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A Computational Study on Sobol’ Sequences 
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Abstract

This study presents a computational comparison between Quasi-Monte 
Carlo (QMC) methods based on Sobol’ sequences and traditional Monte 
Carlo (MC) methods using the Mersenne Twister (MT) generator. While 
Sobol’ sequences are widely recognized for outperforming MT in terms of 
convergence, our results reveal notable deficiencies when applied to high-
dimensional Geometric Asian option pricing. To investigate this behavior, 
we conduct moment and correlation analyses, identifying a bias in the 
incremental construction of Sobol’ paths—a bias that is absent in MT and 
can be alleviated through skipping initial points, scrambling, or Brownian 
Bridge (BB) techniques. All simulations are implemented in Python, with 
additional acceleration achieved through Graphics Processing Unit (GPU)-
based parallel computing environments.

INTRODUCTION

The motivation for this work stems from the complexities of pricing exotic 
derivatives under models demanding numerous time steps, thereby creating 
highly dimensional Brownian motion trajectories. In financial engineering, 
it is often impossible to derive closed-form solutions for the valuation 
of financial products, especially those categorized as exotic options. As a 
result, numerical techniques—and Monte Carlo (MC) simulation methods 
in particular—play a critical role. As discussed extensively by Glasserman 
(Glasserman, 2014), the appeal of Monte Carlo methods lies in their general 
applicability, especially in cases where analytical solutions are infeasible 
or unavailable. In MC simulations, the proper use of random number 
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generators is vital, as incorrectly generated random sequences can lead to 
severe mispricing of financial products, potentially resulting in significant 
financial losses for institutions and individuals involved in their trading. 

Traditional Monte Carlo method relies on pseudo-random number 
generators (PRNGs), such as the widely used Mersenne Twister, to simulate 
stochastic processes. However, the convergence rate of classical MC is 
typically ( )1/2N− , where N is the number of samples. This achieving high 
accuracy requires generating millions of paths, which can be computationally 
intensive and slow to converge (Glasserman, 2014 and Jäckel, 2002).

Quasi-Monte Carlo (QMC) methods aim to improve upon this by 
replacing pseudo-random numbers with deterministic low-discrepancy 
sequences, such as Sobol’ or Halton sequences. These sequences are 
designed to fill the simulation space more evenly, reducing clustering and 

improving convergence to approximately ( )log dN
N

 
 
 
 

  as stated in (Jäckel, 

2002). In particular, Sobol’ sequences have gained significant attention due 
to their simplicity, extensibility in high dimensions, and well-understood 
mathematical properties.

Despite their theoretical advantages, QMC methods are sensitive to 
implementation details. As noted by Glasserman (Glasserman, 2004), 
implementation choices such as scrambling—to improve uniformity and 
mitigate artifacts—and the ordering of dimensions can significantly influence 
the accuracy and stability of QMC results. Additionally, techniques like 
Brownian bridge (BB) construction are often employed in QMC to reorder 
variance allocation in time-dependent simulations, thereby improving 
efficiency for path-dependent derivatives.

This study provides a practical and empirical evaluation of Sobol’ 
sequences in high-dimensional Monte Carlo simulations. We benchmark the 
performance of Sobol implementation against the Mersenne Twister, across 
a set of controlled experiments that include:

	• One- and multi-dimensional integration tests

	• Geometric Asian option pricing under a geometric Brownian motion 
model

	• Moment and correlation analysis among Sobol’ dimensions

	• Effects of scrambling, skipping initial points, and Brownian bridge

	• Graphics Processing Unit (GPU)-accelerated simulations
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Our main objective is to determine under what conditions QMC methods, 
particularly Sobol’ sequences, truly outperform traditional pseudo-random 
simulations in practice, and to investigate the performance gains offered 
by GPU-based parallel computation in high-dimensional Monte Carlo 
simulations.

BACKGROUND AND RELATED WORK 

Monte Carlo Methods

Monte Carlo methods are widely used to approximate expectations by 
drawing random samples from a given probability distribution (Glasserman, 
2004). These methods operate by repeatedly sampling and evaluating a 
function of interest, thereby estimating integrals or probabilities numerically. 
As the number of samples increases, the estimate converges to the true 
value by virtue of the law of large numbers. Furthermore, the central 
limit theorem enables quantification of the uncertainty in the estimate by 
providing asymptotic confidence intervals and standard errors. 

To illustrate the method, let us use the example from Section 1.1.2 of 
(Glasserman, 2004). Consider the pricing of a European call option using the 
Black Scholes framework. The payoff of the option depends on the terminal 
value of the underlying stock, which follows a lognormal distribution as 
a result of modeling the asset price dynamics with a Geometric Brownian 
Motion (GBM). By generating standard normal samples, we can simulate 
the terminal stock price and compute the discounted payoff. The process 
is summarized in Algorithm 1 (see Figure 1), which shows the basic steps 
for estimating the expected present value of the option using Monte Carlo 
simulation. In this algorithm, r  denotes the risk-free interest rate, ó  is the 
volatility of the underlying asset, 0S  ​is the initial asset price, K  is the strike 
price,  T is the time to maturity, and ( )0,1iZ ∼   represents independent 
standard normal variables.

Figure 1. Monte Carlo estimation of a European call option
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In classical MC simulation, PRNGs such as the widely used Mersenne 
Twister are employed to sample independent and identically distributed 
random variables from target distributions. Although these methods exhibit 
a convergence rate of ( )1/2N − , their efficiency diminishes in problems that 
require high precision or suffer from the curse of dimensionality. See, for 
instance (Glasserman, 2004 and Jäckel, 2002).

To address these limitations, QMC methods utilize low-discrepancy 
sequences (LDS) to fill the integration domain more uniformly than pseudo-
random samples. This deterministic structure can improve the convergence 

rate to ( )log dN
N

 
 
 
 

  for d-dimensional integrals under sufficient smoothness 

conditions (Glasserman, 2004, Jäckel, 2002 and Sobol’ and Kucherenko, 
2005). The discrepancy of a point set intuitively measures its deviation from 
uniformity, where lower discrepancy yields better space-filling.

Pseudo-Random Generators: Mersenne Twister

The Mersenne Twister is one of the most commonly used PRNGs 
due to its long period 199372 1− , fast generation speed, and guaranteed 
equidistribution in at least 623 dimensions (Jäckel, 2002). While its output 
is not truly random, it produces sequences that behave uncorrelated and 
independent for practical purposes, making it suitable for many high-
dimensional Monte Carlo simulations.

In comparative studies, MT serves as a baseline for measuring QMC 
effectiveness, particularly in terms of convergence rate, variance, and 
dimensional correlation.

Low-Discrepancy Sequences: Sobol’

One of the most widely adopted low-discrepancy sequences in QMC 
methods is the Sobol’ sequence, originally introduced in (Sobol’, 1967) by I. 
M. Sobol’ in 1967 and further developed in 1976. See (Sobol’, 1976). These 
sequences are constructed using direction numbers and Gray code ordering 
to ensure uniform coverage over the unit hypercube [ )0,1 d

. Due to their 
simplicity of construction, scalability to high dimensions, and successful 
applications in finance, Sobol’ sequences have become a standard choice in 
QMC simulations (Jäckel, 2002).

Despite their advantages, the effectiveness of Sobol’ sequences in 
high-dimensional settings is not always guaranteed. High-dimensional 
implementations, such as BRODA’s Sobol65536 generator as documented 
in (Broda, 2025), aim to scale QMC techniques to tens of thousands of 
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dimensions. However, empirical studies (Sobol’, 1967 and Silva and 
Barbe, 2005) have observed issues such as dimensional correlation and 
loss of uniformity, which can negatively impact simulation accuracy. This 
is especially problematic in financial applications, where small deviations 
in distribution quality may lead to significant pricing and risk estimation 
errors.

Several practical enhancements have been proposed to improve the 
robustness of Sobol’ sequences. Among these, three key factors are frequently 
highlighted:

	• The use of scrambling, which introduces controlled randomness to 
eliminate structural artifacts and enable error estimation (Owen, 
1998)

	• Proper dimensional ordering, which assigns the most influential 
variables (if known) to the earliest dimensions, where Sobol’ sequences 
typically exhibit better uniformity properties (Silva and Barbe, 2005)

	• Careful treatment of the initial points, especially the very first point 
(typically ( )0,0, ,0…  (Owen, 2021)

Scrambling was first introduced by Owen (Owen, 1998) to address 
the deterministic structure of low-discrepancy sequences, which limits 
error estimation through confidence intervals. In scrambling, the digits of 
the b-ary expansion of each point are randomly permuted in a recursive 
and structured manner. At the j-th digit, there are 1jb −  partitions, each 
independently shuffled. This technique improves space-filling properties 
while retaining the low-discrepancy nature of the original sequence.

Another discussed topic in literature is the practice of skipping initial 
Sobol’ points (also known as fast-forwarding), which involves discarding 
the first few values of the sequence—typically starting from the all-zero point 
( )0,0, ,0… . This is often motivated by the observation that early Sobol’ 
points can lead to undesirable properties, particularly when passed through 
nonlinear transformations such as the inverse normal CDF 1Ö− , to produce 
normally distributed variates. Under certain conditions, skipping has been 
shown to reduce numerical integration error, albeit without changing its 
asymptotic order (Radovic et al., 1996). However, the optimal number 
of points to skip is problem-dependent and cannot easily be determined. 
Moreover, as Owen (Owen, 2021) notes, indiscriminate skipping—
especially when combined with scrambling—may disrupt the digital net 
structure of the sequence and lead to worse convergence behavior. As such, 
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the handling of initial points demands careful consideration and should 
ideally be validated within the specific simulation context.

A more algorithmic enhancement that complements Sobol’ sequences 
is the Brownian bridge construction, a technique designed to improve the 
dimensional efficiency of path simulations. Brownian Bridge reorders the 
discretization of stochastic processes to concentrate variance in the early 
time steps. This reordering aligns well with Sobol’ sequences, whose early 
dimensions are more uniformly distributed, allowing the most critical 
components of the process to benefit from the best uniformity. As a result, 
Brownian bridge improves both dimensional ordering and convergence 
properties (Glasserman, 2004, Kucherenko and Shah, 2007 and Bianchetti 
et al., 2015).

Given the high computational demands of large-scale QMC simulations, 
leveraging parallel computing architectures has become essential. In 
particular, GPUs offer a powerful platform for accelerating simulations 
due to their high degree of parallelism. Recent work by Bernemann et al 
(Bernemann et al., 2011) demonstrated the feasibility and effectiveness of 
GPU-accelerated Sobol-based simulations for pricing exotic derivatives and 
performing calibration tasks.

In this study, we build upon these methodological advances by evaluating 
GPU-based implementations of Sobol’ and Mersenne Twister generators. 
Our focus is on understanding both the theoretical conditions and practical 
configurations under which Sobol’ sequences, possibly enhanced with 
Brownian Bridge and scrambling, can outperform traditional pseudo-
random approaches. The ultimate goal is to achieve high numerical accuracy 
while benefiting from the significant speedups offered by parallel hardware.

METHODOLOGY

This section outlines the computational setup, simulation framework, 
and evaluation metrics used in this study to compare Sobol-based QMC 
methods with classical MC methods using PRNGs, specifically the Mersenne 
Twister. 

Tools and Computational Environment

All experiments are implemented in Python 3.12 and executed on a 
machine equipped with an NVIDIA GPU (CUDA enabled). The following 
libraries are used for simulation and numerical computation:

	• scipy: To generate low-discrepancy Sobol’ sequences, with support for 
scrambling and skipping.
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	• numpy: For numerical operations and random number generation 
using Mersenne Twister.

	• cupy: To enable GPU-accelerated vectorized simulation paths.

	• torch: Used specifically to generate Sobol’ sequences directly on the 
GPU, as CuPy does not provide native support for GPU-based quasi-
random sequence generation

The Sobol class in Scipy incorporates several important features for high-
dimensional QMC simulations. It supports up to 21201 dimensions by 
utilizing precomputed direction numbers generated by Kuo et al. (Joe and 
Kuo, 2008). This capability is particularly useful in financial applications 
involving long time horizons, such as Asian options with daily monitoring 
over extended periods.

The implementation also includes a two-stage scrambling technique 
(Matousek, 1998) to enhance uniformity and reduce structural artifacts in 
the sequence. Such scrambling consists of:

	• Left Linear Matrix Scrambling (LMS), where direction numbers are 
transformed via a non-singular lower-triangular matrix to maintain 
low discrepancy while improving uniformity.

	• Digital Random Shift, which applies a uniform digital shift across all 
dimensions to introduce randomness.

By combining these features—extended dimensional support and 
scrambling techniques—Scipy Sobol implementation is well-suited for 
high-dimensional simulations in financial engineering applications involving 
complex payoff structures.

Experimental Design

To provide a fair comparison between PRNG-based Monte Carlo and 
Sobol-based QMC, each experiment follows the same simulation logic, 
differing only in the source of randomness and variance reduction techniques. 
The following factors are controlled across experiments:

Sample size: Fixed to powers of two (e.g., 4096, 19 202 , 2 ) to suit Sobol’s 
structure.

Dimensionality: Ranges from 1D to 21201D depending on the test, 
constrained by the maximum dimensionality supported by Python. In 
practical scenarios such as Asian option pricing, the number of dimensions 
corresponds to the number of discretization steps over time (e.g., 3650 for 
10 years of daily steps).
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Skip values: Various skip levels are tested (e.g., 1024, 192 ) to investigate 
convergence sensitivity.

Scrambling: Tests are conducted to assess the impact of randomized 
Sobol’ sequences.

Brownian Bridge: Time steps are simulated using Brownian Bridge 
construction to reallocate variance into lower dimensions.

GPU usage: High-dimensional path simulations and payoff evaluations 
are accelerated using GPU parallelization to reduce computation time.

Evaluation Metrics

To assess simulation accuracy and efficiency, the following quantitative 
metrics are recorded, where  is the estimated value from trial i, and trueV  
is the known theoretical value (e.g., for Asian options), and N is the sample 
size (or, number of replications):

The elapsed time is computed using Python’s time.time() function 
before and after simulation blocks. We remark that in high-dimensional 
tests, correlation matrices and variance of intermediate quantities are also 
recorded to study internal simulation stability. By standardizing the above 
setup, we ensure reproducibility and comparability across different random 
number sources, variance reduction techniques, and hardware acceleration 
strategies.

INTEGRAL TEST

To systematically evaluate the numerical accuracy of QMC and traditional 
MC methods, we conduct a series of one-dimensional and multi-dimensional 
integration experiments.
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One-Dimensional Integral Test

To assess the basic numerical behavior of QMC methods in low-
dimensional settings, we begin by evaluating a classical family of one-
dimensional integrals of the form

for which the analytical value is known to be exactly one for all integer 
values of n . This benchmark serves as a reliable testbed for quantifying 
integration error and convergence characteristics of different sampling 
methods, including pseudo-random sequences and low-discrepancy 
sequences such as Sobol’.

Each integral is approximated numerically using 4096 sample points. 
The performance of both methods is compared by computing the absolute 
error between the estimated and exact values across the tested range of n. 
For each n, the maximum and mean absolute errors are recorded in Table 1.

Table 1. Absolute errors for one-dimensional monomial integrals using Sobol and MT

n Sobol Max Sobol Mean MT Max MT Mean

1  0.00018  0.00012  0.03549  0.00716  

2  0.00028  0.00018  0.05918  0.01114  

3  0.00037  0.00024  0.07578  0.01416  

4  0.00046  0.00031  0.08617  0.01666  

5  0.00055  0.00037  0.09518  0.01884  

6  0.00064  0.00043  0.10459  0.02079  

7  0.00073  0.00049  0.11263  0.02256  

8  0.00083  0.00055  0.11959  0.02421  

9  0.00092  0.00061  0.12588  0.02574  

10  0.00101  0.00067  0.13414  0.02720  

11  0.00110  0.00073  0.14182  0.02858  

12  0.00119  0.00079  0.14896  0.02991  

13  0.00128  0.00085  0.15560  0.03117  

14  0.00138  0.00092  0.16178  0.03239  

15  0.00147  0.00098  0.16757  0.03357  

16  0.00156  0.00104  0.17320  0.03470  

17  0.00165  0.00110  0.17849  0.03580  

18  0.00174  0.00116  0.18347  0.03687  

19  0.00183  0.00122  0.18818  0.03791  

20  0.00193  0.00128 0.19262  0.03892  
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The results demonstrate that Sobol’ sequences yield significantly lower 
integration error compared to Mersenne Twister across all values of n. In 
particular, the maximum and mean absolute errors associated with Sobol’ are 
consistently an order of magnitude smaller than those of MT, especially for 
higher-degree monomials as clearly seen in Table 1. These findings reinforce 
the established theoretical understanding that low-discrepancy sequences 
exhibit superior performance in deterministic numerical integration, 
especially in low-dimensional settings.

Multi-Dimensional Integral Test

To assess the accuracy and robustness of QMC methods in higher 
dimensions, we conducted a series of experiments based on the family of 
multi-dimensional integrals given in Equation 5:

( )( ) ( )
1 1 1

10 0
1 0.5 1# 5j n

i i j j ni j
c x dx dx+ −

+ −=
+ ⋅ − =∏∫ ∫ 

evaluated for various values of j , n , and constant coefficients ic  The 
integral is designed to emphasize the role of boundary sampling: the larger 
the values of ic , the more weight is placed on the integrand near the edges 
of the [ ]0,1 n

 hypercube. This makes it an ideal stress test for comparing 
Sobol’ sequences to MT, especially in terms of their ability to adequately 
capture extreme regions of the domain.

We tested several values of n ranging from 3 to 21,201 dimensions. In the 
small and moderate dimensional cases (   21201)n< , we employed a sliding 
window approach over a large Sobol’ matrix of shape ( ) 4096 21201×
: for each offset j, we extracted n consecutive dimensions, computed the 
numerical integral, and recorded the corresponding absolute error. In the 
full-dimensional case (   21201n= ), a batch-based method is adopted. We 
performed 100 independent simulations of 4096 Sobol’ samples, each 
preceded by a skip of  4096j ⋅ , and reported the maximum and average 
absolute error across batches.

All Sobol’ sequences are generated with scrambling disabled and 
appropriate skip values. Pseudo-random samples are initialized with batch-
specific seeds to ensure independence. Each integrand is evaluated, having 
fixed ic c= , as:

( ) ( )( ) ( )1
1 0.5 # 6n

ii
f x c x

=
= + ⋅ −∏

The results are summarized in Table 2, which reports the observed 
maximum and mean absolute errors for both Sobol and Mersenne Twister 
methods across different configurations.
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Table 2. Multi-dimensional integral errors for various ( ),n c  combinations

n and c Sobol Max 
Error

Sobol Mean 
Error

MT Max 
Error

MT Mean 
Error

3 and 0.5  0.0157  0.00023  0.0153  0.0031  

5 and 0.5  0.0192  0.00047  0.0218  0.0041  

5 and 0.5 (skip 2¹⁹) 0.0192  0.00027  0.0218  0.0041  

5 and 0.3  0.0068  0.00023  0.0132  0.0024  

30 and 0.3  0.0258  0.00263  0.0334  0.0063  

1000 and 0.01  0.0021  0.00073  0.0042  0.0014  

21201 and 0.0002 0.000068  0.000004  0.0004  0.0001 

These results clearly demonstrate the advantage of Sobol’ sequences, 
particularly as dimensionality increases and the coefficient c  decreases. 
In low-dimensional settings, both methods perform reasonably well, 
although Sobol still shows a lower mean absolute error. However, in 
high dimensions—especially with 21201 n = and 0.0002c = —Sobol 
significantly outperforms Mersenne Twister, with an error reduction factor 
exceeding 25 times.

An additional experiment applying a large skip of 192  in the    5,    0.5 n c= =
case also confirmed that skipping early Sobol’ points leads to meaningful 
error reduction (from 0.00047 to 0.00027 in average error), without 
affecting the maximum deviation. See Table 2, thereby, we may claim that 
skipping can be beneficial for high-accuracy results.

Overall, these findings validate the superiority of Sobol’ sequences equily 
well also in high-dimensional numerical integration.

GEOMETRIC ASIAN OPTION PRICING

To investigate the comparative performance of QMC methods and 
classical MC methods in a realistic financial context, we conducted a series 
of experiments pricing a geometric Asian call option under a Geometric 
Brownian Motion (GBM) framework: Black-Scholes setting.

The underlying asset price tS  is modeled according to the classical GBM 
process, defined by the stochastic differential equation:

( )# 7t t t tdS rS dt S dWσ= +
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where r  denotes the constant risk-free rate,  is the constant volatility 
of the asset, and tW  represents a standard Brownian motion. Discretization 
is performed using a log-Euler scheme:

where ( )0,1iz ∼   are independent standard normal variates generated 
via either pseudo-random or quasi-random sequences.

The geometric Asian call option payoff is based on the geometric mean 
of asset prices over discrete monitoring dates:

( ) ( ) ( )
1/

1
Payoff max GA ,0 , where GA # 9

i

nn
ti

K S
=

= − = ∏
with K  denoting the strike price. In our experimental setup, we set 

and  1 .K =  The maturity T  corresponds to 21201 
timesteps, equivalent to 10 monitoring points per day over approximately 
5.8085 years:

( ), 1, , 21201# 10
365 10i

it i= = …
×

The theoretical value of the geometric Asian option is available in closed 
form. It is computed using an adjusted volatility and maturity:

yielding the option price:

where the Black-Scholes pricing formula for European call options (Black 
and Scholes, 1973) is employed:
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Here, denotes the cumulative distribution function (CDF) of the 
standard normal distribution.

For the option under consideration the theoretical formula returns 
0.19715. Simulations are conducted using two approaches: Sobol’ 
sequences, and Mersenne Twister based pseudo-random numbers. Each 
simulation consists of 16 independent trials, each using 4096 paths, leading 
to a total of 65536 simulated paths per method.

The Mersenne Twister results yields a mean estimated option price 
of 0.19575, compared to the theoretical price of 0.19715. The average 
absolute error across trials is 0.00597, with a maximum absolute error of 
0.01702. The variance of the estimated prices is 0.00005398, corresponding 
to a standard deviation of 0.00735. These results indicate a relatively tight 
distribution of price estimates around the theoretical value.

In contrast, simulations using the Sobol’ sequence produced a mean 
estimated option price of 0.23363, which deviates from the theoretical 
price of 0.19715 by an absolute difference of 0.03648. Despite using a large 
number of simulated paths (65536), this level of discrepancy is considered 
suboptimal, as such sample sizes are typically expected to yield tighter 
convergence. The average absolute error across trials is 0.04617, and the 
maximum absolute error reaches to 0.33548. The price estimates shows a 
variance of 0.00755007 and a standard deviation of 0.08689. Furthermore, 
the observed minimum and maximum prices (0.18357 and 0.53263, 
respectively) indicate a much wider dispersion compared to the Mersenne 
Twister results, reflecting greater instability and less reliable convergence 
behavior.

This discrepancy in performance prompted a deeper investigation into 
the underlying causes of the observed deficiencies in the Sobol’ sequence 
simulations. To this end, the next section conducts a series of statistical 
analyses aimed at diagnosing potential issues inherent to the structure of 
Sobol-generated paths. In particular, we focus on two key diagnostic tools: 
moment analysis, to evaluate the marginal distributions of individual Sobol’ 
dimensions, and correlation analysis, to detect any unexpected dependencies 
between dimensions that could impair the sequence’s uniformity and 
effectiveness.
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ROOT CAUSE ANALYSIS OF THE OBSERVED 
DISCREPANCIES

Moment Analysis of Sobol’ Sequences

In order to better understand the statistical properties of Sobol’ sequences 
in high-dimensional simulations, we perform a detailed investigation of 
the first four moments --- mean, variance, skewness, and kurtosis --- of the 
sequences. Two cases are analyzed: the raw Sobol’ sequences on [ )0,1 , and 
their transformation into standard normal space via the inverse cumulative 
distribution function (ICDF), .

We generated samples at sizes 122 , 162 , 20 242 , 2  and 282 , corresponding 
to 4096, 65536, 1048576, 16777216, and 268435456 samples, respectively.

For the raw Sobol’ samples (i.e., before applying ICDF), the results are 
summarized below and depicted in Table 3.

	• The sample mean converges to 0.5 as the number of samples increases, 
aligning with the expected value for a uniform distribution.

	• The sample variance also converges to 
1 0.08333333

12
≈ , the theoretical 

variance of the uniform distribution.

	• The skewness remaines effectively zero across all sample sizes, 
indicating symmetric distributions.

	• The kurtosis stabilizeds at 1.8, as theoretically expected for uniform 
random variables.

Table 3. Moments of Raw Sobol’ Sequence [ )( )0,1

samplesn Mean Variance Skewness Kurtosis

2¹² (4096)  0.499969  0.08333329  1.06 × 10⁻¹⁰ 1.79999865  

2¹⁶ (65536)  0.499992  0.08333333  6.29 × 10⁻¹² 1.79999999  

2²⁰ (1048576)  0.499999  0.08333333  2.74 × 10⁻¹⁴ 1.8  

2²⁴ (16777216)  0.499999  0.08333333  1.08 × 10⁻¹⁶ 1.8  

2²⁸ (268435456) 0.5  0.08333333  −2.77 × 10⁻¹⁹ 1.8  

After applying the inverse cumulative normal function  to transform 
the Sobol’ points to standard normal deviates, the moments shown in Table 
4 are observed to behave as follows:

	• The mean converges rapidly towards 0, as expected for a standard 
normal distribution.
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	• The variance converges to 1, as theoretically expected.

	• The skewness remaines near 0, indicating symmetry of the resulting 
normal distributions.

	• The kurtosis approaches 3, matching the kurtosis of a standard normal 
distribution.

Table 4. Moments of Transformed Sobol’ Sequence ( )( )0,1

samplesn Mean Variance Skewness Kurtosis

2¹² (4096)  −2.23 × 10⁻⁴  0.99908158  −0.002273  2.97942869  

2¹⁶ (65536)  −5.99 × 10⁻⁵  0.99993473  −0.000829  2.99790646  

2²⁰ (1048576)  −4.45 × 10⁻⁶  0.99999588  −8.43 × 10⁻⁵  2.9998241  

2²⁴ (16777216)  −3.11 × 10⁻⁷ 0.99999974  −7.54 × 10⁻⁶  2.99998616  

2²⁸ (268435456) −2.13 × 10⁻⁸ 0.99999998  −6.30 × 10⁻⁷  2.99999896  

These empirical findings align with the theoretical properties established 
in the literature.

Correlation Analysis in Sobol’ Sequences

It is well-known that Sobol’ sequences can exhibit substantial correlations 
between different dimensions, meaning that the generated quasi-random 
numbers in different dimensions are correlated. In the context of this 
study, references to inter-dimensional correlation specifically refer to 
the correlation between the quasi-random numbers assigned to different 
dimensions. This phenomenon is already mentioned in the early works on 
low-discrepancy sequences (Sobol’, 1967). In (Sobol’ et al., 2012), it is 
noted that, for a particular implementation of Sobol’ numbers, ‘’a test done 
with 2500 dimensions showed that 2449 pairs of consecutive dimensions 
have correlation greater than 70% (in absolute value).’’

In our study, with 21201 dimensions and 4096 samples, we perform 

a similar analysis. Among the 21201 21200 224,730,600
2
×

=  possible distinct 

dimension pairs, we observe that 415,391 pairs exhibit a correlation greater 
than 0.1, corresponding to approximately 0.18% of all pairs. Furthermore, 
91,668 pairs show correlations exceeding 0.5, and 91,631 pairs exceed 
0.6, both representing approximately 0.04% of all possible pairs. When 
considering even stronger correlations, 91,493 pairs show correlations 
greater than 0.7, but this number dropped sharply to only 110 pairs 
when the threshold is raised to 0.8, accounting for a negligible fraction of 
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0.00005% and highlighting that while moderate correlations are relatively 
common, extremely strong correlations remain very rare. Specifically among 
consecutive dimensions, we identified 10 pairs with correlation above 0.7. 
This is in stark contrast to the findings of (Sobol’ et al., 2011), where nearly 
all consecutive pairs in their test showed high correlation—highlighting the 
improved behavior of the Scipy Sobol implementation in high-dimensional 
settings.

This strong correlation behavior in Sobol’ sequences contrasts sharply 
with the performance of pseudo-random generators such as Mersenne 
Twister. In a comparable experiment using Mersenne Twister with 4096 
samples across 21201 dimensions, the maximum absolute correlation 
observed is only 0.091 (between dimensions 15689 and 15966). 

Additionally, it is important to highlight that the magnitude of these 
correlations in Sobol’ sequences diminishes significantly as the number 
of samples increases. For instance, considering the dimension pair (1229, 
6014), the correlation is  with 4096 samples but drops 
dramatically to  when the number of samples are increased 
to 20000. This behavior is consistent with the theoretical expectations 
regarding the asymptotic behavior of Sobol’ sequences. 

Some representative scatter plots of correlated dimension pairs are shown 
in Figure 2. These visualizations illustrate how severe clustering can occur 
when the random variables associated with different dimensions are strongly 
correlated.

Following the application of the inverse standard normal transformation 
to the Sobol’ samples, we performed a similar correlation analysis. Among 
the 224,730,600 possible distinct dimension pairs, 847,904 pairs exhibit 
correlations greater than 0.1, corresponding to approximately 0.38% of all 
pairs. Furthermore, 91,668 pairs show correlations exceeding 0.5, while 
91,394 pairs exceed 0.6, both representing approximately 0.04% of all 
possible pairs and indicating that moderate levels of dependency remain 
relatively prevalent. However, as the correlation threshold is increased 
beyond 0.6, a sharp decline is observed: only 189 pairs exhibited correlations 
greater than 0.7, accounting for a minuscule proportion of approximately 
0.00008% of all pairs. This sharp drop between 0.6 and 0.7 thresholds 
differs slightly from the pattern observed before the transformation, where a 
comparable decline is only observed between 0.7 and 0.8 thresholds. These 
findings suggest that the inverse transformation modifies the underlying 
dependency structure of Sobol’ sequences, effectively reducing the prevalence 
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of very high correlations (greater than 0.7) and shifting dependencies into 
the correlation range (above 0.6).

Figure 2. Scatter plots of selected dimension pairs from Sobol’ sequence.

Variance Bias in Incremental Construction

In classical Monte Carlo simulation of Brownian motion, the standard 
discretization method constructs the terminal value TW  by sequentially 
summing small increments generated from independent Gaussian variables. 
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This method, commonly referred to as the incremental construction, 
approximates TW  as:

( )1
# 14NI

T ii
W dt z

=
=∑

where ( )0,1iz ∼   are independent standard Gaussian random 
variables, N  is the number of time steps, and   /dt T N= .

In an ideal Monte Carlo settings, if the iz  are truly independent, the 
following properties would hold:

[ ] ( )0, # 15iE z i= ∀

[ ] ( )V 1, # 16iz i= ∀

( )0, for # 17i jE z z i j  = ≠ 

where [ ]( )E ⋅  and [ ]( )V ⋅  denote the expectation and variance operators, 
respectively. Consequently, the mean and variance of ( )I

TW  satisfy:

( )E 0# 18I
TW  = 

( )# 19I
TV W T  = 

However, when quasi-random sequences like Sobol’ numbers are used 
to generate iz  via the inverse normal CDF, strict independence between 
coordinates is no longer guaranteed. Particularly at small sample sizes or high 
dimensions, residual correlations between iz  and ( )   jz i j c≠ an introduce a 
bias into the variance of I

TW .

To quantify this effect, assume that the empirical variance of each iz  is 
 1v , and that the empirical correlation between different dimensions is  

[ ]ñij i j i jE z z E z E z   = −    . Then, the variance of I
TW  becomes:

We define the variance distortion term C  induced by the correlations as:

such that the total variance is expressed as ( )T v C+ .
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To complement the theoretical analysis, we computed the variance v
, the term C  caused by inter-dimensional correlations, and the total 
variance v C+  for both Sobol’ and Mersenne Twister sequences across 
different dimensions. The sample size is fixed at 4096 simulations. The 
tested dimensionalities includes dimsn  = 100, 500, 1000, 2000, and 21201, 
covering a wide range from low to extremely high dimensions. In Table 5, the 
empirical results are summarized. As observed, the Sobol’ sequences exhibit 
significant deviations in the v C+  values, particularly for high dimensions 
such as dims 21201,n =  where v C+  exceeds 4.0. This reflects the impact of 
dimension-dependent correlations inherent to Sobol’ sequences. In contrast, 
Mersenne Twister sequences show relatively stable behavior, with v C+  
values remaining close to 1 even at high dimensions, confirming their low-
correlation pseudo-random nature.

Table 5. Variance and variance distortion for Sobol’ and Mersenne Twister sequences at 

samples 4096n =

Method dimsn v C +v C

Sobol  100  0.999275  -0.044254  0.955021  

Sobol  500  0.999275  -0.141961  0.857314  

Sobol  1000  0.999278  -0.308172  0.691105  

Sobol  2000  0.999277  -0.386930  0.612347  

Sobol  21201  0.999282  3.061985  4.061268  

MT  100  0.998997  -0.013125  0.985872  

MT  500  0.998894  0.014969  1.013864  

MT  1000  0.998440  -0.003114  0.995326  

MT  2000  0.998587  -0.018400  0.980186  

MT  21201  0.999428  0.001260  1.000688  

Effect of Scrambling, Skipping, and Brownian Bridge on Variance 
Stability

In the previous sections, we observed that in the absence of any 
enhancements, Sobol’ sequences exhibited significant deterioration in 
the total variance v C+  as the dimensionality increased. In this section, 
we explore how three different techniques — scrambling, skipping initial 
points, and Brownian Bridge construction — affect the variance stability.

Variance Stability under Scrambling
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When scrambling is enabled, Sobol’ sequences show a remarkable 
improvement in variance properties. As shown in Table 6, even for 

dims 21201n = , the total variance v C+  is corrected to approximately 
1.0025. Across all tested dimensions dims(n  = 100, 500, 1000, 2000, 
21201), the deviations of v C+  from 1 remain within 0.006±  margins, 
indicating stability.	

Thus, the results observed in our tests validate the theoretical expectations: 
scrambling substantially improves the variance stability of Sobol’ sequences, 
making them highly reliable even when applied to very high-dimensional 
integration problems.

Variance Stability under Initial Points Skipping

Applying a large skip of 192 524,288=  points (without scrambling) 
results in a notable improvement in the stability of total variance estimates. 
For lower dimensions dims(n  = 100, 500), the total variance   v C+  remains 
very close to the theoretical value of 1, with deviations on the order of 310−  
or less. Even in extremely high-dimensional settings, such as dimsn  = 21201, 
the total variance remains stable around 0.9934 (see Table 6), representing 
a substantial improvement over the non-skipped case.

These results suggest that skipping a substantial number of initial Sobol’ 
points can also substantially improve numerical behavior across a wide 
range of dimensions. In our tests, skipping is consistently observed to have 
a positive impact on stability, supporting the understanding that Sobol’ 
sequences tend to perform better when an initial portion of the sequence is 
discarded.

Several studies, including Owen (Owen, 2021), have pointed out 
that skipping initial points in scrambled Sobol’ sequences may disrupt the 
underlying randomized net structure, potentially degrading convergence. 
While our findings demonstrate the practical benefits of skipping in 
non-scrambled settings, further research is needed to better understand 
how skipping interacts with scrambling in different simulation contexts, 
particularly with respect to determining how many points should be skipped, 
which may vary significantly depending on the integrand, dimensionality, 
and target accuracy.

Variance Stability under Brownian Bridge Construction

Brownian bridge (BB) construction is a widely used technique to 
improve the efficiency of path generation in Monte Carlo and Quasi-Monte 
Carlo simulations. By carefully redistributing the variance contributions 
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across dimensions, BB can significantly stabilize the numerical behavior, 
particularly in high-dimensional settings.

Consider a standard Brownian motion process ( )W t  over the interval 
[ ]0,T , with fixed endpoints:

( )0 0W =
BB

1TW T z= , where ( )1 0,1z ∼ 

It follows that ( )BB 0TE W =  and ( )BB
TV W T=  since ( )1 0E z =  and 

( )1 1V z = .

Intermediate values of the Brownian motion are not generated 
sequentially in time. Instead, the process recursively fills in midpoints of 
the largest remaining intervals. Suppose we already have values at two time 
points iT  and 1iT + , and we want to generate the value at a time ( )1,i it T T +∈
. This is done using:

( ) ( ) ( ) ( )( ) ( )11
1

1 1 1

# 23i ii i
i i k

i i i i i i

T t t TT t t TW t W T W T z
T T T T T T

++
+

+ + +

− −− −
= + + ⋅

− − −

where each ( )0,1kz ∼    is an independent standard normal random 
variable.

The first two terms represent a linear interpolation, while the third term 
introduces stochasticity consistent with Brownian motion’s properties. 
In theory, when ideal random numbers are used, the Brownian Bridge 
construction should maintain stability across dimensions without degradation 
as dimension increases. Minor deviations from the ideal variance are primarily 
attributed to residual correlations among quasi-random samples. That is, 
while Brownian bridge organizes the variance efficiently, quasi-random 
sequences like Sobol’ are not perfectly independent across dimensions, and 
small correlations can slightly affect variance. See (Sobol’ and Kucherenko, 
2005, Kucherenko and Shah, 2007 and Bianchetti et al., 2015) for more 
information.

In our numerical experiments, we observe that when Brownian Bridge 
construction is applied to Sobol’ sequences, the total variance v C+  remains 
very close to 1 across all dimensions (see Table 6). Even at dims 21201n = , the 
total variance is approximately 0.9989, reflecting agreement with theoretical 
expectations. These results validate that Brownian Bridge dramatically 
improves variance stability in high-dimensional settings, and small observed 
deviations are consistent with the minor correlation effects inherent to quasi-
random sequences rather than flaws in the Brownian Bridge algorithm itself.
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Table 6. Summary of Total Variance v C+  Under Different Enhancements

Method
Scrambling Enabled

Dimensions Variance Distortion Total

Sobol  100  1.000169  0.002468  1.002636  

Sobol  500  0.999994  -0.015104  0.984890  

Sobol  1000  0.999974  0.006229  1.006202  

Sobol  2000  1.000021  0.003872  1.003893  

Sobol  21201  0.999992  0.002492  1.002484 

Table 6. continued

Method Skip = 192  (524288 points)

Dimensions Variance Dimensions Total

Sobol  100  1.000097  0.001626  1.001723  

Sobol  500  1.000026  -0.000100  0.999926  

Sobol  1000  1.000002  -0.004902  0.995100  

Sobol  2000  1.000004  -0.014498  0.985507  

Sobol  21201  0.999997 -0.006642 0.993355  

Method
Brownian Bridge Enabled

Dimensions Variance Distortion Total

Sobol  100  0.999275  -0.000388  0.998886  

Sobol  500  0.999275  -0.000234  0.999040  

Sobol  1000  0.999278  0.000012  0.999290  

Sobol  2000  0.999277  -0.000324  0.998953  

Sobol  21201  0.999282  -0.000391  0.998892  

EFFECT OF SCRAMBLING, SKIPPING, AND BROWNIAN 
BRIDGE ON ASIAN OPTION PRICING

To evaluate the practical impact of various Sobol’ sequence enhancement 
techniques on financial simulations, we conducted a series of controlled 
experiments focusing on the pricing of a Geometric Asian option. The 
theoretical price, previously established in Section “geometric asian option 
pricing”, serves as a benchmark for assessing pricing accuracy.

In this study, we specifically tested the effects of scrambling, initial 
skipping, and Brownian bridge construction. Four different Sobol 
configurations are examined:
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	• Baseline: No scrambling, no Brownian Bridge.

	• Scrambled Sobol: Scrambling enabled, no Brownian Bridge.

	• Brownian Bridge: No scrambling, Brownian Bridge enabled.

	• Large Skip Only: Skip = 192  (524,288 points), No scrambling, no 
Brownian Bridge.

Each configuration, except the initial skip case, is evaluated over 16 
independent trials with 4096 paths per trial to ensure statistical consistency. 
The initial skip case configuration used a single batch of 4096 paths without 
repetition across trials.

The results, summarized in Table 7, reveal clear and consistent trends 
regarding the effectiveness of these enhancement techniques. Additionally, 
results for the standard Mersenne Twister simulation have been included in 
the table to provide reference for comparison with theoretical MC.

The baseline configuration, without scrambling or Brownian bridge, 
performs poorly: the mean estimated price is 0.23363, deviating significantly 
from the theoretical value. The maximum absolute error reaches to 0.33548, 
and the variance across trials is as high as 0.00755. These large errors are 
primarily attributed to structural artifacts and correlations inherent in the 
raw Sobol’ sequence.

Enabling scrambling leads to a substantial improvement. The mean price 
converges to 0.19775, with a maximum error of only 0.00908, and The 
variance is reduced significantly, reaching approximately to 51.542 10−×
. This supports theoretical findings that scrambling improves uniformity, 
reduces bias, and allows for effective variance estimation.

Applying Brownian bridge construction without scrambling further 
enhances performance. The mean price achieved is 0.19711, with a maximum 
absolute error of just 0.00121, and the variance is reduced to 72.4 10−× . This 
dramatic variance stabilization is consistent with the theoretical expectation 
that Brownian bridge reallocates variance contributions, improving the 
convergence behavior, particularly in high-dimensional settings.

Finally, applying a large skip of 192  points—without scrambling or 
Brownian bridge—also produces notably accurate results. The mean price 
is 0.19608, and the maximum absolute error is just 0.00107, indicating 
a meaningful reduction in simulation bias. While skipping alone may not 
match the variance stabilization achieved by Brownian bridge, it remains an 
effective and simple strategy for improving coverage and reducing structural 
artifacts in Sobol’-based simulations.
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Table 7. Comparison of Different Configurations in Geometric Asian Option Pricing

Configuration Mean Price Avg Error Max Error Variance

MT 0.19575  0.00597  0.01702  0.00005398  

No Scramble, No BB 0.23363  0.04617  0.33548  0.00755007  

Scramble = True, No BB 0.19775  0.00319  0.00908  0.00001542  

BB = True, No Scramble 0.19711  0.00041  0.00121  0.00000024  

Skip = 2¹⁹ (1 batch) 0.19608 0.00107  0.00107  N/A  

In summary, our experiments demonstrate that proper configuration of 
Sobol’ sequences is crucial for achieving high precision in QMC simulations 
in finance. Scrambling significantly reduces bias and variance, while 
Brownian Bridge construction further stabilizes variance by optimizing the 
allocation of variability across dimensions. Initial skipping alone can offer 
measurable improvements, but the best results are achieved when Brownian 
Bridge technique are employed. These findings reinforce the necessity of 
combining enhancement strategies to fully exploit the potential of quasi-
Monte Carlo methods in high-dimensional option pricing problems.

GPU-ACCELERATED SIMULATIONS

The use of GPUs in computational finance has been extensively explored 
in the literatüre (Dempster et al., 2018). The inherently parallel structure 
of Monte Carlo simulations for path-dependent option pricing makes them 
well-suited for GPU-enabled parallel computing frameworks like CUDA. In 
our study, we harness the parallel processing power of GPUs to enhance the 
speed and efficiency of option pricing computations.

In our implementation, we primarily utilize the CuPy library to perform 
all array operations, random number transformations, and Monte Carlo 
path simulations on the GPU. CuPy provides a highly efficient, NumPy-
compatible interface that allows straightforward migration of CPU-based 
codes to CUDA-enabled devices with minimal adjustments. PyTorch is 
employed exclusively for generating Sobol’ sequences directly on the GPU, 
as CuPy currently lacks a native GPU-based Sobol generator. By using 
PyTorch’s Sobol Engine for quasi-random number generation and relying on 
CuPy for the remaining computational tasks, we combine the strengths of 
both libraries to maximize performance and maintain numerical accuracy in 
high-dimensional Monte Carlo simulations.

This section presents a comparative evaluation of GPU-accelerated Monte 
Carlo and Quasi-Monte Carlo simulations in the context of pricing Geometric 



Bahri Tokmak / Ömür Ugur  |  39

Asian options (BS framework). To assess the impact of GPU acceleration, 
we conducted a series of controlled experiments focusing on runtime 
performance. Specifically, we benchmarked CPU-based versus GPU-based 
implementations across three scenarios: Mersenne Twister random number 
generation, Sobol’ sequence generation, and Sobol’ sequence generation 
combined with Brownian Bridge construction. These experiments are 
designed to isolate and quantify the computational advantages offered by 
GPU parallelization while keeping the pricing methodology and simulation 
parameters consistent. In all cases, CPU implementations are executed 
serially and serve as a baseline for evaluating the speedup and efficiency 
improvements achieved through GPU parallelization.

Algorithm 2 (see Figure 3) models the core simulation loop for Monte 
Carlo and Quasi-Monte Carlo simulations, where random numbers are 
either sampled from a standard normal distribution (for Mersenne Twister) 
or generated via Sobol’ sequences followed by an inverse transformation. 
Each path is constructed through cumulative summation of the simulated 
increments and subsequently used to compute the option payoff. Algorithm 
3 (see Figure 4) specifically describes the construction of Brownian Bridge 
increments using Sobol’ sequences, to allocate early Sobol’ dimensions to 
the most critical parts of the simulated Brownian motion path.

Figure 3. Illustrative figure of per-thread vectorized path simulation workflow using 
Mersenne Twister or Sobol’ sequences
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Figure 4. Illustration of Brownian Bridge path generation based on Sobol-normal 
samples

We also remark that Table 8 summarizes the execution times recorded 
for each simulation setup under a single batch execution.

Table 8. Execution time comparison for MC and QMC simulations (in seconds)

Method Implementation Time (s)

MT  CPU  3.148  

MT  GPU  0.095 

Sobol  CPU  4.889  

Sobol  GPU  0.570  

Sobol + BB  CPU  71.266  

Sobol + BB  GPU  5.788  

Sobol + Scramble  CPU  5.582  

Sobol + Scramble  GPU  1.085  

Sobol + (Skip = 2¹⁹)  CPU  18.108  

Sobol + (Skip = 2¹⁹) GPU  13.552  

The results in Table 8 highlight the considerable computational advantages 
offered by GPU acceleration across various simulation methods. Among 
these, the most significant improvement is observed in standard Monte 
Carlo simulations using Mersenne Twister, where the GPU implementation 
completes the task in just 0.095 seconds, compared to 3.148 seconds on 
the CPU—a 33-fold speedup. This dramatic reduction demonstrates the 
efficiency of GPU-based parallel random number generation for large-scale 
simulations.
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We next examine the performance of quasi-Monte Carlo simulations 
using Sobol’ sequences. The GPU implementation achieves a runtime of 0.57 
seconds, offering an 8.5-fold speedup relative to its CPU counterpart. This 
improvement underscores the effectiveness of GPU acceleration even when 
using low-discrepancy sequences, which are traditionally more structured 
and less amenable to parallelism than pseudo-random number generators. 
In the scrambled Sobol case, GPU runtime increases modestly to 1.085 
seconds due to the additional computational cost of digital scrambling, yet 
it remains significantly faster than CPU execution.

Brownian Bridge construction, when applied alongside Sobol’ sequences, 
introduces additional computational overhead due to its recursive midpoint 
structure. Nonetheless, the GPU implementation reduces runtime from 
71.266 seconds on the CPU to 5.788 seconds, achieving a 12-fold 
acceleration. Despite this gain, BB simulations remain more time-consuming 
overall, as the recursive dependencies inherently limit parallelism on GPU 
architectures.

A more detailed breakdown of execution times reveals the primary 
computational bottlenecks in each configuration. For Sobol’ simulations on 
GPU, approximately 86% of the total time is spent on generating quasi-
random numbers, while the remaining time is used for path construction. In 
the scrambled Sobol case, the extra 0.515 seconds of overhead stems from 
scrambling operations. In contrast, applying a large skip (e.g., 192 ) leads to 
a total runtime of 13.552 seconds on GPU, indicating that while skipping 
improves sequence quality, it is computationally inefficient in practice.

In Brownian Bridge simulations, the performance bottleneck shifts 
away from number generation. Approximately 90% of the GPU runtime is 
spent on recursive midpoint interpolation, while only about 8% is used for 
generating the Sobol’ sequence. This shift clearly shows that the recursive 
structure of BB—not the sampling method—is the dominant contributor to 
total execution time in this configuration.

These observations suggest that the combination of CuPy and PyTorch-
--both high-level GPU libraries---offers an effective and practical solution 
for accelerating Monte Carlo and Quasi-Monte Carlo simulations without 
requiring low-level custom CUDA kernel programming. High-level 
libraries like CuPy and PyTorch handle kernel generation and GPU memory 
management automatically, whereas low-level CUDA programming 
requires manually writing and optimizing custom kernels. Using such high-
level libraries allows for quick implementation while maintaining sufficient 
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computational performance for pricing single exotic options, such as the 
Geometric Asian option considered in this study.

However, it is important to note that this analysis focuses on a single 
product type. In scenarios where portfolios of multiple exotic options are 
to be priced, or risk metrics such as Value-at-Risk (VaR) and Conditional 
Value-at-Risk (CVaR) are to be computed, the overall dimensionality (i.e., 
the total number of time steps × assets) —and thus the computational 
complexity— can become extremely large. In such cases, relying solely 
on high-level libraries may no longer be sufficient, and more optimized 
implementations involving explicit kernel configurations could be necessary 
to fully exploit the available GPU resources.

Lastly, the remarkable speedup observed with GPU-accelerated 
Mersenne Twister simulations suggests that further studies combining 
Mersenne Twister random number generation with advanced variance 
reduction techniques under full GPU parallelization could make valuable 
contributions to the computational finance literature. Moreover, exploring 
algorithmic modifications to the Brownian Bridge construction that improve 
its compatibility with parallel architectures presents another promising 
direction for enhancing the efficiency of quasi-Monte Carlo methods.

CONCLUSION

This study provides a comprehensive computational analysis of Quasi-
Monte Carlo methods using Sobol’ sequences in comparison to traditional 
Monte Carlo simulations based on the Mersenne Twister generator. While 
Sobol’ sequences are theoretically known to offer superior convergence 
rates, our investigation reveals notable challenges when applying them to 
high-dimensional problems—arising, for instance, in financial simulations 
such as Geometric Asian option pricing.

The theoretical background and related literature highlight the known 
strengths of Sobol’ sequences, but also hint at their sensitivity to dimension 
ordering and structural artifacts. Through one- and multi-dimensional 
integral tests, we validate the accuracy and convergence behavior in integral 
calculations using Sobol’ sequences. However, when transitioning to the 
high-dimensional setting of Asian option pricing, significant deviations are 
observed, especially in baseline Sobol configurations.

To investigate the source of the observed discrepancies, we conduct 
detailed moment and correlation analyses; they reveal a persistent bias 
inherent in the incremental construction of Sobol’ sequences. This 
bias is found to be effectively mitigated through various enhancement 
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techniques, including scrambling, initial skipping, and Brownian Bridge 
construction. Among these, Brownian bridge yields the most accurate 
option price estimates, while scrambling offers both improved accuracy and 
straightforward parallel implementation. Although initial skipping alone 
provides noticeable improvements, its overall effectiveness is more limited 
relative to Brownian Bridge technique.

Finally, we implement GPU-accelerated versions of all simulation 
methods, achieving substantial speedups across all configurations. The most 
striking gains are observed in Mersenne Twister-based simulations, where 
GPU parallelism yields a 33-fold runtime reduction of the base case. Sobol 
with Brownian Bridge simulations also benefits significantly from GPU 
acceleration, though to a lesser extent due to algorithmic limitations in 
parallelizing recursive path construction.

Overall, our findings reinforce the importance of proper configuration 
when applying QMC methods to high-dimensional problems. Moreover, 
they highlight the combined value of theoretical insight, algorithmic 
enhancement, and hardware-level acceleration in achieving both numerical 
precision and computational efficiency in modern financial simulations.

FUTURE WORK

The findings of this study suggest several directions for future research 
that could further enhance the efficiency, accuracy, and applicability of GPU-
accelerated Monte Carlo and Quasi-Monte Carlo methods in computational 
finance.

First, the remarkable performance gains achieved through GPU-accelerated 
Mersenne Twister (MT) simulations indicate a valuable opportunity for 
further enhancement. In particular, the use of high-level GPU libraries such 
as CuPy enables the realization of substantial speedups without requiring 
low-level CUDA programming, making efficient pseudo-random number 
generation easily accessible within Python environments. While MT-based 
simulations offer excellent computational speed due to their lightweight 
nature, they are not inherently variance-reducing. Therefore, integrating 
MT with advanced variance reduction techniques—such as control variates, 
stratification, or antithetic sampling—under full GPU parallelization could 
substantially improve simulation accuracy without sacrificing computational 
efficiency. This combination may serve as a practical and scalable alternative 
to Quasi-Monte Carlo methods in applications.

Second, although the Brownian Bridge construction is a well-established 
variance reduction technique, its recursive nature limits full parallelization, 
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especially on GPU architectures. One fruitful direction for future work would 
be to investigate alternative algorithmic structures or approximations that 
retain the variance allocation benefits of Brownian Bridge while reducing 
memory bottlenecks or enabling greater parallel throughput. Additionally, 
it would be worth exploring whether custom low-level CUDA kernel 
implementations—specifically designed to optimize memory access and 
thread scheduling—could further enhance the performance of Brownian 
Bridge-based simulations beyond what is achievable with high-level GPU 
libraries alone.

Third, some studies, particularly in the context of scrambled Sobol’ 
sequences, caution that skipping initial points may interfere with the 
randomized net structure and degrade convergence (Owen, 2021). 
Nonetheless, other works such as (Radović et al., 1996) report reduced 
integration error when early low-quality points are avoided. Our results 
support this view in the non-scrambled case: skipping a large number of 
initial points (e.g., 192 ) improved accuracy in high-dimensional simulations 
without Brownian Bridge. In addition to the interaction between skipping 
and scrambling, the question of how many points should be skipped remains 
problem-dependent, underscoring the need for more systematic analysis 
across different integrands and dimensionalities to better understand when 
skipping improves or degrades performance.
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Appendix

GPU and CUDA specifications

CUDA toolkit version 12.6 was used for all of the simulations. The 
online documentation for this version is available at (https://docs.nvidia.
com/cuda/archive/12.6.0/index.html). All simulations were conducted on a 
single NVIDIA GeForce RTX 4070 Laptop GPU. The specifications of the 
device are summarized in Table 9.

Table 9. Hardware specifications of the GPU used in simulations (NVIDIA GeForce 
RTX 4070)

Title Title

Device Name  NVIDIA GeForce RTX 4070 Laptop 
GPU  

CUDA Driver / Runtime Version  12.6 / 12.6  

Compute Capability  8.9  

CUDA Cores  4608  

Global Memory  8 GB (8585 MB)  

Shared Memory per Block  49 KB  

Constant Memory  64 KB  

L2 Cache Size  32 MB  

Memory Clock Rate  8001 MHz  

Memory Bus Width  128-bit  

GPU Max Clock Rate  2175 MHz  

Maximum Texture Dimension (1D)  131072  

Maximum Texture Dimension (2D)  (131072, 65536)  

Maximum Texture Dimension (3D)  (16384, 16384, 16384)  

Maximum Threads per Multiprocessor  1536  

Maximum Threads per Block  1024  

Max Block Dimensions (x, y, z)  (1024, 1024, 64)  

Max Grid Dimensions (x, y, z)  (2147483647, 65535, 65535)  

Warp Size  32  

Support for Concurrent Copy and 
Execution  

Yes  

Unified Memory (UVA) Support  Yes  

ECC Support No  

Python Environment and Library Versions
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All simulations were implemented using Python 3.12.4, supported by a 
set of high-performance numerical and GPU-accelerated libraries. The core 
packages and their versions are summarized in Table 10.

Table 10. Python Environment and Library Versions

Library Version

Python 3.12.4

NumPy 1.26.4

SciPy 1.13.1

CuPy 13.3.0

PyTorch 2.5.1
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