K., (2023). Solar Power Heliostat Control Using
Image Processing Technology and Artificial Neural Networks. Journal
Européen des Systèmes Automatisés, Vol. 56, (No. 1,), pp. 165-171.

