
15

Chapter 2

A Computational Study on Sobol’ Sequences

Bahri Tokmak1

Ömür Ugur2

Abstract

This study presents a computational comparison between Quasi-Monte
Carlo (QMC) methods based on Sobol’ sequences and traditional Monte
Carlo (MC) methods using the Mersenne Twister (MT) generator. While
Sobol’ sequences are widely recognized for outperforming MT in terms of
convergence, our results reveal notable deficiencies when applied to high-
dimensional Geometric Asian option pricing. To investigate this behavior,
we conduct moment and correlation analyses, identifying a bias in the
incremental construction of Sobol’ paths—a bias that is absent in MT and
can be alleviated through skipping initial points, scrambling, or Brownian
Bridge (BB) techniques. All simulations are implemented in Python, with
additional acceleration achieved through Graphics Processing Unit (GPU)-
based parallel computing environments.

INTRODUCTION

The motivation for this work stems from the complexities of pricing exotic
derivatives under models demanding numerous time steps, thereby creating
highly dimensional Brownian motion trajectories. In financial engineering,
it is often impossible to derive closed-form solutions for the valuation
of financial products, especially those categorized as exotic options. As a
result, numerical techniques—and Monte Carlo (MC) simulation methods
in particular—play a critical role. As discussed extensively by Glasserman
(Glasserman, 2014), the appeal of Monte Carlo methods lies in their general
applicability, especially in cases where analytical solutions are infeasible
or unavailable. In MC simulations, the proper use of random number

1	 Middle East Technical University, Institute of Applied Mathematics, Scientific Computing,
Turkey

2	 Middle East Technical University, Institute of Applied Mathematics, Scientific Computing,
Turkey

https://doi.org/10.58830/ozgur.pub862.c3485

16  |  A Computational Study on Sobol’ Sequences

generators is vital, as incorrectly generated random sequences can lead to
severe mispricing of financial products, potentially resulting in significant
financial losses for institutions and individuals involved in their trading.

Traditional Monte Carlo method relies on pseudo-random number
generators (PRNGs), such as the widely used Mersenne Twister, to simulate
stochastic processes. However, the convergence rate of classical MC is
typically ()1/2N− , where N is the number of samples. This achieving high
accuracy requires generating millions of paths, which can be computationally
intensive and slow to converge (Glasserman, 2014 and Jäckel, 2002).

Quasi-Monte Carlo (QMC) methods aim to improve upon this by
replacing pseudo-random numbers with deterministic low-discrepancy
sequences, such as Sobol’ or Halton sequences. These sequences are
designed to fill the simulation space more evenly, reducing clustering and

improving convergence to approximately ()log dN
N

 
 
 
 

 as stated in (Jäckel,

2002). In particular, Sobol’ sequences have gained significant attention due
to their simplicity, extensibility in high dimensions, and well-understood
mathematical properties.

Despite their theoretical advantages, QMC methods are sensitive to
implementation details. As noted by Glasserman (Glasserman, 2004),
implementation choices such as scrambling—to improve uniformity and
mitigate artifacts—and the ordering of dimensions can significantly influence
the accuracy and stability of QMC results. Additionally, techniques like
Brownian bridge (BB) construction are often employed in QMC to reorder
variance allocation in time-dependent simulations, thereby improving
efficiency for path-dependent derivatives.

This study provides a practical and empirical evaluation of Sobol’
sequences in high-dimensional Monte Carlo simulations. We benchmark the
performance of Sobol implementation against the Mersenne Twister, across
a set of controlled experiments that include:

	• One- and multi-dimensional integration tests

	• Geometric Asian option pricing under a geometric Brownian motion
model

	• Moment and correlation analysis among Sobol’ dimensions

	• Effects of scrambling, skipping initial points, and Brownian bridge

	• Graphics Processing Unit (GPU)-accelerated simulations

Bahri Tokmak / Ömür Ugur  |  17

Our main objective is to determine under what conditions QMC methods,
particularly Sobol’ sequences, truly outperform traditional pseudo-random
simulations in practice, and to investigate the performance gains offered
by GPU-based parallel computation in high-dimensional Monte Carlo
simulations.

BACKGROUND AND RELATED WORK

Monte Carlo Methods

Monte Carlo methods are widely used to approximate expectations by
drawing random samples from a given probability distribution (Glasserman,
2004). These methods operate by repeatedly sampling and evaluating a
function of interest, thereby estimating integrals or probabilities numerically.
As the number of samples increases, the estimate converges to the true
value by virtue of the law of large numbers. Furthermore, the central
limit theorem enables quantification of the uncertainty in the estimate by
providing asymptotic confidence intervals and standard errors.

To illustrate the method, let us use the example from Section 1.1.2 of
(Glasserman, 2004). Consider the pricing of a European call option using the
Black Scholes framework. The payoff of the option depends on the terminal
value of the underlying stock, which follows a lognormal distribution as
a result of modeling the asset price dynamics with a Geometric Brownian
Motion (GBM). By generating standard normal samples, we can simulate
the terminal stock price and compute the discounted payoff. The process
is summarized in Algorithm 1 (see Figure 1), which shows the basic steps
for estimating the expected present value of the option using Monte Carlo
simulation. In this algorithm, r denotes the risk-free interest rate, ó is the
volatility of the underlying asset, 0S ​is the initial asset price, K is the strike
price, T is the time to maturity, and ()0,1iZ ∼  represents independent
standard normal variables.

Figure 1. Monte Carlo estimation of a European call option

18  |  A Computational Study on Sobol’ Sequences

In classical MC simulation, PRNGs such as the widely used Mersenne
Twister are employed to sample independent and identically distributed
random variables from target distributions. Although these methods exhibit
a convergence rate of ()1/2N − , their efficiency diminishes in problems that
require high precision or suffer from the curse of dimensionality. See, for
instance (Glasserman, 2004 and Jäckel, 2002).

To address these limitations, QMC methods utilize low-discrepancy
sequences (LDS) to fill the integration domain more uniformly than pseudo-
random samples. This deterministic structure can improve the convergence

rate to ()log dN
N

 
 
 
 

 for d-dimensional integrals under sufficient smoothness

conditions (Glasserman, 2004, Jäckel, 2002 and Sobol’ and Kucherenko,
2005). The discrepancy of a point set intuitively measures its deviation from
uniformity, where lower discrepancy yields better space-filling.

Pseudo-Random Generators: Mersenne Twister

The Mersenne Twister is one of the most commonly used PRNGs
due to its long period 199372 1− , fast generation speed, and guaranteed
equidistribution in at least 623 dimensions (Jäckel, 2002). While its output
is not truly random, it produces sequences that behave uncorrelated and
independent for practical purposes, making it suitable for many high-
dimensional Monte Carlo simulations.

In comparative studies, MT serves as a baseline for measuring QMC
effectiveness, particularly in terms of convergence rate, variance, and
dimensional correlation.

Low-Discrepancy Sequences: Sobol’

One of the most widely adopted low-discrepancy sequences in QMC
methods is the Sobol’ sequence, originally introduced in (Sobol’, 1967) by I.
M. Sobol’ in 1967 and further developed in 1976. See (Sobol’, 1976). These
sequences are constructed using direction numbers and Gray code ordering
to ensure uniform coverage over the unit hypercube [)0,1 d

. Due to their
simplicity of construction, scalability to high dimensions, and successful
applications in finance, Sobol’ sequences have become a standard choice in
QMC simulations (Jäckel, 2002).

Despite their advantages, the effectiveness of Sobol’ sequences in
high-dimensional settings is not always guaranteed. High-dimensional
implementations, such as BRODA’s Sobol65536 generator as documented
in (Broda, 2025), aim to scale QMC techniques to tens of thousands of

Bahri Tokmak / Ömür Ugur  |  19

dimensions. However, empirical studies (Sobol’, 1967 and Silva and
Barbe, 2005) have observed issues such as dimensional correlation and
loss of uniformity, which can negatively impact simulation accuracy. This
is especially problematic in financial applications, where small deviations
in distribution quality may lead to significant pricing and risk estimation
errors.

Several practical enhancements have been proposed to improve the
robustness of Sobol’ sequences. Among these, three key factors are frequently
highlighted:

	• The use of scrambling, which introduces controlled randomness to
eliminate structural artifacts and enable error estimation (Owen,
1998)

	• Proper dimensional ordering, which assigns the most influential
variables (if known) to the earliest dimensions, where Sobol’ sequences
typically exhibit better uniformity properties (Silva and Barbe, 2005)

	• Careful treatment of the initial points, especially the very first point
(typically ()0,0, ,0… (Owen, 2021)

Scrambling was first introduced by Owen (Owen, 1998) to address
the deterministic structure of low-discrepancy sequences, which limits
error estimation through confidence intervals. In scrambling, the digits of
the b-ary expansion of each point are randomly permuted in a recursive
and structured manner. At the j-th digit, there are 1jb − partitions, each
independently shuffled. This technique improves space-filling properties
while retaining the low-discrepancy nature of the original sequence.

Another discussed topic in literature is the practice of skipping initial
Sobol’ points (also known as fast-forwarding), which involves discarding
the first few values of the sequence—typically starting from the all-zero point
()0,0, ,0… . This is often motivated by the observation that early Sobol’
points can lead to undesirable properties, particularly when passed through
nonlinear transformations such as the inverse normal CDF 1Ö− , to produce
normally distributed variates. Under certain conditions, skipping has been
shown to reduce numerical integration error, albeit without changing its
asymptotic order (Radovic et al., 1996). However, the optimal number
of points to skip is problem-dependent and cannot easily be determined.
Moreover, as Owen (Owen, 2021) notes, indiscriminate skipping—
especially when combined with scrambling—may disrupt the digital net
structure of the sequence and lead to worse convergence behavior. As such,

20  |  A Computational Study on Sobol’ Sequences

the handling of initial points demands careful consideration and should
ideally be validated within the specific simulation context.

A more algorithmic enhancement that complements Sobol’ sequences
is the Brownian bridge construction, a technique designed to improve the
dimensional efficiency of path simulations. Brownian Bridge reorders the
discretization of stochastic processes to concentrate variance in the early
time steps. This reordering aligns well with Sobol’ sequences, whose early
dimensions are more uniformly distributed, allowing the most critical
components of the process to benefit from the best uniformity. As a result,
Brownian bridge improves both dimensional ordering and convergence
properties (Glasserman, 2004, Kucherenko and Shah, 2007 and Bianchetti
et al., 2015).

Given the high computational demands of large-scale QMC simulations,
leveraging parallel computing architectures has become essential. In
particular, GPUs offer a powerful platform for accelerating simulations
due to their high degree of parallelism. Recent work by Bernemann et al
(Bernemann et al., 2011) demonstrated the feasibility and effectiveness of
GPU-accelerated Sobol-based simulations for pricing exotic derivatives and
performing calibration tasks.

In this study, we build upon these methodological advances by evaluating
GPU-based implementations of Sobol’ and Mersenne Twister generators.
Our focus is on understanding both the theoretical conditions and practical
configurations under which Sobol’ sequences, possibly enhanced with
Brownian Bridge and scrambling, can outperform traditional pseudo-
random approaches. The ultimate goal is to achieve high numerical accuracy
while benefiting from the significant speedups offered by parallel hardware.

METHODOLOGY

This section outlines the computational setup, simulation framework,
and evaluation metrics used in this study to compare Sobol-based QMC
methods with classical MC methods using PRNGs, specifically the Mersenne
Twister.

Tools and Computational Environment

All experiments are implemented in Python 3.12 and executed on a
machine equipped with an NVIDIA GPU (CUDA enabled). The following
libraries are used for simulation and numerical computation:

	• scipy: To generate low-discrepancy Sobol’ sequences, with support for
scrambling and skipping.

Bahri Tokmak / Ömür Ugur  |  21

	• numpy: For numerical operations and random number generation
using Mersenne Twister.

	• cupy: To enable GPU-accelerated vectorized simulation paths.

	• torch: Used specifically to generate Sobol’ sequences directly on the
GPU, as CuPy does not provide native support for GPU-based quasi-
random sequence generation

The Sobol class in Scipy incorporates several important features for high-
dimensional QMC simulations. It supports up to 21201 dimensions by
utilizing precomputed direction numbers generated by Kuo et al. (Joe and
Kuo, 2008). This capability is particularly useful in financial applications
involving long time horizons, such as Asian options with daily monitoring
over extended periods.

The implementation also includes a two-stage scrambling technique
(Matousek, 1998) to enhance uniformity and reduce structural artifacts in
the sequence. Such scrambling consists of:

	• Left Linear Matrix Scrambling (LMS), where direction numbers are
transformed via a non-singular lower-triangular matrix to maintain
low discrepancy while improving uniformity.

	• Digital Random Shift, which applies a uniform digital shift across all
dimensions to introduce randomness.

By combining these features—extended dimensional support and
scrambling techniques—Scipy Sobol implementation is well-suited for
high-dimensional simulations in financial engineering applications involving
complex payoff structures.

Experimental Design

To provide a fair comparison between PRNG-based Monte Carlo and
Sobol-based QMC, each experiment follows the same simulation logic,
differing only in the source of randomness and variance reduction techniques.
The following factors are controlled across experiments:

Sample size: Fixed to powers of two (e.g., 4096, 19 202 , 2) to suit Sobol’s
structure.

Dimensionality: Ranges from 1D to 21201D depending on the test,
constrained by the maximum dimensionality supported by Python. In
practical scenarios such as Asian option pricing, the number of dimensions
corresponds to the number of discretization steps over time (e.g., 3650 for
10 years of daily steps).

22  |  A Computational Study on Sobol’ Sequences

Skip values: Various skip levels are tested (e.g., 1024, 192) to investigate
convergence sensitivity.

Scrambling: Tests are conducted to assess the impact of randomized
Sobol’ sequences.

Brownian Bridge: Time steps are simulated using Brownian Bridge
construction to reallocate variance into lower dimensions.

GPU usage: High-dimensional path simulations and payoff evaluations
are accelerated using GPU parallelization to reduce computation time.

Evaluation Metrics

To assess simulation accuracy and efficiency, the following quantitative
metrics are recorded, where is the estimated value from trial i, and trueV
is the known theoretical value (e.g., for Asian options), and N is the sample
size (or, number of replications):

The elapsed time is computed using Python’s time.time() function
before and after simulation blocks. We remark that in high-dimensional
tests, correlation matrices and variance of intermediate quantities are also
recorded to study internal simulation stability. By standardizing the above
setup, we ensure reproducibility and comparability across different random
number sources, variance reduction techniques, and hardware acceleration
strategies.

INTEGRAL TEST

To systematically evaluate the numerical accuracy of QMC and traditional
MC methods, we conduct a series of one-dimensional and multi-dimensional
integration experiments.

Bahri Tokmak / Ömür Ugur  |  23

One-Dimensional Integral Test

To assess the basic numerical behavior of QMC methods in low-
dimensional settings, we begin by evaluating a classical family of one-
dimensional integrals of the form

for which the analytical value is known to be exactly one for all integer
values of n . This benchmark serves as a reliable testbed for quantifying
integration error and convergence characteristics of different sampling
methods, including pseudo-random sequences and low-discrepancy
sequences such as Sobol’.

Each integral is approximated numerically using 4096 sample points.
The performance of both methods is compared by computing the absolute
error between the estimated and exact values across the tested range of n.
For each n, the maximum and mean absolute errors are recorded in Table 1.

Table 1. Absolute errors for one-dimensional monomial integrals using Sobol and MT

n Sobol Max Sobol Mean MT Max MT Mean

1 0.00018 0.00012 0.03549 0.00716

2 0.00028 0.00018 0.05918 0.01114

3 0.00037 0.00024 0.07578 0.01416

4 0.00046 0.00031 0.08617 0.01666

5 0.00055 0.00037 0.09518 0.01884

6 0.00064 0.00043 0.10459 0.02079

7 0.00073 0.00049 0.11263 0.02256

8 0.00083 0.00055 0.11959 0.02421

9 0.00092 0.00061 0.12588 0.02574

10 0.00101 0.00067 0.13414 0.02720

11 0.00110 0.00073 0.14182 0.02858

12 0.00119 0.00079 0.14896 0.02991

13 0.00128 0.00085 0.15560 0.03117

14 0.00138 0.00092 0.16178 0.03239

15 0.00147 0.00098 0.16757 0.03357

16 0.00156 0.00104 0.17320 0.03470

17 0.00165 0.00110 0.17849 0.03580

18 0.00174 0.00116 0.18347 0.03687

19 0.00183 0.00122 0.18818 0.03791

20 0.00193 0.00128 0.19262 0.03892

24  |  A Computational Study on Sobol’ Sequences

The results demonstrate that Sobol’ sequences yield significantly lower
integration error compared to Mersenne Twister across all values of n. In
particular, the maximum and mean absolute errors associated with Sobol’ are
consistently an order of magnitude smaller than those of MT, especially for
higher-degree monomials as clearly seen in Table 1. These findings reinforce
the established theoretical understanding that low-discrepancy sequences
exhibit superior performance in deterministic numerical integration,
especially in low-dimensional settings.

Multi-Dimensional Integral Test

To assess the accuracy and robustness of QMC methods in higher
dimensions, we conducted a series of experiments based on the family of
multi-dimensional integrals given in Equation 5:

()() ()
1 1 1

10 0
1 0.5 1# 5j n

i i j j ni j
c x dx dx+ −

+ −=
+ ⋅ − =∏∫ ∫ 

evaluated for various values of j , n , and constant coefficients ic The
integral is designed to emphasize the role of boundary sampling: the larger
the values of ic , the more weight is placed on the integrand near the edges
of the []0,1 n

 hypercube. This makes it an ideal stress test for comparing
Sobol’ sequences to MT, especially in terms of their ability to adequately
capture extreme regions of the domain.

We tested several values of n ranging from 3 to 21,201 dimensions. In the
small and moderate dimensional cases (21201)n< , we employed a sliding
window approach over a large Sobol’ matrix of shape () 4096 21201×
: for each offset j, we extracted n consecutive dimensions, computed the
numerical integral, and recorded the corresponding absolute error. In the
full-dimensional case (21201n=), a batch-based method is adopted. We
performed 100 independent simulations of 4096 Sobol’ samples, each
preceded by a skip of 4096j ⋅ , and reported the maximum and average
absolute error across batches.

All Sobol’ sequences are generated with scrambling disabled and
appropriate skip values. Pseudo-random samples are initialized with batch-
specific seeds to ensure independence. Each integrand is evaluated, having
fixed ic c= , as:

() ()() ()1
1 0.5 # 6n

ii
f x c x

=
= + ⋅ −∏

The results are summarized in Table 2, which reports the observed
maximum and mean absolute errors for both Sobol and Mersenne Twister
methods across different configurations.

Bahri Tokmak / Ömür Ugur  |  25

Table 2. Multi-dimensional integral errors for various (),n c combinations

n and c Sobol Max
Error

Sobol Mean
Error

MT Max
Error

MT Mean
Error

3 and 0.5 0.0157 0.00023 0.0153 0.0031

5 and 0.5 0.0192 0.00047 0.0218 0.0041

5 and 0.5 (skip 2¹⁹) 0.0192 0.00027 0.0218 0.0041

5 and 0.3 0.0068 0.00023 0.0132 0.0024

30 and 0.3 0.0258 0.00263 0.0334 0.0063

1000 and 0.01 0.0021 0.00073 0.0042 0.0014

21201 and 0.0002 0.000068 0.000004 0.0004 0.0001

These results clearly demonstrate the advantage of Sobol’ sequences,
particularly as dimensionality increases and the coefficient c decreases.
In low-dimensional settings, both methods perform reasonably well,
although Sobol still shows a lower mean absolute error. However, in
high dimensions—especially with 21201 n = and 0.0002c = —Sobol
significantly outperforms Mersenne Twister, with an error reduction factor
exceeding 25 times.

An additional experiment applying a large skip of 192 in the 5, 0.5 n c= =
case also confirmed that skipping early Sobol’ points leads to meaningful
error reduction (from 0.00047 to 0.00027 in average error), without
affecting the maximum deviation. See Table 2, thereby, we may claim that
skipping can be beneficial for high-accuracy results.

Overall, these findings validate the superiority of Sobol’ sequences equily
well also in high-dimensional numerical integration.

GEOMETRIC ASIAN OPTION PRICING

To investigate the comparative performance of QMC methods and
classical MC methods in a realistic financial context, we conducted a series
of experiments pricing a geometric Asian call option under a Geometric
Brownian Motion (GBM) framework: Black-Scholes setting.

The underlying asset price tS is modeled according to the classical GBM
process, defined by the stochastic differential equation:

()# 7t t t tdS rS dt S dWσ= +

26  |  A Computational Study on Sobol’ Sequences

where r denotes the constant risk-free rate, is the constant volatility
of the asset, and tW represents a standard Brownian motion. Discretization
is performed using a log-Euler scheme:

where ()0,1iz ∼  are independent standard normal variates generated
via either pseudo-random or quasi-random sequences.

The geometric Asian call option payoff is based on the geometric mean
of asset prices over discrete monitoring dates:

() () ()
1/

1
Payoff max GA ,0 , where GA # 9

i

nn
ti

K S
=

= − = ∏
with K denoting the strike price. In our experimental setup, we set

and 1 .K = The maturity T corresponds to 21201
timesteps, equivalent to 10 monitoring points per day over approximately
5.8085 years:

(), 1, , 21201# 10
365 10i

it i= = …
×

The theoretical value of the geometric Asian option is available in closed
form. It is computed using an adjusted volatility and maturity:

yielding the option price:

where the Black-Scholes pricing formula for European call options (Black
and Scholes, 1973) is employed:

Bahri Tokmak / Ömür Ugur  |  27

Here, denotes the cumulative distribution function (CDF) of the
standard normal distribution.

For the option under consideration the theoretical formula returns
0.19715. Simulations are conducted using two approaches: Sobol’
sequences, and Mersenne Twister based pseudo-random numbers. Each
simulation consists of 16 independent trials, each using 4096 paths, leading
to a total of 65536 simulated paths per method.

The Mersenne Twister results yields a mean estimated option price
of 0.19575, compared to the theoretical price of 0.19715. The average
absolute error across trials is 0.00597, with a maximum absolute error of
0.01702. The variance of the estimated prices is 0.00005398, corresponding
to a standard deviation of 0.00735. These results indicate a relatively tight
distribution of price estimates around the theoretical value.

In contrast, simulations using the Sobol’ sequence produced a mean
estimated option price of 0.23363, which deviates from the theoretical
price of 0.19715 by an absolute difference of 0.03648. Despite using a large
number of simulated paths (65536), this level of discrepancy is considered
suboptimal, as such sample sizes are typically expected to yield tighter
convergence. The average absolute error across trials is 0.04617, and the
maximum absolute error reaches to 0.33548. The price estimates shows a
variance of 0.00755007 and a standard deviation of 0.08689. Furthermore,
the observed minimum and maximum prices (0.18357 and 0.53263,
respectively) indicate a much wider dispersion compared to the Mersenne
Twister results, reflecting greater instability and less reliable convergence
behavior.

This discrepancy in performance prompted a deeper investigation into
the underlying causes of the observed deficiencies in the Sobol’ sequence
simulations. To this end, the next section conducts a series of statistical
analyses aimed at diagnosing potential issues inherent to the structure of
Sobol-generated paths. In particular, we focus on two key diagnostic tools:
moment analysis, to evaluate the marginal distributions of individual Sobol’
dimensions, and correlation analysis, to detect any unexpected dependencies
between dimensions that could impair the sequence’s uniformity and
effectiveness.

28  |  A Computational Study on Sobol’ Sequences

ROOT CAUSE ANALYSIS OF THE OBSERVED
DISCREPANCIES

Moment Analysis of Sobol’ Sequences

In order to better understand the statistical properties of Sobol’ sequences
in high-dimensional simulations, we perform a detailed investigation of
the first four moments --- mean, variance, skewness, and kurtosis --- of the
sequences. Two cases are analyzed: the raw Sobol’ sequences on [)0,1 , and
their transformation into standard normal space via the inverse cumulative
distribution function (ICDF), .

We generated samples at sizes 122 , 162 , 20 242 , 2 and 282 , corresponding
to 4096, 65536, 1048576, 16777216, and 268435456 samples, respectively.

For the raw Sobol’ samples (i.e., before applying ICDF), the results are
summarized below and depicted in Table 3.

	• The sample mean converges to 0.5 as the number of samples increases,
aligning with the expected value for a uniform distribution.

	• The sample variance also converges to
1 0.08333333

12
≈ , the theoretical

variance of the uniform distribution.

	• The skewness remaines effectively zero across all sample sizes,
indicating symmetric distributions.

	• The kurtosis stabilizeds at 1.8, as theoretically expected for uniform
random variables.

Table 3. Moments of Raw Sobol’ Sequence [)()0,1

samplesn Mean Variance Skewness Kurtosis

2¹² (4096) 0.499969 0.08333329 1.06 × 10⁻¹⁰ 1.79999865

2¹⁶ (65536) 0.499992 0.08333333 6.29 × 10⁻¹² 1.79999999

2²⁰ (1048576) 0.499999 0.08333333 2.74 × 10⁻¹⁴ 1.8

2²⁴ (16777216) 0.499999 0.08333333 1.08 × 10⁻¹⁶ 1.8

2²⁸ (268435456) 0.5 0.08333333 −2.77 × 10⁻¹⁹ 1.8

After applying the inverse cumulative normal function to transform
the Sobol’ points to standard normal deviates, the moments shown in Table
4 are observed to behave as follows:

	• The mean converges rapidly towards 0, as expected for a standard
normal distribution.

Bahri Tokmak / Ömür Ugur  |  29

	• The variance converges to 1, as theoretically expected.

	• The skewness remaines near 0, indicating symmetry of the resulting
normal distributions.

	• The kurtosis approaches 3, matching the kurtosis of a standard normal
distribution.

Table 4. Moments of Transformed Sobol’ Sequence ()()0,1

samplesn Mean Variance Skewness Kurtosis

2¹² (4096) −2.23 × 10⁻⁴ 0.99908158 −0.002273 2.97942869

2¹⁶ (65536) −5.99 × 10⁻⁵ 0.99993473 −0.000829 2.99790646

2²⁰ (1048576) −4.45 × 10⁻⁶ 0.99999588 −8.43 × 10⁻⁵ 2.9998241

2²⁴ (16777216) −3.11 × 10⁻⁷ 0.99999974 −7.54 × 10⁻⁶ 2.99998616

2²⁸ (268435456) −2.13 × 10⁻⁸ 0.99999998 −6.30 × 10⁻⁷ 2.99999896

These empirical findings align with the theoretical properties established
in the literature.

Correlation Analysis in Sobol’ Sequences

It is well-known that Sobol’ sequences can exhibit substantial correlations
between different dimensions, meaning that the generated quasi-random
numbers in different dimensions are correlated. In the context of this
study, references to inter-dimensional correlation specifically refer to
the correlation between the quasi-random numbers assigned to different
dimensions. This phenomenon is already mentioned in the early works on
low-discrepancy sequences (Sobol’, 1967). In (Sobol’ et al., 2012), it is
noted that, for a particular implementation of Sobol’ numbers, ‘’a test done
with 2500 dimensions showed that 2449 pairs of consecutive dimensions
have correlation greater than 70% (in absolute value).’’

In our study, with 21201 dimensions and 4096 samples, we perform

a similar analysis. Among the 21201 21200 224,730,600
2
×

= possible distinct

dimension pairs, we observe that 415,391 pairs exhibit a correlation greater
than 0.1, corresponding to approximately 0.18% of all pairs. Furthermore,
91,668 pairs show correlations exceeding 0.5, and 91,631 pairs exceed
0.6, both representing approximately 0.04% of all possible pairs. When
considering even stronger correlations, 91,493 pairs show correlations
greater than 0.7, but this number dropped sharply to only 110 pairs
when the threshold is raised to 0.8, accounting for a negligible fraction of

30  |  A Computational Study on Sobol’ Sequences

0.00005% and highlighting that while moderate correlations are relatively
common, extremely strong correlations remain very rare. Specifically among
consecutive dimensions, we identified 10 pairs with correlation above 0.7.
This is in stark contrast to the findings of (Sobol’ et al., 2011), where nearly
all consecutive pairs in their test showed high correlation—highlighting the
improved behavior of the Scipy Sobol implementation in high-dimensional
settings.

This strong correlation behavior in Sobol’ sequences contrasts sharply
with the performance of pseudo-random generators such as Mersenne
Twister. In a comparable experiment using Mersenne Twister with 4096
samples across 21201 dimensions, the maximum absolute correlation
observed is only 0.091 (between dimensions 15689 and 15966).

Additionally, it is important to highlight that the magnitude of these
correlations in Sobol’ sequences diminishes significantly as the number
of samples increases. For instance, considering the dimension pair (1229,
6014), the correlation is with 4096 samples but drops
dramatically to when the number of samples are increased
to 20000. This behavior is consistent with the theoretical expectations
regarding the asymptotic behavior of Sobol’ sequences.

Some representative scatter plots of correlated dimension pairs are shown
in Figure 2. These visualizations illustrate how severe clustering can occur
when the random variables associated with different dimensions are strongly
correlated.

Following the application of the inverse standard normal transformation
to the Sobol’ samples, we performed a similar correlation analysis. Among
the 224,730,600 possible distinct dimension pairs, 847,904 pairs exhibit
correlations greater than 0.1, corresponding to approximately 0.38% of all
pairs. Furthermore, 91,668 pairs show correlations exceeding 0.5, while
91,394 pairs exceed 0.6, both representing approximately 0.04% of all
possible pairs and indicating that moderate levels of dependency remain
relatively prevalent. However, as the correlation threshold is increased
beyond 0.6, a sharp decline is observed: only 189 pairs exhibited correlations
greater than 0.7, accounting for a minuscule proportion of approximately
0.00008% of all pairs. This sharp drop between 0.6 and 0.7 thresholds
differs slightly from the pattern observed before the transformation, where a
comparable decline is only observed between 0.7 and 0.8 thresholds. These
findings suggest that the inverse transformation modifies the underlying
dependency structure of Sobol’ sequences, effectively reducing the prevalence

Bahri Tokmak / Ömür Ugur  |  31

of very high correlations (greater than 0.7) and shifting dependencies into
the correlation range (above 0.6).

Figure 2. Scatter plots of selected dimension pairs from Sobol’ sequence.

Variance Bias in Incremental Construction

In classical Monte Carlo simulation of Brownian motion, the standard
discretization method constructs the terminal value TW by sequentially
summing small increments generated from independent Gaussian variables.

32  |  A Computational Study on Sobol’ Sequences

This method, commonly referred to as the incremental construction,
approximates TW as:

()1
14NI

T ii
W dt z

=
=∑

where ()0,1iz ∼  are independent standard Gaussian random
variables, N is the number of time steps, and /dt T N= .

In an ideal Monte Carlo settings, if the iz are truly independent, the
following properties would hold:

[] ()0, # 15iE z i= ∀

[] ()V 1, # 16iz i= ∀

()0, for # 17i jE z z i j  = ≠ 

where []()E ⋅ and []()V ⋅ denote the expectation and variance operators,
respectively. Consequently, the mean and variance of ()I

TW satisfy:

()E 0# 18I
TW  = 

()# 19I
TV W T  = 

However, when quasi-random sequences like Sobol’ numbers are used
to generate iz via the inverse normal CDF, strict independence between
coordinates is no longer guaranteed. Particularly at small sample sizes or high
dimensions, residual correlations between iz and () jz i j c≠ an introduce a
bias into the variance of I

TW .

To quantify this effect, assume that the empirical variance of each iz is
 1v , and that the empirical correlation between different dimensions is

[]ñij i j i jE z z E z E z   = −    . Then, the variance of I
TW becomes:

We define the variance distortion term C induced by the correlations as:

such that the total variance is expressed as ()T v C+ .

Bahri Tokmak / Ömür Ugur  |  33

To complement the theoretical analysis, we computed the variance v
, the term C caused by inter-dimensional correlations, and the total
variance v C+ for both Sobol’ and Mersenne Twister sequences across
different dimensions. The sample size is fixed at 4096 simulations. The
tested dimensionalities includes dimsn = 100, 500, 1000, 2000, and 21201,
covering a wide range from low to extremely high dimensions. In Table 5, the
empirical results are summarized. As observed, the Sobol’ sequences exhibit
significant deviations in the v C+ values, particularly for high dimensions
such as dims 21201,n = where v C+ exceeds 4.0. This reflects the impact of
dimension-dependent correlations inherent to Sobol’ sequences. In contrast,
Mersenne Twister sequences show relatively stable behavior, with v C+
values remaining close to 1 even at high dimensions, confirming their low-
correlation pseudo-random nature.

Table 5. Variance and variance distortion for Sobol’ and Mersenne Twister sequences at

samples 4096n =

Method dimsn v C +v C

Sobol 100 0.999275 -0.044254 0.955021

Sobol 500 0.999275 -0.141961 0.857314

Sobol 1000 0.999278 -0.308172 0.691105

Sobol 2000 0.999277 -0.386930 0.612347

Sobol 21201 0.999282 3.061985 4.061268

MT 100 0.998997 -0.013125 0.985872

MT 500 0.998894 0.014969 1.013864

MT 1000 0.998440 -0.003114 0.995326

MT 2000 0.998587 -0.018400 0.980186

MT 21201 0.999428 0.001260 1.000688

Effect of Scrambling, Skipping, and Brownian Bridge on Variance
Stability

In the previous sections, we observed that in the absence of any
enhancements, Sobol’ sequences exhibited significant deterioration in
the total variance v C+ as the dimensionality increased. In this section,
we explore how three different techniques — scrambling, skipping initial
points, and Brownian Bridge construction — affect the variance stability.

Variance Stability under Scrambling

34  |  A Computational Study on Sobol’ Sequences

When scrambling is enabled, Sobol’ sequences show a remarkable
improvement in variance properties. As shown in Table 6, even for

dims 21201n = , the total variance v C+ is corrected to approximately
1.0025. Across all tested dimensions dims(n = 100, 500, 1000, 2000,
21201), the deviations of v C+ from 1 remain within 0.006± margins,
indicating stability.	

Thus, the results observed in our tests validate the theoretical expectations:
scrambling substantially improves the variance stability of Sobol’ sequences,
making them highly reliable even when applied to very high-dimensional
integration problems.

Variance Stability under Initial Points Skipping

Applying a large skip of 192 524,288= points (without scrambling)
results in a notable improvement in the stability of total variance estimates.
For lower dimensions dims(n = 100, 500), the total variance v C+ remains
very close to the theoretical value of 1, with deviations on the order of 310−
or less. Even in extremely high-dimensional settings, such as dimsn = 21201,
the total variance remains stable around 0.9934 (see Table 6), representing
a substantial improvement over the non-skipped case.

These results suggest that skipping a substantial number of initial Sobol’
points can also substantially improve numerical behavior across a wide
range of dimensions. In our tests, skipping is consistently observed to have
a positive impact on stability, supporting the understanding that Sobol’
sequences tend to perform better when an initial portion of the sequence is
discarded.

Several studies, including Owen (Owen, 2021), have pointed out
that skipping initial points in scrambled Sobol’ sequences may disrupt the
underlying randomized net structure, potentially degrading convergence.
While our findings demonstrate the practical benefits of skipping in
non-scrambled settings, further research is needed to better understand
how skipping interacts with scrambling in different simulation contexts,
particularly with respect to determining how many points should be skipped,
which may vary significantly depending on the integrand, dimensionality,
and target accuracy.

Variance Stability under Brownian Bridge Construction

Brownian bridge (BB) construction is a widely used technique to
improve the efficiency of path generation in Monte Carlo and Quasi-Monte
Carlo simulations. By carefully redistributing the variance contributions

Bahri Tokmak / Ömür Ugur  |  35

across dimensions, BB can significantly stabilize the numerical behavior,
particularly in high-dimensional settings.

Consider a standard Brownian motion process ()W t over the interval
[]0,T , with fixed endpoints:

()0 0W =
BB

1TW T z= , where ()1 0,1z ∼ 

It follows that ()BB 0TE W = and ()BB
TV W T= since ()1 0E z = and

()1 1V z = .

Intermediate values of the Brownian motion are not generated
sequentially in time. Instead, the process recursively fills in midpoints of
the largest remaining intervals. Suppose we already have values at two time
points iT and 1iT + , and we want to generate the value at a time ()1,i it T T +∈
. This is done using:

() () () ()() ()11
1

1 1 1

23i ii i
i i k

i i i i i i

T t t TT t t TW t W T W T z
T T T T T T

++
+

+ + +

− −− −
= + + ⋅

− − −

where each ()0,1kz ∼  is an independent standard normal random
variable.

The first two terms represent a linear interpolation, while the third term
introduces stochasticity consistent with Brownian motion’s properties.
In theory, when ideal random numbers are used, the Brownian Bridge
construction should maintain stability across dimensions without degradation
as dimension increases. Minor deviations from the ideal variance are primarily
attributed to residual correlations among quasi-random samples. That is,
while Brownian bridge organizes the variance efficiently, quasi-random
sequences like Sobol’ are not perfectly independent across dimensions, and
small correlations can slightly affect variance. See (Sobol’ and Kucherenko,
2005, Kucherenko and Shah, 2007 and Bianchetti et al., 2015) for more
information.

In our numerical experiments, we observe that when Brownian Bridge
construction is applied to Sobol’ sequences, the total variance v C+ remains
very close to 1 across all dimensions (see Table 6). Even at dims 21201n = , the
total variance is approximately 0.9989, reflecting agreement with theoretical
expectations. These results validate that Brownian Bridge dramatically
improves variance stability in high-dimensional settings, and small observed
deviations are consistent with the minor correlation effects inherent to quasi-
random sequences rather than flaws in the Brownian Bridge algorithm itself.

36  |  A Computational Study on Sobol’ Sequences

Table 6. Summary of Total Variance v C+ Under Different Enhancements

Method
Scrambling Enabled

Dimensions Variance Distortion Total

Sobol 100 1.000169 0.002468 1.002636

Sobol 500 0.999994 -0.015104 0.984890

Sobol 1000 0.999974 0.006229 1.006202

Sobol 2000 1.000021 0.003872 1.003893

Sobol 21201 0.999992 0.002492 1.002484

Table 6. continued

Method Skip = 192 (524288 points)

Dimensions Variance Dimensions Total

Sobol 100 1.000097 0.001626 1.001723

Sobol 500 1.000026 -0.000100 0.999926

Sobol 1000 1.000002 -0.004902 0.995100

Sobol 2000 1.000004 -0.014498 0.985507

Sobol 21201 0.999997 -0.006642 0.993355

Method
Brownian Bridge Enabled

Dimensions Variance Distortion Total

Sobol 100 0.999275 -0.000388 0.998886

Sobol 500 0.999275 -0.000234 0.999040

Sobol 1000 0.999278 0.000012 0.999290

Sobol 2000 0.999277 -0.000324 0.998953

Sobol 21201 0.999282 -0.000391 0.998892

EFFECT OF SCRAMBLING, SKIPPING, AND BROWNIAN
BRIDGE ON ASIAN OPTION PRICING

To evaluate the practical impact of various Sobol’ sequence enhancement
techniques on financial simulations, we conducted a series of controlled
experiments focusing on the pricing of a Geometric Asian option. The
theoretical price, previously established in Section “geometric asian option
pricing”, serves as a benchmark for assessing pricing accuracy.

In this study, we specifically tested the effects of scrambling, initial
skipping, and Brownian bridge construction. Four different Sobol
configurations are examined:

Bahri Tokmak / Ömür Ugur  |  37

	• Baseline: No scrambling, no Brownian Bridge.

	• Scrambled Sobol: Scrambling enabled, no Brownian Bridge.

	• Brownian Bridge: No scrambling, Brownian Bridge enabled.

	• Large Skip Only: Skip = 192 (524,288 points), No scrambling, no
Brownian Bridge.

Each configuration, except the initial skip case, is evaluated over 16
independent trials with 4096 paths per trial to ensure statistical consistency.
The initial skip case configuration used a single batch of 4096 paths without
repetition across trials.

The results, summarized in Table 7, reveal clear and consistent trends
regarding the effectiveness of these enhancement techniques. Additionally,
results for the standard Mersenne Twister simulation have been included in
the table to provide reference for comparison with theoretical MC.

The baseline configuration, without scrambling or Brownian bridge,
performs poorly: the mean estimated price is 0.23363, deviating significantly
from the theoretical value. The maximum absolute error reaches to 0.33548,
and the variance across trials is as high as 0.00755. These large errors are
primarily attributed to structural artifacts and correlations inherent in the
raw Sobol’ sequence.

Enabling scrambling leads to a substantial improvement. The mean price
converges to 0.19775, with a maximum error of only 0.00908, and The
variance is reduced significantly, reaching approximately to 51.542 10−×
. This supports theoretical findings that scrambling improves uniformity,
reduces bias, and allows for effective variance estimation.

Applying Brownian bridge construction without scrambling further
enhances performance. The mean price achieved is 0.19711, with a maximum
absolute error of just 0.00121, and the variance is reduced to 72.4 10−× . This
dramatic variance stabilization is consistent with the theoretical expectation
that Brownian bridge reallocates variance contributions, improving the
convergence behavior, particularly in high-dimensional settings.

Finally, applying a large skip of 192 points—without scrambling or
Brownian bridge—also produces notably accurate results. The mean price
is 0.19608, and the maximum absolute error is just 0.00107, indicating
a meaningful reduction in simulation bias. While skipping alone may not
match the variance stabilization achieved by Brownian bridge, it remains an
effective and simple strategy for improving coverage and reducing structural
artifacts in Sobol’-based simulations.

38  |  A Computational Study on Sobol’ Sequences

Table 7. Comparison of Different Configurations in Geometric Asian Option Pricing

Configuration Mean Price Avg Error Max Error Variance

MT 0.19575 0.00597 0.01702 0.00005398

No Scramble, No BB 0.23363 0.04617 0.33548 0.00755007

Scramble = True, No BB 0.19775 0.00319 0.00908 0.00001542

BB = True, No Scramble 0.19711 0.00041 0.00121 0.00000024

Skip = 2¹⁹ (1 batch) 0.19608 0.00107 0.00107 N/A

In summary, our experiments demonstrate that proper configuration of
Sobol’ sequences is crucial for achieving high precision in QMC simulations
in finance. Scrambling significantly reduces bias and variance, while
Brownian Bridge construction further stabilizes variance by optimizing the
allocation of variability across dimensions. Initial skipping alone can offer
measurable improvements, but the best results are achieved when Brownian
Bridge technique are employed. These findings reinforce the necessity of
combining enhancement strategies to fully exploit the potential of quasi-
Monte Carlo methods in high-dimensional option pricing problems.

GPU-ACCELERATED SIMULATIONS

The use of GPUs in computational finance has been extensively explored
in the literatüre (Dempster et al., 2018). The inherently parallel structure
of Monte Carlo simulations for path-dependent option pricing makes them
well-suited for GPU-enabled parallel computing frameworks like CUDA. In
our study, we harness the parallel processing power of GPUs to enhance the
speed and efficiency of option pricing computations.

In our implementation, we primarily utilize the CuPy library to perform
all array operations, random number transformations, and Monte Carlo
path simulations on the GPU. CuPy provides a highly efficient, NumPy-
compatible interface that allows straightforward migration of CPU-based
codes to CUDA-enabled devices with minimal adjustments. PyTorch is
employed exclusively for generating Sobol’ sequences directly on the GPU,
as CuPy currently lacks a native GPU-based Sobol generator. By using
PyTorch’s Sobol Engine for quasi-random number generation and relying on
CuPy for the remaining computational tasks, we combine the strengths of
both libraries to maximize performance and maintain numerical accuracy in
high-dimensional Monte Carlo simulations.

This section presents a comparative evaluation of GPU-accelerated Monte
Carlo and Quasi-Monte Carlo simulations in the context of pricing Geometric

Bahri Tokmak / Ömür Ugur  |  39

Asian options (BS framework). To assess the impact of GPU acceleration,
we conducted a series of controlled experiments focusing on runtime
performance. Specifically, we benchmarked CPU-based versus GPU-based
implementations across three scenarios: Mersenne Twister random number
generation, Sobol’ sequence generation, and Sobol’ sequence generation
combined with Brownian Bridge construction. These experiments are
designed to isolate and quantify the computational advantages offered by
GPU parallelization while keeping the pricing methodology and simulation
parameters consistent. In all cases, CPU implementations are executed
serially and serve as a baseline for evaluating the speedup and efficiency
improvements achieved through GPU parallelization.

Algorithm 2 (see Figure 3) models the core simulation loop for Monte
Carlo and Quasi-Monte Carlo simulations, where random numbers are
either sampled from a standard normal distribution (for Mersenne Twister)
or generated via Sobol’ sequences followed by an inverse transformation.
Each path is constructed through cumulative summation of the simulated
increments and subsequently used to compute the option payoff. Algorithm
3 (see Figure 4) specifically describes the construction of Brownian Bridge
increments using Sobol’ sequences, to allocate early Sobol’ dimensions to
the most critical parts of the simulated Brownian motion path.

Figure 3. Illustrative figure of per-thread vectorized path simulation workflow using
Mersenne Twister or Sobol’ sequences

40  |  A Computational Study on Sobol’ Sequences

Figure 4. Illustration of Brownian Bridge path generation based on Sobol-normal
samples

We also remark that Table 8 summarizes the execution times recorded
for each simulation setup under a single batch execution.

Table 8. Execution time comparison for MC and QMC simulations (in seconds)

Method Implementation Time (s)

MT CPU 3.148

MT GPU 0.095

Sobol CPU 4.889

Sobol GPU 0.570

Sobol + BB CPU 71.266

Sobol + BB GPU 5.788

Sobol + Scramble CPU 5.582

Sobol + Scramble GPU 1.085

Sobol + (Skip = 2¹⁹) CPU 18.108

Sobol + (Skip = 2¹⁹) GPU 13.552

The results in Table 8 highlight the considerable computational advantages
offered by GPU acceleration across various simulation methods. Among
these, the most significant improvement is observed in standard Monte
Carlo simulations using Mersenne Twister, where the GPU implementation
completes the task in just 0.095 seconds, compared to 3.148 seconds on
the CPU—a 33-fold speedup. This dramatic reduction demonstrates the
efficiency of GPU-based parallel random number generation for large-scale
simulations.

Bahri Tokmak / Ömür Ugur  |  41

We next examine the performance of quasi-Monte Carlo simulations
using Sobol’ sequences. The GPU implementation achieves a runtime of 0.57
seconds, offering an 8.5-fold speedup relative to its CPU counterpart. This
improvement underscores the effectiveness of GPU acceleration even when
using low-discrepancy sequences, which are traditionally more structured
and less amenable to parallelism than pseudo-random number generators.
In the scrambled Sobol case, GPU runtime increases modestly to 1.085
seconds due to the additional computational cost of digital scrambling, yet
it remains significantly faster than CPU execution.

Brownian Bridge construction, when applied alongside Sobol’ sequences,
introduces additional computational overhead due to its recursive midpoint
structure. Nonetheless, the GPU implementation reduces runtime from
71.266 seconds on the CPU to 5.788 seconds, achieving a 12-fold
acceleration. Despite this gain, BB simulations remain more time-consuming
overall, as the recursive dependencies inherently limit parallelism on GPU
architectures.

A more detailed breakdown of execution times reveals the primary
computational bottlenecks in each configuration. For Sobol’ simulations on
GPU, approximately 86% of the total time is spent on generating quasi-
random numbers, while the remaining time is used for path construction. In
the scrambled Sobol case, the extra 0.515 seconds of overhead stems from
scrambling operations. In contrast, applying a large skip (e.g., 192) leads to
a total runtime of 13.552 seconds on GPU, indicating that while skipping
improves sequence quality, it is computationally inefficient in practice.

In Brownian Bridge simulations, the performance bottleneck shifts
away from number generation. Approximately 90% of the GPU runtime is
spent on recursive midpoint interpolation, while only about 8% is used for
generating the Sobol’ sequence. This shift clearly shows that the recursive
structure of BB—not the sampling method—is the dominant contributor to
total execution time in this configuration.

These observations suggest that the combination of CuPy and PyTorch-
--both high-level GPU libraries---offers an effective and practical solution
for accelerating Monte Carlo and Quasi-Monte Carlo simulations without
requiring low-level custom CUDA kernel programming. High-level
libraries like CuPy and PyTorch handle kernel generation and GPU memory
management automatically, whereas low-level CUDA programming
requires manually writing and optimizing custom kernels. Using such high-
level libraries allows for quick implementation while maintaining sufficient

42  |  A Computational Study on Sobol’ Sequences

computational performance for pricing single exotic options, such as the
Geometric Asian option considered in this study.

However, it is important to note that this analysis focuses on a single
product type. In scenarios where portfolios of multiple exotic options are
to be priced, or risk metrics such as Value-at-Risk (VaR) and Conditional
Value-at-Risk (CVaR) are to be computed, the overall dimensionality (i.e.,
the total number of time steps × assets) —and thus the computational
complexity— can become extremely large. In such cases, relying solely
on high-level libraries may no longer be sufficient, and more optimized
implementations involving explicit kernel configurations could be necessary
to fully exploit the available GPU resources.

Lastly, the remarkable speedup observed with GPU-accelerated
Mersenne Twister simulations suggests that further studies combining
Mersenne Twister random number generation with advanced variance
reduction techniques under full GPU parallelization could make valuable
contributions to the computational finance literature. Moreover, exploring
algorithmic modifications to the Brownian Bridge construction that improve
its compatibility with parallel architectures presents another promising
direction for enhancing the efficiency of quasi-Monte Carlo methods.

CONCLUSION

This study provides a comprehensive computational analysis of Quasi-
Monte Carlo methods using Sobol’ sequences in comparison to traditional
Monte Carlo simulations based on the Mersenne Twister generator. While
Sobol’ sequences are theoretically known to offer superior convergence
rates, our investigation reveals notable challenges when applying them to
high-dimensional problems—arising, for instance, in financial simulations
such as Geometric Asian option pricing.

The theoretical background and related literature highlight the known
strengths of Sobol’ sequences, but also hint at their sensitivity to dimension
ordering and structural artifacts. Through one- and multi-dimensional
integral tests, we validate the accuracy and convergence behavior in integral
calculations using Sobol’ sequences. However, when transitioning to the
high-dimensional setting of Asian option pricing, significant deviations are
observed, especially in baseline Sobol configurations.

To investigate the source of the observed discrepancies, we conduct
detailed moment and correlation analyses; they reveal a persistent bias
inherent in the incremental construction of Sobol’ sequences. This
bias is found to be effectively mitigated through various enhancement

Bahri Tokmak / Ömür Ugur  |  43

techniques, including scrambling, initial skipping, and Brownian Bridge
construction. Among these, Brownian bridge yields the most accurate
option price estimates, while scrambling offers both improved accuracy and
straightforward parallel implementation. Although initial skipping alone
provides noticeable improvements, its overall effectiveness is more limited
relative to Brownian Bridge technique.

Finally, we implement GPU-accelerated versions of all simulation
methods, achieving substantial speedups across all configurations. The most
striking gains are observed in Mersenne Twister-based simulations, where
GPU parallelism yields a 33-fold runtime reduction of the base case. Sobol
with Brownian Bridge simulations also benefits significantly from GPU
acceleration, though to a lesser extent due to algorithmic limitations in
parallelizing recursive path construction.

Overall, our findings reinforce the importance of proper configuration
when applying QMC methods to high-dimensional problems. Moreover,
they highlight the combined value of theoretical insight, algorithmic
enhancement, and hardware-level acceleration in achieving both numerical
precision and computational efficiency in modern financial simulations.

FUTURE WORK

The findings of this study suggest several directions for future research
that could further enhance the efficiency, accuracy, and applicability of GPU-
accelerated Monte Carlo and Quasi-Monte Carlo methods in computational
finance.

First, the remarkable performance gains achieved through GPU-accelerated
Mersenne Twister (MT) simulations indicate a valuable opportunity for
further enhancement. In particular, the use of high-level GPU libraries such
as CuPy enables the realization of substantial speedups without requiring
low-level CUDA programming, making efficient pseudo-random number
generation easily accessible within Python environments. While MT-based
simulations offer excellent computational speed due to their lightweight
nature, they are not inherently variance-reducing. Therefore, integrating
MT with advanced variance reduction techniques—such as control variates,
stratification, or antithetic sampling—under full GPU parallelization could
substantially improve simulation accuracy without sacrificing computational
efficiency. This combination may serve as a practical and scalable alternative
to Quasi-Monte Carlo methods in applications.

Second, although the Brownian Bridge construction is a well-established
variance reduction technique, its recursive nature limits full parallelization,

44  |  A Computational Study on Sobol’ Sequences

especially on GPU architectures. One fruitful direction for future work would
be to investigate alternative algorithmic structures or approximations that
retain the variance allocation benefits of Brownian Bridge while reducing
memory bottlenecks or enabling greater parallel throughput. Additionally,
it would be worth exploring whether custom low-level CUDA kernel
implementations—specifically designed to optimize memory access and
thread scheduling—could further enhance the performance of Brownian
Bridge-based simulations beyond what is achievable with high-level GPU
libraries alone.

Third, some studies, particularly in the context of scrambled Sobol’
sequences, caution that skipping initial points may interfere with the
randomized net structure and degrade convergence (Owen, 2021).
Nonetheless, other works such as (Radović et al., 1996) report reduced
integration error when early low-quality points are avoided. Our results
support this view in the non-scrambled case: skipping a large number of
initial points (e.g., 192) improved accuracy in high-dimensional simulations
without Brownian Bridge. In addition to the interaction between skipping
and scrambling, the question of how many points should be skipped remains
problem-dependent, underscoring the need for more systematic analysis
across different integrands and dimensionalities to better understand when
skipping improves or degrades performance.

Bahri Tokmak / Ömür Ugur  |  45

References

Bernemann A., Schreyer R., Spanderen K., 2011. Accelerating Exotic Opti-
on Pricing and Model Calibration Using GPUs, Available at SSRN
1753596.

Bianchetti M., Kucherenko S., Scoleri S., 2015. Pricing and Risk Manage-
ment with High-Dimensional Quasi Monte Carlo and Global Sensitivity
Analysis, Wilmott, 2015, (78): 46-70.

Black F., Scholes M., 1973. The Pricing of Options and Corporate Liabilitie,
Journal of Political Economy, 81 (3): 637-654.

Broda, 2025. Access address: https://www.broda.co.uk/index.html; Date of Ac-
cess: 30.05.2025

Dempster M.A.H., Kanniainen J., Keane J., Vynckier E., 2018, High-Perfor-
mance Computing in Finance: Problems, Methods, and Solutions. 1st
ed., CRC Press, Taylor & Francis Group, UK.

Glasserman P., 2003, Monte Carlo Methods in Financial Engineering. 1st ed.,
Springer, USA

Jäckel P., 2002, Monte Carlo Methods in Finance. 1st ed., John Wiley & Sons,
UK

Joe S., Kuo F.Y., 2008. Constructing Sobol’ Sequences with Better Two-Di-
mensional Projections, SIAM Journal on Scientific Computing, 30 (5):
2635-2654

Kucherenko S., Shah N., 2007. The Importance of being Global.Application
of Global Sensitivity Analysis in Monte Carlo option Pricing, Wilmott,
volume (issue): 82-91.

Matoušek J., 1998. On the L2-discrepancy for anchored boxes, Journal of
Complexity, 14 (4): 527-556

Owen A.B., 1998. Scrambling Sobol’ and Niederreiter–Xing Points, Journal of
Complexity, 14 (4): 466-489

Owen A.B., 2021. On dropping the first Sobol’ point. Access address: https://
arxiv.org/abs/2008.08051; Date of Access: 30.05.2025.

Radović I., Sobol’ I.M., Tichy R.F., 1996. Quasi-Monte Carlo Methods for Nu-
merical Integration: Comparison of Different Low Discrepancy Sequen-
ces. Monte Carlo Methods and Applications, 2 (1): 1-14.

Silva M.E., Barbe T., 2005. Quasi-Monte Carlo in finance: extending for prob-
lems of high effective dimension, Economia Aplicada, 9 (4): 577-594.

Sobol’ I.M., 1967. On the distribution of points in a cube and the approximate
evaluation of integrals, USSR Computational Mathematics and Mathe-
matical Physics, 7 (4): 86-112.

46  |  A Computational Study on Sobol’ Sequences

Sobol’ I.M., 1976. Uniformly distributed sequences with an additional uniform
property. USSR Computational Mathematics and Mathematical Physics,
16 (5): 236-242.

Sobol’ I.M., Kucherenko S., 2005. On global sensitivity analysis of quasi-Mon-
te Carlo algorithms, Monte Carlo Methods and Applications, 11 (1):
83-92.

Sobol’ I.M., Asotsky D., Kreinin A., Kucherenko S., 2012. Construction and
Comparison of High-Dimensional Sobol’ Generators, Wilmott, 2011
(56): 64-79.

Bahri Tokmak / Ömür Ugur  |  47

Appendix

GPU and CUDA specifications

CUDA toolkit version 12.6 was used for all of the simulations. The
online documentation for this version is available at (https://docs.nvidia.
com/cuda/archive/12.6.0/index.html). All simulations were conducted on a
single NVIDIA GeForce RTX 4070 Laptop GPU. The specifications of the
device are summarized in Table 9.

Table 9. Hardware specifications of the GPU used in simulations (NVIDIA GeForce
RTX 4070)

Title Title

Device Name NVIDIA GeForce RTX 4070 Laptop
GPU

CUDA Driver / Runtime Version 12.6 / 12.6

Compute Capability 8.9

CUDA Cores 4608

Global Memory 8 GB (8585 MB)

Shared Memory per Block 49 KB

Constant Memory 64 KB

L2 Cache Size 32 MB

Memory Clock Rate 8001 MHz

Memory Bus Width 128-bit

GPU Max Clock Rate 2175 MHz

Maximum Texture Dimension (1D) 131072

Maximum Texture Dimension (2D) (131072, 65536)

Maximum Texture Dimension (3D) (16384, 16384, 16384)

Maximum Threads per Multiprocessor 1536

Maximum Threads per Block 1024

Max Block Dimensions (x, y, z) (1024, 1024, 64)

Max Grid Dimensions (x, y, z) (2147483647, 65535, 65535)

Warp Size 32

Support for Concurrent Copy and
Execution

Yes

Unified Memory (UVA) Support Yes

ECC Support No

Python Environment and Library Versions

48  |  A Computational Study on Sobol’ Sequences

All simulations were implemented using Python 3.12.4, supported by a
set of high-performance numerical and GPU-accelerated libraries. The core
packages and their versions are summarized in Table 10.

Table 10. Python Environment and Library Versions

Library Version

Python 3.12.4

NumPy 1.26.4

SciPy 1.13.1

CuPy 13.3.0

PyTorch 2.5.1

Acknowledgment

This research was conducted as part of the TÜBİTAK 1001 project titled
“Optimizing Conditional Value-at-Risk in Complex Portfolios through
Parallel Computing Strategies” (Project No: 124F138), supported by the
Scientific and Technological Research Council of Turkey (TÜBİTAK). The
authors gratefully acknowledge TÜBİTAK for its financial support.

Conflict of Interest

The authors have declared that there is no conflict of interest.

Author Contributions

Both authors contributed equally to this work.

