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Abstract 

This article proposes an improved version of the Spearman rank correlation based on using 
Wilcoxon rank score function. A smoothed empirical cumulative distribution function (ecdf) 
computes the smoothed ranks and replaces the regular ranks in the Wilcoxon rank score 
function. The smoothed Wilcoxon rank scores are then used for estimation of the Spearman's 
correlation. The proposed approach is similar to the Spearman's rho (𝜌𝜌) estimator which uses 
ranks of the random samples of X and Y but the proposed method improves Spearman's 
approach such as handling ties and gaining higher efficiency under monotone associations. A 
Wald type hypothesis test has been proposed for the new estimator 𝑟𝑟𝑠𝑠𝑠𝑠 and the asymptotic 
properties are shown. 

1 INTRODUCTION 

The rank based estimation and testing procedures for the correlation 
coefficient 𝜌𝜌 are commonly used in many data analysis problems. 
Especially Spearman's correlation (Spearman, 1904) and Pearson's 
correlation, (Pearson, 1920) coefficients are the leading methods of 
estimation the correlations between two dependent random variables. 
Pearson's traditional approach works well if the relationship is linear and 
the underlying joint distribution is normal. On the other hand, Spearman's 
approach is based on the ranks of the random samples and does not 
depend on the normality assumption or any other underlying distribution. 
Spearman's approach works well if the relationship is linear or monotonic 
as discussed and shown by (Santos et al.,2011), (Fujita et al., 2009), 
(Szekely et al.,2007) and (Reshef et al., 2011). Based on these studies, it 
has been shown that Spearman has some superior properties over the 
Pearson's correlation if the underlying conditions are not ideal such as 
having a monotonic association instead of a linear. Another traditional 
estimator Kendall's 𝜏𝜏 (Kendall,1938) has been included in the study as it is 
also a nonparametric approach. Hoeffding's D (Hoeffding, 1948) and a 
few more other are not included in this study in order to focus on 
smoothed ranks with respected to its traditional competitors under linear 
and monotonic associations. In the future, an extensive comparative study 
of correlation methods under non-monotonic associations would be 
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considered, and there could be an improved version of the smoothed ranks 
could be introduced in the future for non-monotonic cases. Moreover, 
smoothing ranks and using them in parameter estimations or in regression 
methods have been proposed by several authors; (Heller, 2007), (Heller at 
al., 2012), (Lin and Peng, 2013), (Serfling, 1984), (Tasdan and Yeniay, 
2014), and (Tasdan, 2018). 

The figures below depict the cases of linear, nonlinear monotonic and non-
monotonic nonlinear relationships. 

 
Figure 1: Examples of linear, monotone and non-monotone relationships 
In Section 2 traditional correlation estimations are reviewed. In Section 3 score-based 
estimation of the correlation coefficient 𝜌𝜌 is discussed. Moreover, the relationship 
between the Spearman's rank-based correlation estimation and the Wilcoxon score-
based correlation estimations are shown. In Section 4 it is shown that a non-traditional 
approach of smoothed ranks is used in the Wilcoxon's score function to estimate the 
correlation coefficient. In addition, Wald type hypothesis testing option has been 
proposed. In Section 5 Monte Carlo simulation study has been performed to show 
small and large sample properties under several bivariate distributions. Final conclusion 
about the proposed estimator and the results of the Monte Carlo simulations that study 
is presented in Section 6. 

2 PEARSON AND SPEARMAN'S CORRELATION 
ESTIMATIONS 

The measure of association between random variables 𝑋𝑋 and 𝑌𝑌 is defined as 
𝜌𝜌 which is called the population correlation coefficient. Pearson's 𝜌𝜌 
definition which is given by (Pearson, 1920) can be written as 

𝜌𝜌 =
𝐸𝐸[(𝑋𝑋 − 𝜇𝜇𝑥𝑥)(𝑌𝑌 − 𝜇𝜇𝑦𝑦)]

𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
= Cov(𝑋𝑋, 𝑌𝑌)

𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
#(1)  

where −1 ≤ 𝜌𝜌 ≤ +1 and Cov(𝑋𝑋, 𝑌𝑌) = 𝐸𝐸[𝑋𝑋𝑋𝑋] − 𝐸𝐸[𝑋𝑋]𝐸𝐸[𝑌𝑌], which is defined 
as covariance between 𝑋𝑋 and 𝑌𝑌. It should be noted that if 𝜌𝜌 = 0 
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(independence of 𝑋𝑋 and 𝑌𝑌 ) implies Cov(𝑋𝑋, 𝑌𝑌) = 0 but the opposite is not 
true. 
 
First we find the method of moment estimator for Pearson's 𝜌𝜌, let 
(𝑋𝑋1, 𝑌𝑌1), (𝑋𝑋2, 𝑌𝑌2), .., (𝑋𝑋𝑛𝑛, 𝑌𝑌𝑛𝑛) be a random sample from a bivariate 
continuous cdf of 𝐹𝐹(𝑋𝑋, 𝑌𝑌) and let r be the estimated sample correlation 
coefficient. The method of moment estimator of 

Cov(𝑋𝑋, 𝑌𝑌) = 𝐸𝐸[(𝑋𝑋 − 𝜇𝜇𝑥𝑥)(𝑌𝑌 − 𝜇𝜇𝑦𝑦)]#(2)  

can be defined as 

Cov(𝑋𝑋, 𝑌𝑌)̂ = 1
𝑛𝑛∑  

𝑛𝑛

𝑖𝑖=1
 (𝑋𝑋𝑖𝑖 − 𝑋𝑋‾)(𝑌𝑌𝑖𝑖 − 𝑌𝑌‾)#(3)  

The 𝜎𝜎𝑥𝑥 can be estimated with 

𝜎𝜎𝑥̂𝑥 = √1𝑛𝑛∑  
𝑛𝑛

𝑖𝑖=1
 (𝑋𝑋𝑖𝑖 − 𝑋𝑋‾)2#(4)  

and 𝜎𝜎𝑦𝑦 can be estimated with 

𝜎𝜎𝑦̂𝑦 = √1𝑛𝑛∑  
𝑛𝑛

𝑖𝑖=1
 (𝑌𝑌𝑖𝑖 − 𝑌𝑌‾)2#(5)  

Thus, the Pearson's method of moment correlation coefficient estimate can 
be written as 

𝑟𝑟𝑝𝑝 =
∑  𝑛𝑛
𝑖𝑖=1  (𝑋𝑋𝑖𝑖 − 𝑋𝑋‾)(𝑌𝑌𝑖𝑖 − 𝑌𝑌‾)

√∑  𝑛𝑛
𝑖𝑖=1  (𝑋𝑋𝑖𝑖 − 𝑋𝑋‾)2√∑  𝑛𝑛

𝑖𝑖=1  (𝑌𝑌𝑖𝑖 − 𝑌𝑌‾)2
#(6)  

The result above can be further simplified to the version below, 

𝑟𝑟𝑝𝑝 =
∑  𝑛𝑛
𝑖𝑖=1  𝑋𝑋𝑖𝑖𝑌𝑌𝑖𝑖 −

1
𝑛𝑛 (∑  𝑛𝑛

𝑖𝑖=1  𝑋𝑋𝑖𝑖)(∑  𝑛𝑛
𝑖𝑖=1  𝑌𝑌𝑖𝑖)

√[∑  𝑛𝑛
𝑖𝑖=1  𝑋𝑋𝑖𝑖2 −

1
𝑛𝑛 (∑  𝑛𝑛

𝑖𝑖=1  𝑋𝑋𝑖𝑖)
2] [∑  𝑛𝑛

𝑖𝑖=1  𝑋𝑋𝑖𝑖2 −
1
𝑛𝑛 (∑  𝑛𝑛

𝑖𝑖=1  𝑋𝑋𝑖𝑖)
2]
#(7)  
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A nonparametric (rank based) alternative of Pearson's correlation 
coefficient is proposed by Spearman (Spearman,1904). Spearman's 𝜌𝜌 
estimator uses the ranks of random samples of 𝑋𝑋 and 𝑌𝑌 instead of the 
original observations. Let 𝑅𝑅(𝑋𝑋𝑖𝑖) be the rank of 𝑖𝑖𝑖𝑖ℎ observation 𝑋𝑋𝑖𝑖 for 
𝑖𝑖 = 1, … , 𝑛𝑛. Similarly, 𝑌𝑌𝑖𝑖 is replaced by 𝑅𝑅(𝑌𝑌𝑖𝑖). By substituting the ranks 
𝑅𝑅(𝑋𝑋𝑖𝑖) and 𝑅𝑅(𝑌𝑌𝑖𝑖) in the Pearson's correlation coefficient formula in Eq(6), 
we obtain the Spearman's correlation coefficient estimate below 

𝑟𝑟𝑠𝑠 =
∑  𝑛𝑛

𝑖𝑖=1  (𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖)) (𝑅𝑅(𝑌𝑌𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖))

√∑  𝑛𝑛
𝑖𝑖=1  (𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖))

2
∑  𝑛𝑛

𝑖𝑖=1  (𝑅𝑅(𝑌𝑌𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖))
2

#(8)  

We should note that the ranks 𝑅𝑅(𝑋𝑋𝑖𝑖) (also 𝑅𝑅(𝑌𝑌𝑖𝑖) ) are uniformly distributed 
for the integers on 𝑖𝑖 = 1, … , 𝑛𝑛. Also, sum of the ranks can be written as 

∑  
𝑛𝑛

𝑖𝑖=1
 𝑅𝑅(𝑋𝑋𝑖𝑖) = ∑  

𝑛𝑛

𝑖𝑖=1
 𝑅𝑅(𝑌𝑌𝑖𝑖) = 𝑛𝑛(𝑛𝑛 + 1)/2#(9)  

for 𝑖𝑖 = 1, … , 𝑛𝑛. Thus, 𝑅𝑅(𝑋𝑋𝑖𝑖) = 𝑅𝑅(𝑌𝑌𝑖𝑖) = 𝑛𝑛+1
2 . Moreover, it can be shown that 

𝐸𝐸[𝑅𝑅(𝑋𝑋𝑖𝑖)] = (𝑛𝑛 + 1)/2  and  𝑛𝑛𝑛𝑛[𝑅𝑅(𝑋𝑋𝑖𝑖)] = ∑  
𝑛𝑛

𝑖𝑖=1
 (𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖))

2
= 𝑛𝑛(𝑛𝑛2 − 1)

12 #(10) 

So, we can use these results to obtain much simpler version of 𝑟𝑟𝑠𝑠 as 
described below; 

𝑟𝑟𝑠𝑠 =
∑  𝑛𝑛

𝑖𝑖=1  (𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑛𝑛 + 1
2 ) (𝑅𝑅(𝑌𝑌𝑖𝑖) − 𝑛𝑛 + 1

2 )
𝑛𝑛(𝑛𝑛2 − 1)

12
#(11)  

Yet, there is another version of the Spearman's correlation coefficient has 
been developed in the literature or used in teachings of the correlation 
coefficients. So, let 𝐷𝐷𝑖𝑖 = 𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖) for 𝑖𝑖 = 1, … , 𝑛𝑛. It is also true that 

𝐷𝐷𝑖𝑖 = [𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖)] − [𝑅𝑅(𝑌𝑌𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖)] #(12)  

since 𝑅𝑅(𝑋𝑋𝑖𝑖) = 𝑅𝑅(𝑌𝑌𝑖𝑖) = 𝑛𝑛+1
2 . Thus, it can be written that 
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∑  
𝑛𝑛

𝑖𝑖=1
 𝐷𝐷𝑖𝑖

2  = ∑  
𝑛𝑛

𝑖𝑖=1
 [𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖)] − [𝑅𝑅(𝑌𝑌𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖)]

2
#(13)

 = ∑  
𝑛𝑛

𝑖𝑖=1
 (𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖))

2
+ ∑  

𝑛𝑛

𝑖𝑖=1
 (𝑅𝑅(𝑌𝑌𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖))

2
#(13)

 −2 ∑  
𝑛𝑛

𝑖𝑖=1
 (𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖)) (𝑅𝑅(𝑌𝑌𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖)) #(13)

∑  
𝑛𝑛

𝑖𝑖=1
 𝐷𝐷𝑖𝑖

2  = 𝑛𝑛(𝑛𝑛2 − 1)
12 + 𝑛𝑛(𝑛𝑛2 − 1)

12 − 2 ∑  
𝑛𝑛

𝑖𝑖=1
 (𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖)) (𝑅𝑅(𝑌𝑌𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖)) #(13)

 

If the last expression on the right of the equation is isolated, we can obtain 

∑  
𝑛𝑛

𝑖𝑖=1
 (𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖)) (𝑅𝑅(𝑌𝑌𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖)) = 𝑛𝑛(𝑛𝑛2 − 1)

12 −
∑  𝑛𝑛

𝑖𝑖=1  𝐷𝐷𝑖𝑖
2

2 #(14)  

So, the numerator in Eq (8) is replaced with the above result, and the 
denominator terms (square root of variances) are replaced with 

∑  𝑛𝑛
𝑖𝑖=1 (𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑋𝑋𝑖𝑖))

2
= 𝑛𝑛(𝑛𝑛2−1)

12 , then a further simplification gives us yet 
another definition of 𝑟𝑟𝑠𝑠 which can algebraically be reduced to 

𝑟𝑟𝑠𝑠 = 1 − 6 ∑  𝑛𝑛
𝑖𝑖=1  𝐷𝐷𝑖𝑖

2

𝑛𝑛(𝑛𝑛2 − 1) #(15)  

where 𝐷𝐷𝑖𝑖 = 𝑅𝑅(𝑋𝑋𝑖𝑖) − 𝑅𝑅(𝑌𝑌𝑖𝑖). If some ties exist in the samples, a small 
estimation error might occur in the last formula but a few ties can be 
tolerated without a significant difference. The average method can be used 
to break the ties if necessary. All three versions of 𝑟𝑟𝑠𝑠 produce the same 
result but each has somewhat different computational difficulties. 

3 SPEARMAN'S RANK CORRELATION BASED ON GENERAL 
SCORE FUNCTIONS 

Spearman's 𝑟𝑟𝑠𝑠 estimator of the correlation parameter 𝜌𝜌 can be computed 
with using a general score function 𝜑𝜑(𝑢𝑢) where the score function must be 
nondecreasing function defined on the interval (0,1) such that 
∫  1

0 𝜑𝜑2(𝑢𝑢)𝑑𝑑𝑑𝑑 < ∞. (Hettmansperger, 1984) and 
(Hettmansperger and McKean, 2011) defines the correlation coefficient 
estimator based on a general score function 𝜑𝜑(𝑢𝑢) as 
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𝑟𝑟𝑎𝑎 = 1
𝑠𝑠𝑎𝑎2

∑  
𝑛𝑛

𝑖𝑖=1
 𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))#(16)  

where 𝑎𝑎(𝑖𝑖) = 𝜑𝜑(𝑖𝑖/𝑛𝑛 + 1) and 𝑠𝑠𝑎𝑎
2 = ∑  𝑛𝑛

𝑖𝑖=1 𝑎𝑎2(𝑖𝑖) for 𝑖𝑖 = 1, … , 𝑛𝑛. The score 
functions 𝜑𝜑(𝑢𝑢) can be standardized so that it satisfies ∫  1

0 𝜑𝜑(𝑢𝑢)𝑑𝑑𝑑𝑑 = 0 and 

∫  1
0 𝜑𝜑2(𝑢𝑢)𝑑𝑑𝑑𝑑 = 1. Moreover, 𝐸𝐸(𝑟𝑟𝑎𝑎) and Var(𝑟𝑟𝑎𝑎) can be derived with the 

following theorem. 

Theorem 1. Let (𝑋𝑋1, 𝑌𝑌1), … , (𝑋𝑋𝑛𝑛, 𝑌𝑌𝑛𝑛) be a random sample from a bivariate 
continuous distribution function 𝐹𝐹(𝑋𝑋, 𝑌𝑌). Under the null hypothesis of 
𝐻𝐻0: 𝜌𝜌 = 0 (𝐹𝐹(𝑋𝑋, 𝑌𝑌) = 𝐹𝐹𝑥𝑥(𝑋𝑋)𝐹𝐹𝑦𝑦(𝑌𝑌) or independence of 𝑋𝑋 and 𝑌𝑌), the test 
statistics 𝑟𝑟𝑎𝑎 satisfies the following properties: 
a) 𝐸𝐸[𝑟𝑟𝑎𝑎] = 0 
b) Var[𝑟𝑟𝑎𝑎] = 1/(𝑛𝑛 − 1) 

Proof. Since it is assumed that the scores are generated by 𝑎𝑎(𝑖𝑖) = 𝜑𝜑(𝑖𝑖/𝑛𝑛 +
1) for 𝑖𝑖 = 1, … , 𝑛𝑛 and 𝑎𝑎(1) ≤ 𝑎𝑎(2) ≤ ⋯ ≤ 𝑎𝑎(𝑛𝑛) based on the assumptions 
that the score function 𝜑𝜑(𝑢𝑢) is nondecreasing. The score function is also 
centered so that ∫  1

0 𝜑𝜑(𝑢𝑢)𝑑𝑑𝑑𝑑 = 0 and ∫  1
0 𝜑𝜑2(𝑢𝑢)𝑑𝑑𝑑𝑑 = 1. By using the 

Reimann-Sum approximation on the integral, it can be shown that 
∫  1

0 𝜑𝜑(𝑢𝑢)𝑑𝑑𝑑𝑑 ≐ ∑  𝑛𝑛
𝑖𝑖=1 𝜑𝜑 (𝑖𝑖/(𝑛𝑛 + 1) 1

𝑛𝑛 = ∑  𝑛𝑛
𝑖𝑖=1  𝑎𝑎(𝑖𝑖) 1

𝑛𝑛 ≈ 0. Also, ∫  1
0 𝜑𝜑2(𝑢𝑢)𝑑𝑑𝑑𝑑 ≐ 

∑  𝑛𝑛
𝑖𝑖=1 𝜑𝜑2(𝑖𝑖/(𝑛𝑛 + 1)) 1

𝑛𝑛 = ∑  𝑛𝑛
𝑖𝑖=1 𝑎𝑎2(𝑖𝑖) 1

𝑛𝑛 = 𝑠𝑠𝑎𝑎2

𝑛𝑛 ≈ 1 can be approximated in a 
similar fashion. 

It is known that the ranks, 𝑅𝑅(𝑋𝑋𝑖𝑖) (also 𝑅𝑅(𝑌𝑌𝑖𝑖) ), is uniformly distributed for 
the integers on 𝑖𝑖 = 1, … , 𝑛𝑛. Thus, 𝑃𝑃[(𝑅𝑅(𝑋𝑋𝑖𝑖) = 𝑘𝑘] = 1/𝑛𝑛, where k is the rank 
of ith observation. So, each rank of 𝑋𝑋𝑖𝑖 is equally likely distributed with a 
probability of 1/𝑛𝑛. Therefore, from the expected value of 𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)) it can 
be found that 𝐸𝐸[𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))] = ∑  𝑛𝑛

𝑖𝑖=1 𝑎𝑎(𝑖𝑖) 1
𝑛𝑛 = 0 since ∑  𝑛𝑛

𝑖𝑖=1 𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)) = 0. 

Similarly, 𝐸𝐸[𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))] = ∑  𝑛𝑛
𝑖𝑖=1 𝑎𝑎(𝑖𝑖) 1

𝑛𝑛 = 0. When above results are 
substituted into the expression of 𝑟𝑟𝑎𝑎 as defined in Eq 16, it shows 𝐸𝐸[𝑟𝑟𝑎𝑎] =
0. 

To show part b, the variance definition of 𝑉𝑉[𝑟𝑟𝑎𝑎] = 𝐸𝐸[(𝑟𝑟𝑎𝑎)2] − (𝐸𝐸[𝑟𝑟𝑎𝑎])2 can 
be used for the estimator 𝑟𝑟𝑎𝑎. In the first part of the proof (part-a), it has 
been shown that 𝐸𝐸[𝑟𝑟𝑎𝑎] = 0. Thus, the variance expression can be simplified 
to 𝑉𝑉[𝑟𝑟𝑎𝑎] = 𝐸𝐸[(𝑟𝑟𝑎𝑎)2]. 

Assuming under 𝐻𝐻0: 𝜌𝜌 = 0, 
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𝑟𝑟𝑎𝑎 = 1
𝑠𝑠𝑎𝑎2

∑  
𝑛𝑛

𝑖𝑖=1
 𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))#(16)  

where 𝑎𝑎(𝑖𝑖) = 𝜑𝜑(𝑖𝑖/𝑛𝑛 + 1) and 𝑠𝑠𝑎𝑎
2 = ∑  𝑛𝑛

𝑖𝑖=1 𝑎𝑎2(𝑖𝑖) for 𝑖𝑖 = 1, … , 𝑛𝑛. The score 
functions 𝜑𝜑(𝑢𝑢) can be standardized so that it satisfies ∫  1

0 𝜑𝜑(𝑢𝑢)𝑑𝑑𝑑𝑑 = 0 and 

∫  1
0 𝜑𝜑2(𝑢𝑢)𝑑𝑑𝑑𝑑 = 1. Moreover, 𝐸𝐸(𝑟𝑟𝑎𝑎) and Var(𝑟𝑟𝑎𝑎) can be derived with the 

following theorem. 

Theorem 1. Let (𝑋𝑋1, 𝑌𝑌1), … , (𝑋𝑋𝑛𝑛, 𝑌𝑌𝑛𝑛) be a random sample from a bivariate 
continuous distribution function 𝐹𝐹(𝑋𝑋, 𝑌𝑌). Under the null hypothesis of 
𝐻𝐻0: 𝜌𝜌 = 0 (𝐹𝐹(𝑋𝑋, 𝑌𝑌) = 𝐹𝐹𝑥𝑥(𝑋𝑋)𝐹𝐹𝑦𝑦(𝑌𝑌) or independence of 𝑋𝑋 and 𝑌𝑌), the test 
statistics 𝑟𝑟𝑎𝑎 satisfies the following properties: 
a) 𝐸𝐸[𝑟𝑟𝑎𝑎] = 0 
b) Var[𝑟𝑟𝑎𝑎] = 1/(𝑛𝑛 − 1) 

Proof. Since it is assumed that the scores are generated by 𝑎𝑎(𝑖𝑖) = 𝜑𝜑(𝑖𝑖/𝑛𝑛 +
1) for 𝑖𝑖 = 1, … , 𝑛𝑛 and 𝑎𝑎(1) ≤ 𝑎𝑎(2) ≤ ⋯ ≤ 𝑎𝑎(𝑛𝑛) based on the assumptions 
that the score function 𝜑𝜑(𝑢𝑢) is nondecreasing. The score function is also 
centered so that ∫  1

0 𝜑𝜑(𝑢𝑢)𝑑𝑑𝑑𝑑 = 0 and ∫  1
0 𝜑𝜑2(𝑢𝑢)𝑑𝑑𝑑𝑑 = 1. By using the 

Reimann-Sum approximation on the integral, it can be shown that 
∫  1

0 𝜑𝜑(𝑢𝑢)𝑑𝑑𝑑𝑑 ≐ ∑  𝑛𝑛
𝑖𝑖=1 𝜑𝜑 (𝑖𝑖/(𝑛𝑛 + 1) 1

𝑛𝑛 = ∑  𝑛𝑛
𝑖𝑖=1  𝑎𝑎(𝑖𝑖) 1

𝑛𝑛 ≈ 0. Also, ∫  1
0 𝜑𝜑2(𝑢𝑢)𝑑𝑑𝑑𝑑 ≐ 

∑  𝑛𝑛
𝑖𝑖=1 𝜑𝜑2(𝑖𝑖/(𝑛𝑛 + 1)) 1

𝑛𝑛 = ∑  𝑛𝑛
𝑖𝑖=1 𝑎𝑎2(𝑖𝑖) 1

𝑛𝑛 = 𝑠𝑠𝑎𝑎2

𝑛𝑛 ≈ 1 can be approximated in a 
similar fashion. 

It is known that the ranks, 𝑅𝑅(𝑋𝑋𝑖𝑖) (also 𝑅𝑅(𝑌𝑌𝑖𝑖) ), is uniformly distributed for 
the integers on 𝑖𝑖 = 1, … , 𝑛𝑛. Thus, 𝑃𝑃[(𝑅𝑅(𝑋𝑋𝑖𝑖) = 𝑘𝑘] = 1/𝑛𝑛, where k is the rank 
of ith observation. So, each rank of 𝑋𝑋𝑖𝑖 is equally likely distributed with a 
probability of 1/𝑛𝑛. Therefore, from the expected value of 𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)) it can 
be found that 𝐸𝐸[𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))] = ∑  𝑛𝑛

𝑖𝑖=1 𝑎𝑎(𝑖𝑖) 1
𝑛𝑛 = 0 since ∑  𝑛𝑛

𝑖𝑖=1 𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)) = 0. 

Similarly, 𝐸𝐸[𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))] = ∑  𝑛𝑛
𝑖𝑖=1 𝑎𝑎(𝑖𝑖) 1

𝑛𝑛 = 0. When above results are 
substituted into the expression of 𝑟𝑟𝑎𝑎 as defined in Eq 16, it shows 𝐸𝐸[𝑟𝑟𝑎𝑎] =
0. 

To show part b, the variance definition of 𝑉𝑉[𝑟𝑟𝑎𝑎] = 𝐸𝐸[(𝑟𝑟𝑎𝑎)2] − (𝐸𝐸[𝑟𝑟𝑎𝑎])2 can 
be used for the estimator 𝑟𝑟𝑎𝑎. In the first part of the proof (part-a), it has 
been shown that 𝐸𝐸[𝑟𝑟𝑎𝑎] = 0. Thus, the variance expression can be simplified 
to 𝑉𝑉[𝑟𝑟𝑎𝑎] = 𝐸𝐸[(𝑟𝑟𝑎𝑎)2]. 

Assuming under 𝐻𝐻0: 𝜌𝜌 = 0, 

𝐸𝐸[(𝑟𝑟𝑎𝑎)2] = 𝐸𝐸 {[ 1
𝑠𝑠𝑎𝑎2

∑  
𝑛𝑛

𝑖𝑖=1
 𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))]

2

}

 = 1
𝑠𝑠𝑎𝑎4

∑  
𝑛𝑛

𝑖𝑖=1
 𝐸𝐸[𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))] ∑  

𝑛𝑛

𝑗𝑗=1
 𝐸𝐸 [𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗)) 𝑎𝑎 (𝑅𝑅(𝑌𝑌𝑗𝑗))]

 = 1
𝑠𝑠𝑎𝑎4

∑  
𝑛𝑛

𝑖𝑖=1
 ∑  

𝑛𝑛

𝑗𝑗=1
 𝐸𝐸[𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))]𝐸𝐸 [𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗)) 𝑎𝑎 (𝑅𝑅(𝑌𝑌𝑗𝑗))]

 = 1
𝑠𝑠𝑎𝑎4

∑  
𝑛𝑛

𝑖𝑖=1
 ∑  

𝑛𝑛

𝑗𝑗=1
 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗))] 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑌𝑌𝑗𝑗))]

 

To find the result of the expectations in the last expression, there are two 
cases ( 𝑖𝑖 = 𝑗𝑗 and 𝑖𝑖 ≠ 𝑗𝑗 ) that must be considered separately. For 𝑖𝑖 = 𝑗𝑗, 
 

𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗))] = 𝐸𝐸[𝑎𝑎2(𝑋𝑋𝑖𝑖)] = ∑  
𝑛𝑛

𝑖𝑖=1
𝑎𝑎2(𝑋𝑋𝑖𝑖)

1
𝑛𝑛 = 1

𝑛𝑛 𝑠𝑠𝑎𝑎
2 

Similarly, it can be found that 

𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑌𝑌𝑗𝑗))] = 1
𝑛𝑛 𝑠𝑠𝑎𝑎

2 

For 𝑖𝑖 ≠ 𝑗𝑗, it can be written 

𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗))] = ∑  
𝑛𝑛

𝑖𝑖=1
∑  

𝑛𝑛

𝑗𝑗=1
𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗)) 1

𝑛𝑛(𝑛𝑛 − 1)

= 1
𝑛𝑛(𝑛𝑛 − 1) 𝑠𝑠𝑎𝑎

2 

The last result can be applied to 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑌𝑌𝑗𝑗))] = 1
𝑛𝑛(𝑛𝑛−1) 𝑠𝑠𝑎𝑎

2. So, by 

substituting both cases of 𝑖𝑖 = 𝑗𝑗 and 𝑖𝑖 ≠ 𝑗𝑗, 
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𝐸𝐸[(𝑟𝑟𝑎𝑎)2] = 1
𝑠𝑠𝑎𝑎

4 ∑  
𝑛𝑛

𝑖𝑖=1
 ∑  

𝑛𝑛

𝑗𝑗=1
 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗))] 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑌𝑌𝑗𝑗))]

 = 1
𝑠𝑠𝑎𝑎

4 { ∑  
𝑛𝑛

𝑖𝑖=𝑗𝑗=1
 𝐸𝐸[𝑎𝑎2(𝑋𝑋𝑖𝑖)]𝐸𝐸[𝑎𝑎2(𝑌𝑌𝑖𝑖)] + ∑  

𝑖𝑖≠𝑗𝑗
 ∑  
𝑖𝑖≠𝑗𝑗

 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗))] 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑌𝑌𝑗𝑗))]}

 = 1
𝑠𝑠𝑎𝑎

4 { ∑  
𝑛𝑛

𝑖𝑖=𝑗𝑗=1
 1𝑛𝑛 𝑠𝑠𝑎𝑎

2 1
𝑛𝑛 𝑠𝑠𝑎𝑎

2 + ∑  
𝑖𝑖≠𝑗𝑗

  1
𝑛𝑛(𝑛𝑛 − 1) 𝑠𝑠𝑎𝑎

2 1
𝑛𝑛(𝑛𝑛 − 1) 𝑠𝑠𝑎𝑎

2

 = 1
𝑠𝑠𝑎𝑎

4 [𝑛𝑛𝑠𝑠𝑎𝑎
4

𝑛𝑛2 + 𝑛𝑛(𝑛𝑛 − 1) 𝑠𝑠𝑎𝑎
4

𝑛𝑛2(𝑛𝑛 − 1)2]

 = 1
𝑠𝑠𝑎𝑎

4 [𝑠𝑠𝑎𝑎
4

𝑛𝑛 + 𝑠𝑠𝑎𝑎
4

𝑛𝑛(𝑛𝑛 − 1)]

 = 1
𝑠𝑠𝑎𝑎

4 [(𝑛𝑛 − 1)𝑠𝑠𝑎𝑎
4

𝑛𝑛(𝑛𝑛 − 1) + 𝑠𝑠𝑎𝑎
4

𝑛𝑛(𝑛𝑛 − 1)]

 = 1
𝑠𝑠𝑎𝑎

4
𝑠𝑠𝑎𝑎

4

𝑛𝑛 − 1

𝐸𝐸[(𝑟𝑟𝑎𝑎)2] = 1
𝑛𝑛 − 1

 

Thus, using the results of 𝐸𝐸[𝑟𝑟𝑎𝑎] = 0 and 𝐸𝐸[(𝑟𝑟𝑎𝑎)2] = 1
𝑛𝑛−1 as shown above, 

we prove that 𝑉𝑉[𝑟𝑟𝑎𝑎] = 1
𝑛𝑛−1. The finite sample distribution of 𝑟𝑟𝑎𝑎 is not easy 

to find but it can be claimed that (by the central limit theorem) 𝑧𝑧𝑎𝑎 =
𝑟𝑟𝑎𝑎

√1/(𝑛𝑛−1) = 𝑟𝑟𝑎𝑎√𝑛𝑛 − 1 → 𝑁𝑁(0,1) as 𝑛𝑛 goes to ∞. For an asymptotic (large 

sample) 𝛼𝛼 level test, it can be defined that reject 𝐻𝐻0: 𝜌𝜌 = 0 if |𝑧𝑧𝑎𝑎| > 𝑧𝑧𝛼𝛼/2. 

For example, 𝜑𝜑(𝑢𝑢) can be taken as 𝜑𝜑(𝑢𝑢) = √12(𝑢𝑢 − 1/2) which is called 
the Wilcoxon's linear score function. It can be shown (with the following 
theorem) that Spearmen's rank correlation (𝑟𝑟𝑠𝑠) is equal to to the 𝑟𝑟𝑎𝑎 which 
is defined in Eq(16) if Wilcoxon's linear score function is used to estimate 
the correlation coefficient of 𝑟𝑟𝑎𝑎. 

Theorem 2. Let (𝑋𝑋1, 𝑌𝑌1), … , (𝑋𝑋𝑛𝑛, 𝑌𝑌𝑛𝑛) be a random sample from a bivariate 
continuous distribution function 𝐹𝐹(𝑋𝑋, 𝑌𝑌). Also let 𝜑𝜑(𝑢𝑢) = √12(𝑢𝑢 − 1/2) 
which is called the Wilcoxon's linear score function. Under the null 
hypothesis of 𝐻𝐻0: 𝜌𝜌 = 0(𝐹𝐹(𝑋𝑋, 𝑌𝑌) = 𝐹𝐹𝑥𝑥(𝑋𝑋)𝐹𝐹𝑦𝑦(𝑌𝑌) or independence of 𝑋𝑋 and 𝑌𝑌 
), the test statistics based on Wilcoxon's rank score 𝑟𝑟𝑎𝑎 is equal to the 
Spearman's 𝑟𝑟𝑠𝑠 with the same variance and expected value as defined in 
Theorem 1. 

Proof. First, recall that 

𝑎𝑎(𝑖𝑖) = 𝜑𝜑[(𝑖𝑖/𝑛𝑛 + 1)] = √12(𝑖𝑖/(𝑛𝑛 + 1) − 1/2)#(17)  
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𝐸𝐸[(𝑟𝑟𝑎𝑎)2] = 1
𝑠𝑠𝑎𝑎

4 ∑  
𝑛𝑛

𝑖𝑖=1
 ∑  

𝑛𝑛

𝑗𝑗=1
 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗))] 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑌𝑌𝑗𝑗))]

 = 1
𝑠𝑠𝑎𝑎

4 { ∑  
𝑛𝑛

𝑖𝑖=𝑗𝑗=1
 𝐸𝐸[𝑎𝑎2(𝑋𝑋𝑖𝑖)]𝐸𝐸[𝑎𝑎2(𝑌𝑌𝑖𝑖)] + ∑  

𝑖𝑖≠𝑗𝑗
 ∑  
𝑖𝑖≠𝑗𝑗

 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑋𝑋𝑗𝑗))] 𝐸𝐸 [𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖))𝑎𝑎 (𝑅𝑅(𝑌𝑌𝑗𝑗))]}
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𝑠𝑠𝑎𝑎

4 { ∑  
𝑛𝑛

𝑖𝑖=𝑗𝑗=1
 1𝑛𝑛 𝑠𝑠𝑎𝑎

2 1
𝑛𝑛 𝑠𝑠𝑎𝑎

2 + ∑  
𝑖𝑖≠𝑗𝑗

  1
𝑛𝑛(𝑛𝑛 − 1) 𝑠𝑠𝑎𝑎

2 1
𝑛𝑛(𝑛𝑛 − 1) 𝑠𝑠𝑎𝑎

2

 = 1
𝑠𝑠𝑎𝑎

4 [𝑛𝑛𝑠𝑠𝑎𝑎
4

𝑛𝑛2 + 𝑛𝑛(𝑛𝑛 − 1) 𝑠𝑠𝑎𝑎
4

𝑛𝑛2(𝑛𝑛 − 1)2]

 = 1
𝑠𝑠𝑎𝑎

4 [𝑠𝑠𝑎𝑎
4

𝑛𝑛 + 𝑠𝑠𝑎𝑎
4

𝑛𝑛(𝑛𝑛 − 1)]

 = 1
𝑠𝑠𝑎𝑎

4 [(𝑛𝑛 − 1)𝑠𝑠𝑎𝑎
4

𝑛𝑛(𝑛𝑛 − 1) + 𝑠𝑠𝑎𝑎
4

𝑛𝑛(𝑛𝑛 − 1)]
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𝑠𝑠𝑎𝑎

4
𝑠𝑠𝑎𝑎

4

𝑛𝑛 − 1

𝐸𝐸[(𝑟𝑟𝑎𝑎)2] = 1
𝑛𝑛 − 1
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the Wilcoxon's linear score function. It can be shown (with the following 
theorem) that Spearmen's rank correlation (𝑟𝑟𝑠𝑠) is equal to to the 𝑟𝑟𝑎𝑎 which 
is defined in Eq(16) if Wilcoxon's linear score function is used to estimate 
the correlation coefficient of 𝑟𝑟𝑎𝑎. 

Theorem 2. Let (𝑋𝑋1, 𝑌𝑌1), … , (𝑋𝑋𝑛𝑛, 𝑌𝑌𝑛𝑛) be a random sample from a bivariate 
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which is called the Wilcoxon's linear score function. Under the null 
hypothesis of 𝐻𝐻0: 𝜌𝜌 = 0(𝐹𝐹(𝑋𝑋, 𝑌𝑌) = 𝐹𝐹𝑥𝑥(𝑋𝑋)𝐹𝐹𝑦𝑦(𝑌𝑌) or independence of 𝑋𝑋 and 𝑌𝑌 
), the test statistics based on Wilcoxon's rank score 𝑟𝑟𝑎𝑎 is equal to the 
Spearman's 𝑟𝑟𝑠𝑠 with the same variance and expected value as defined in 
Theorem 1. 

Proof. First, recall that 

𝑎𝑎(𝑖𝑖) = 𝜑𝜑[(𝑖𝑖/𝑛𝑛 + 1)] = √12(𝑖𝑖/(𝑛𝑛 + 1) − 1/2)#(17)  

which is called Wilcoxon's score function. Also, according to 
(Hettmansperger, 1984), 𝑠𝑠𝑎𝑎

2 is defined as 

𝑠𝑠𝑎𝑎
2 = ∑  

𝑛𝑛

𝑖𝑖=1
 𝑎𝑎2(𝑖𝑖)

 = ∑  
𝑛𝑛

𝑖𝑖=1
 {√12[𝑖𝑖/(𝑛𝑛 + 1) − 1/2]}2

 = 12
(𝑛𝑛 + 1)2 [∑  

𝑛𝑛

𝑖𝑖=1
 𝑖𝑖2 − (𝑛𝑛 + 1) ∑  

𝑛𝑛

𝑖𝑖=1
 𝑖𝑖 + 𝑛𝑛(𝑛𝑛 + 1)2

4 ]

 = 𝑛𝑛(𝑛𝑛 − 1)
𝑛𝑛 + 1

 

So, we also let 

𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)) = √12[𝑅𝑅(𝑋𝑋𝑖𝑖)/(𝑛𝑛 + 1) − 1/2]#(18)  

and similarly, 

𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖)) = √12[𝑅𝑅(𝑌𝑌𝑖𝑖)/(𝑛𝑛 + 1) − 1/2]#(19)  

We plug in above results into the 𝑟𝑟𝑎𝑎 which is defined in Eq (16). Then, we 
can find 

𝑟𝑟𝑎𝑎 =
∑  𝑛𝑛

𝑖𝑖=1  [(𝑅𝑅(𝑋𝑋𝑖𝑖) − (𝑛𝑛 + 1)/2)(𝑅𝑅(𝑌𝑌𝑖𝑖) − (𝑛𝑛 + 1)/2)]
𝑛𝑛(𝑛𝑛2 − 1)/12 #(20)  

which is also defined as 𝑟𝑟𝑠𝑠 in Eq (11). So, the result of the Theorem 2 
proves that Spearman's 𝑟𝑟𝑠𝑠 can also be estimated using a score based 
methods such as Wilcoxon's score function. 

Yet there is another nonparametric estimator available to estimate 𝜌𝜌, which 
is called Kendall's 𝜏𝜏 estimator (Kendall, 1938). It still uses the ranks of the 
observations but it counts the concordant and discordant pairs of the 
observations in the pairs of random samples. An estimator of Kendall's 𝜏𝜏 
can be derived by  

𝑟𝑟 =
(𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑑𝑑)

(𝑛𝑛(𝑛𝑛 − 1))/2 #(21)  

where 𝑛𝑛𝑐𝑐 shows the number of concordant pair and 𝑛𝑛𝑑𝑑 shows the number 
of discordant pairs. 
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If we compare Pearson against Kendall's and Spearman's estimators, 
Pearson's correlation coefficient measures how well the linear relationship 
between two variables are but in reality, there could be other ways that two 
variables can be correlated such as monotonic relationship which does not 
show relationship with a straight line. Monotonic relationships between 
two variables can show exponential or logistics distributions such as while 
one variable increases, the other increases or decreases consistently. 
Spearman and Kendall's correlation coefficients are basically a non-
parametric way to investigate the monotonic relationships between two 
random variables with a continuous bivariate distribution function of 
𝐹𝐹(𝑋𝑋, 𝑌𝑌). 

The Spearman correlation test assumes only that your data are a random 
sample. Spearman's correlation is calculated on the ranks of the 
observations and will therefore work with any type of data that can be 
ranked, including ordinal, interval, or ratio data. Because it based on ranks, 
it is less sensitive to outliers than the Pearson correlation test, and it is 
sometimes used to evaluate a correlation when outliers are present. 

4 PROPOSED SMOOTHED RANKS BASED CORRELATION 
ESTIMATOR 

First, recall that the general score function is defined as 

𝑎𝑎(𝑖𝑖) = 𝜑𝜑[(𝑖𝑖/𝑛𝑛 + 1)] = √12(𝑖𝑖/(𝑛𝑛 + 1) − 1/2) 

which is based on Wilcoxon's linear score function. Then using regular 
ranks, we can write the score function as 

𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)) = √12[𝑅𝑅(𝑋𝑋𝑖𝑖)/(𝑛𝑛 + 1) − 1/2]#(22)  

and similarly, 

𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖)) = √12[𝑅𝑅(𝑌𝑌𝑖𝑖)/(𝑛𝑛 + 1) − 1/2]#(23)  

As it was shown by Theorem 1 and Theorem 2, 𝑟𝑟𝑎𝑎 is equal to the 
Spearman's 𝑟𝑟𝑠𝑠 as defined in Eq(15). The proposed method replaces 𝑅𝑅(𝑋𝑋𝑖𝑖) 
and 𝑅𝑅(𝑌𝑌𝑖𝑖) with a smoothed ranks and call them 𝑅𝑅(𝑋𝑋𝑖𝑖)̂ and 𝑅𝑅(𝑌𝑌𝑗𝑗)̂, 
respectively. The proposed approach and the method described below has 
been introduced by (Tasdan, 2018). 
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The Spearman correlation test assumes only that your data are a random 
sample. Spearman's correlation is calculated on the ranks of the 
observations and will therefore work with any type of data that can be 
ranked, including ordinal, interval, or ratio data. Because it based on ranks, 
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which is based on Wilcoxon's linear score function. Then using regular 
ranks, we can write the score function as 
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and similarly, 

𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖)) = √12[𝑅𝑅(𝑌𝑌𝑖𝑖)/(𝑛𝑛 + 1) − 1/2]#(23)  

As it was shown by Theorem 1 and Theorem 2, 𝑟𝑟𝑎𝑎 is equal to the 
Spearman's 𝑟𝑟𝑠𝑠 as defined in Eq(15). The proposed method replaces 𝑅𝑅(𝑋𝑋𝑖𝑖) 
and 𝑅𝑅(𝑌𝑌𝑖𝑖) with a smoothed ranks and call them 𝑅𝑅(𝑋𝑋𝑖𝑖)̂ and 𝑅𝑅(𝑌𝑌𝑗𝑗)̂, 
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been introduced by (Tasdan, 2018). 

In order to generate a rank set of a random sample of 𝑋𝑋1, 𝑋𝑋2, . . , 𝑋𝑋𝑛𝑛, the 
empirical cdf of the random sample is defined as 

𝐹𝐹𝑛𝑛(𝑥𝑥) =
#{𝑋𝑋𝑗𝑗 ≤ 𝑥𝑥}

𝑛𝑛 = 1
𝑛𝑛∑  

𝑛𝑛

𝑗𝑗=1
 𝐈𝐈(𝑋𝑋𝑗𝑗 ≤ 𝑥𝑥)#(24)  

where 𝐈𝐈 is called the indicator function. This is a stepwise discrete function 
at each 𝑋𝑋𝑖𝑖. Then, the ranks of a random sample can be expressed as 

𝑅𝑅(𝑋𝑋𝑖𝑖) = 𝑛𝑛𝐹𝐹𝑛𝑛(𝑋𝑋𝑖𝑖) = ∑  
𝑛𝑛

𝑗𝑗=1
 𝐈𝐈(𝑋𝑋𝑗𝑗 ≤ 𝑋𝑋𝑖𝑖)#(25)  

where 𝑅𝑅(𝑋𝑋𝑖𝑖) is the rank of the 𝑖𝑖 th observation. In a similar fashion, 

𝑅𝑅(𝑌𝑌𝑖𝑖) = 𝑛𝑛𝐹𝐹𝑛𝑛(𝑌𝑌𝑖𝑖) = ∑  
𝑛𝑛

𝑗𝑗=1
 𝐈𝐈(𝑌𝑌𝑗𝑗 ≤ 𝑌𝑌𝑖𝑖)#(26)  

We now consider a smooth approximation to the indicator function by 
replacing I with a continuous distribution function 𝐻𝐻(𝑥𝑥/ℎ), where the 
scale parameter ℎ is called the bandwidth or smoothing parameter in kernel 
smoothing applications and ℎ approaches zero as the sample size increases. 
The distribution function 𝐻𝐻(𝑥𝑥) is chosen to be a continuous, 
nondecreasing, and also bounded function that generates smoothed ranks 
as described below. The resulting smoothed empirical function can be 
written as 

𝐹𝐹𝑠𝑠(𝑡𝑡) =
1
𝑛𝑛∑  

𝑛𝑛

𝑗𝑗=1
 𝐻𝐻 (

𝑡𝑡 − 𝑋𝑋𝑗𝑗
ℎ ) #(27)  

By using this result, we can now define the smoothed ranks 

𝑅𝑅(𝑋𝑋𝑖𝑖)̂ = 𝑛𝑛𝐹𝐹𝑠𝑠(𝑋𝑋𝑖𝑖) =∑  
𝑛𝑛

𝑗𝑗=1
 𝐻𝐻 (

𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗
ℎ ) #(28)  

where the notation 𝑅𝑅(𝑋𝑋𝑖𝑖)̂ indicates the smoothed rank of the observation 
𝑋𝑋𝑖𝑖. It is important to mention that the purpose of smoothing is not about 
estimating a density function but to use 𝐻𝐻(𝑥𝑥) function as a smooth 
approximation of the indicator function 𝐼𝐼. Therefore, the smoothed ranks 
can be generated from the 𝐹𝐹𝑠𝑠(𝑡𝑡) function. Moreover, it should be noted 
that when 𝑥𝑥𝑖𝑖 > 𝑋𝑋𝑗𝑗, 𝐻𝐻 (𝑥𝑥𝑖𝑖−𝑋𝑋𝑗𝑗ℎ ) → 1 when ℎ approaches zero as 𝑛𝑛 gets large. 
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Similarly, when 𝑥𝑥𝑖𝑖 < 𝑋𝑋𝑗𝑗, 𝐻𝐻 (𝑥𝑥𝑖𝑖−𝑋𝑋𝑗𝑗ℎ ) → 0 when ℎ approaches zero as 𝑛𝑛 gets 
large. 

Also, it should be noted that 

𝐻𝐻𝑛𝑛(𝑋𝑋(𝑖𝑖)) =
𝑖𝑖 − 1
𝑛𝑛 +

𝑋𝑋(𝑖𝑖) − 𝑉𝑉𝑖𝑖
𝑛𝑛(𝑉𝑉𝑖𝑖+1 − 𝑉𝑉𝑖𝑖)

#(29)  

where 𝑋𝑋(𝑖𝑖) is the 𝑖𝑖 th order observation and 𝑉𝑉𝑖𝑖 is the midpoints between 𝑋𝑋𝑖𝑖 
and 𝑋𝑋𝑖𝑖+1. Also, 𝑉𝑉1 = 𝑋𝑋1 − (𝑉𝑉2 − 𝑋𝑋1) and 𝑉𝑉𝑛𝑛+1 = 𝑋𝑋𝑛𝑛 + (𝑍𝑍𝑛𝑛 − 𝑉𝑉𝑛𝑛). 

As a result of the smoothing and replacing the indicator function I with 
𝐻𝐻(𝑥𝑥/ℎ), we now obtain the smoothed ranks using smoothed distribution 
function of 𝐹𝐹𝑠𝑠(𝑋𝑋𝑖𝑖) and write them as 

𝑅𝑅(𝑋𝑋𝑖𝑖)̂ = 𝑛𝑛𝐹𝐹𝑠𝑠(𝑋𝑋𝑖𝑖)#(30)  

and 

𝑅𝑅(𝑌𝑌𝑖𝑖)̂ = 𝑛𝑛𝐹𝐹𝑠𝑠(𝑌𝑌𝑖𝑖)#(31)  

Then using these smoothed ranks, we rewrite the smoothed score function 

𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)̂) = √12[𝑅𝑅(𝑋𝑋𝑖𝑖)̂/(𝑛𝑛 + 1) − 1/2]#(32)  

and similarly, 

𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖)̂) = √12[𝑅𝑅(𝑌𝑌𝑖𝑖)̂/(𝑛𝑛 + 1) − 1/2]#(33)  

We can plug in the new scores into 𝑟𝑟𝑎𝑎 as defined in Eq (16) to derive the 
new version of Spearman's correlation estimator based on the smoothed 
Wilcoxon score function, 

𝑟𝑟𝑠𝑠𝑠𝑠 =
1
𝑠𝑠𝑎𝑎2

∑  
𝑛𝑛

𝑖𝑖=1
 𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)̂)𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖)̂)#(34)  

where 𝑠𝑠𝑎𝑎2 = ∑  𝑛𝑛
𝑖𝑖=1 𝑎𝑎2(𝑖𝑖) = 𝑛𝑛(𝑛𝑛−1)

𝑛𝑛+1  with using Wilcoxon's score function. A 
further simplification of the above results gives 

𝑟𝑟𝑠𝑠𝑠𝑠 =
∑  𝑛𝑛
𝑖𝑖=1  [(𝑅𝑅(𝑋𝑋𝑖𝑖)̂ − (𝑛𝑛 + 1)/2)(𝑅𝑅(𝑌𝑌𝑖𝑖)̂ − (𝑛𝑛 + 1)/2)]

𝑛𝑛(𝑛𝑛2 − 1)/12 #(35)  



Feridun Taşdan / Rukiye Dağalp  |  131
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As a result of the smoothing and replacing the indicator function I with 
𝐻𝐻(𝑥𝑥/ℎ), we now obtain the smoothed ranks using smoothed distribution 
function of 𝐹𝐹𝑠𝑠(𝑋𝑋𝑖𝑖) and write them as 

𝑅𝑅(𝑋𝑋𝑖𝑖)̂ = 𝑛𝑛𝐹𝐹𝑠𝑠(𝑋𝑋𝑖𝑖)#(30)  

and 

𝑅𝑅(𝑌𝑌𝑖𝑖)̂ = 𝑛𝑛𝐹𝐹𝑠𝑠(𝑌𝑌𝑖𝑖)#(31)  

Then using these smoothed ranks, we rewrite the smoothed score function 

𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)̂) = √12[𝑅𝑅(𝑋𝑋𝑖𝑖)̂/(𝑛𝑛 + 1) − 1/2]#(32)  

and similarly, 

𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖)̂) = √12[𝑅𝑅(𝑌𝑌𝑖𝑖)̂/(𝑛𝑛 + 1) − 1/2]#(33)  

We can plug in the new scores into 𝑟𝑟𝑎𝑎 as defined in Eq (16) to derive the 
new version of Spearman's correlation estimator based on the smoothed 
Wilcoxon score function, 

𝑟𝑟𝑠𝑠𝑠𝑠 =
1
𝑠𝑠𝑎𝑎2

∑  
𝑛𝑛

𝑖𝑖=1
 𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)̂)𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖)̂)#(34)  

where 𝑠𝑠𝑎𝑎2 = ∑  𝑛𝑛
𝑖𝑖=1 𝑎𝑎2(𝑖𝑖) = 𝑛𝑛(𝑛𝑛−1)

𝑛𝑛+1  with using Wilcoxon's score function. A 
further simplification of the above results gives 

𝑟𝑟𝑠𝑠𝑠𝑠 =
∑  𝑛𝑛
𝑖𝑖=1  [(𝑅𝑅(𝑋𝑋𝑖𝑖)̂ − (𝑛𝑛 + 1)/2)(𝑅𝑅(𝑌𝑌𝑖𝑖)̂ − (𝑛𝑛 + 1)/2)]

𝑛𝑛(𝑛𝑛2 − 1)/12 #(35)  

Moreover, we can replace 𝑅𝑅(𝑋𝑋𝑖𝑖)/(𝑛𝑛 + 1) = 𝑛𝑛
𝑛𝑛+1 𝐹𝐹𝑛𝑛(𝑋𝑋𝑖𝑖) by 𝐻𝐻𝑛𝑛(𝑋𝑋(𝑖𝑖)) and 

𝑅𝑅(𝑌𝑌𝑖𝑖)/(𝑛𝑛 + 1) = 𝑛𝑛
𝑛𝑛+1 𝐹𝐹𝑛𝑛(𝑌𝑌𝑖𝑖) by 𝐻𝐻𝑛𝑛(𝑋𝑋(𝑖𝑖)) and 𝐻𝐻𝑛𝑛(𝑌𝑌(𝑖𝑖)), respectively. Then, 

𝑎𝑎(𝑅𝑅(𝑋𝑋𝑖𝑖)̂) = √12[𝐻𝐻𝑛𝑛(𝑋𝑋𝑖𝑖)̂ −1/2]#(36)  

Similarly, 

𝑎𝑎(𝑅𝑅(𝑌𝑌𝑖𝑖)̂) = √12[𝐻𝐻𝑛𝑛(𝑌𝑌𝑖𝑖)̂ − 1/2]#(37)  

Then we can plug in this result into 𝑟𝑟𝑎𝑎 and found the new version of the 
Spearman correlation coefficient estimator based on kernel function 

𝑟𝑟𝑠𝑠𝑠𝑠 =
∑  𝑛𝑛
𝑖𝑖=1  [(𝐻𝐻𝑛𝑛(𝑋𝑋(𝑖𝑖)) − (𝑛𝑛 + 1)/2)(𝐻𝐻𝑛𝑛(𝑌𝑌(𝑖𝑖)) − (𝑛𝑛 + 1)/2)]

𝑛𝑛(𝑛𝑛2 − 1)/12 #(38)  

4.1 BANDWIDTH SELECTION 

It is well known that the selection of bandwidth ℎ is more important than 
the shape of the kernel function 𝐻𝐻(𝑥𝑥) as stated by (Sheather,2004) and 
(Silverman, 1986). As a result, an appropriate selection of a bandwidth ℎ 
must be considered in order to obtain a smoothed approximation of the 
indicator function. There are many bandwidth ℎ options available in the 
smoothing applications but the bandwidths suggested by (Silverman, 
1986), (Sheather and Jones, 1991), and Bowman (1984) are options to be 
considered because of their common usage, high performance and also 
availability in R software. The bandwidth suggested by (Silverman, 1986) 
is also called the "rule of thumb" bandwidth approach in the literature. It 
has a numerical formula that equals to ℎ = 0.9𝜎̂𝜎𝑛𝑛−0.20, where 𝜎̂𝜎 =
min{𝑠𝑠, 𝐼𝐼𝐼𝐼𝐼𝐼/1.349}. (Bowman, 1984) suggests a least squares cross-
validation approach and it is also called an unbiased cross-validation 
smoother in the literature. Finally, Sheather-Jones's plug-in bandwidth 
approach is also commonly used and considered to be a good performer as 
suggested by (Simonoff, 1996). The last two options have no closed form 
formulas. (Tasdan and Yeniay, 2014) discussed these three bandwidth 
options for the smoothed version of the KolmogorovSmirnov statistic, and 
has shown all three bandwidth options performed similarly in estimating 
the shift parameter for location problems. Moreover, we also considered 
the smoothing parameter ℎ = 𝜎̂𝜎𝑛𝑛−0.26 as suggested by (Heller, 2007). It 
also satisfies 𝑛𝑛ℎ → ∞ and 𝑛𝑛ℎ4 → 0 conditions in order to have an optimal 
rate of convergence. The 𝜎̂𝜎 is the estimated pooled standard deviation from 
the data. For robustness purposes, we consider using MAD (Median 
Absolute Deviation) to estimate 𝜎𝜎 instead of a regular standard deviation 
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approach. Comparative study of these four different bandwidth parameters 
will be discussed in detail later in Section 5. 

5 MONTE CARLO SIMULATION STUDY 

In this section, Monte Carlo Simulation has been performed and the Mean 
Square Error (MSE) of the 𝜌𝜌 parameter for each estimator 𝑟𝑟 is computed. 
The MSE is formulated as 𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟) = (𝑟𝑟 − 𝜌𝜌)2 + 𝑉𝑉(𝑟𝑟) which is found by 
average of bias  2 and adding the variance of correlation estimator(r). First, 
two random samples of size 𝑛𝑛 = 50 are generated from a bivariate normal 
distribution with parameters 𝜇𝜇1 = 2, 𝜇𝜇2 = 4, 𝜎𝜎1 = 1, 𝜎𝜎2 = 1 and with the 
correlation parameter 𝜌𝜌 which is set to the sequence of 
𝜌𝜌 = {0,0.02,0.04, … ,1}. 

For each parameter value of the 𝜌𝜌, Person's 𝑟𝑟𝑝𝑝, Spearman's 𝑟𝑟𝑠𝑠, Kendall's 𝑟𝑟𝑘𝑘 
and the proposed smoothed ranked based 𝑟𝑟𝑠𝑠𝑠𝑠 estimator are used for 
estimating the MSE values. The Figure 2 shows the result of the bivariate 
normal distribution which is defined below. 

𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦) = 1
2𝜋𝜋√1 − 𝜌𝜌2

exp {− 1
2(1 − 𝜌𝜌2) [𝑥𝑥2 − 2𝜌𝜌𝜌𝜌𝜌𝜌 + 𝑦𝑦2]} 

where−1 ≤ 𝜌𝜌 ≤ 1. 
 

The Figure 3 is generated from the bivariate exponential distribution, also 
known as Farlie-Gumbel-Morgenstern distribution, is given by 

𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 𝐹𝐹1(𝑥𝑥)𝐹𝐹2(𝑦𝑦)[1 + 𝜌𝜌(1 − 𝐹𝐹1(𝑥𝑥))(1 − 𝐹𝐹2(𝑦𝑦))]#(39)  

for 𝑥𝑥 ≥ 0 and 𝑦𝑦 ≥ 0 and the marginal distribution functions 𝐹𝐹1 and 𝐹𝐹2 are 
exponential with scale parameters 𝜃𝜃1 and 𝜃𝜃2 and correlation parameter 𝜌𝜌 
where −1 ≤ 𝜌𝜌 ≤ 1. It is important to point out that the marginal 
distributions of X and Y are exponential with parameters 𝛼𝛼 and 𝛽𝛽. 
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approach. Comparative study of these four different bandwidth parameters 
will be discussed in detail later in Section 5. 

5 MONTE CARLO SIMULATION STUDY 

In this section, Monte Carlo Simulation has been performed and the Mean 
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𝜌𝜌 = {0,0.02,0.04, … ,1}. 

For each parameter value of the 𝜌𝜌, Person's 𝑟𝑟𝑝𝑝, Spearman's 𝑟𝑟𝑠𝑠, Kendall's 𝑟𝑟𝑘𝑘 
and the proposed smoothed ranked based 𝑟𝑟𝑠𝑠𝑠𝑠 estimator are used for 
estimating the MSE values. The Figure 2 shows the result of the bivariate 
normal distribution which is defined below. 

𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦) = 1
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2(1 − 𝜌𝜌2) [𝑥𝑥2 − 2𝜌𝜌𝜌𝜌𝜌𝜌 + 𝑦𝑦2]} 

where−1 ≤ 𝜌𝜌 ≤ 1. 
 

The Figure 3 is generated from the bivariate exponential distribution, also 
known as Farlie-Gumbel-Morgenstern distribution, is given by 

𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 𝐹𝐹1(𝑥𝑥)𝐹𝐹2(𝑦𝑦)[1 + 𝜌𝜌(1 − 𝐹𝐹1(𝑥𝑥))(1 − 𝐹𝐹2(𝑦𝑦))]#(39)  

for 𝑥𝑥 ≥ 0 and 𝑦𝑦 ≥ 0 and the marginal distribution functions 𝐹𝐹1 and 𝐹𝐹2 are 
exponential with scale parameters 𝜃𝜃1 and 𝜃𝜃2 and correlation parameter 𝜌𝜌 
where −1 ≤ 𝜌𝜌 ≤ 1. It is important to point out that the marginal 
distributions of X and Y are exponential with parameters 𝛼𝛼 and 𝛽𝛽. 
 

 
Figure 2: Estimation of MSEs of 𝜌𝜌 using Bivariate Normal Distribution 
 

 
Figure 3: Estimation of MSEs of 𝜌𝜌 using Bivariate Exponential 
Distribution 

As it can be seen from the Figure 2 under the assumption that X and Y 
random samples are coming from a bivariate normal distribution, Kendall's 
𝑟𝑟𝑘𝑘 gives lower MSEs when about 𝜌𝜌 < 0.30 but it worsens when 𝜌𝜌 
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approaches 1. On the other hand, Pearson's 𝑟𝑟𝑝𝑝 performs the best overall, 
gives minimun MSEs when 𝜌𝜌 approaches 1. Moreover, the proposed 
smoothed rank and Spearman estimates MSE estimates exactly overlaps. 
Therefore, if we compare the all estimators, Pearson's 𝑟𝑟𝑝𝑝 performs the best 
under the bivariate normality whereas Spearman and the smoothed ranked 
estimates perform similarly and looks very stable. On the other hand, 
Kendall's 𝑟𝑟𝑘𝑘 is the worst performer as shown by the Figure 2. As the 
Figure 3 shows that if we assume X and Y are coming from a bivariate 
exponential distribution, then proposed smoothed rank and Spearman's 
correlation estimates performs the best overall. Pearson's MSE values are 
higher than Spearman and the smoothed rank based estimates under 
bivariate exponential case. This is expected since Pearson known to be a 
good estimator under normality or linear relationships. Kendall's 𝑟𝑟𝑘𝑘 shows 
a fluctuating MSEs as shown previously under the bivariate normal case. 

In the second part of the simulation, the relative efficiencies of the 
smoothed ranked 𝑟𝑟𝑠𝑠𝑠𝑠 with respected to the other estimators are compared 
based on the ratios of the estimated MSEs. The results are presented in the 
Table 1. The most obvious result is that the proposed smoothed rank's 𝑟𝑟𝑠𝑠𝑠𝑠 
estimator performs very similar to the Spearmans's 𝑟𝑟𝑠𝑠 method since the 
relative efficiencies are very close to 1 which is expected since we saw that 
similarity on the Figure 2. Pearson shows superiority over the other 
estimators if the underlying distribution is bivariate normal since the 
relative efficiency results as 𝜌𝜌 goes to 1. Between smoothed and Kendall's 
estimator, Smoothed rank based estimator has increasing relative 
efficiencies as 𝜌𝜌 increases. 

Table 1: Relative efficiency rates of the 𝜌𝜌 estimators basen on MSEs under 
bivariate normal 

Correlation( 𝜌𝜌 ) Pears-Smoot Kendal-Smoot Spear-Smoot Pears-Spear 

0 0.9931 0.4690 1.0044 0.9888 

0.25 0.9758 0.9021 1.0053 0.9707 

0.50 0.8644 2.4973 1.0074 0.8581 

0.75 0.6583 7.6484 1.0092 0.6523 

0.95 0.3530 38.7826 0.9981 0.3537 
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approaches 1. On the other hand, Pearson's 𝑟𝑟𝑝𝑝 performs the best overall, 
gives minimun MSEs when 𝜌𝜌 approaches 1. Moreover, the proposed 
smoothed rank and Spearman estimates MSE estimates exactly overlaps. 
Therefore, if we compare the all estimators, Pearson's 𝑟𝑟𝑝𝑝 performs the best 
under the bivariate normality whereas Spearman and the smoothed ranked 
estimates perform similarly and looks very stable. On the other hand, 
Kendall's 𝑟𝑟𝑘𝑘 is the worst performer as shown by the Figure 2. As the 
Figure 3 shows that if we assume X and Y are coming from a bivariate 
exponential distribution, then proposed smoothed rank and Spearman's 
correlation estimates performs the best overall. Pearson's MSE values are 
higher than Spearman and the smoothed rank based estimates under 
bivariate exponential case. This is expected since Pearson known to be a 
good estimator under normality or linear relationships. Kendall's 𝑟𝑟𝑘𝑘 shows 
a fluctuating MSEs as shown previously under the bivariate normal case. 

In the second part of the simulation, the relative efficiencies of the 
smoothed ranked 𝑟𝑟𝑠𝑠𝑠𝑠 with respected to the other estimators are compared 
based on the ratios of the estimated MSEs. The results are presented in the 
Table 1. The most obvious result is that the proposed smoothed rank's 𝑟𝑟𝑠𝑠𝑠𝑠 
estimator performs very similar to the Spearmans's 𝑟𝑟𝑠𝑠 method since the 
relative efficiencies are very close to 1 which is expected since we saw that 
similarity on the Figure 2. Pearson shows superiority over the other 
estimators if the underlying distribution is bivariate normal since the 
relative efficiency results as 𝜌𝜌 goes to 1. Between smoothed and Kendall's 
estimator, Smoothed rank based estimator has increasing relative 
efficiencies as 𝜌𝜌 increases. 

Table 1: Relative efficiency rates of the 𝜌𝜌 estimators basen on MSEs under 
bivariate normal 

Correlation( 𝜌𝜌 ) Pears-Smoot Kendal-Smoot Spear-Smoot Pears-Spear 

0 0.9931 0.4690 1.0044 0.9888 

0.25 0.9758 0.9021 1.0053 0.9707 

0.50 0.8644 2.4973 1.0074 0.8581 

0.75 0.6583 7.6484 1.0092 0.6523 

0.95 0.3530 38.7826 0.9981 0.3537 

 

Above simulation is repeated under the bivariate exponential distribution 
condition and results are presented in Table 2. 

Table 2: Relative efficiency rates of the 𝜌𝜌 estimators basen on MSEs under 
bivariate exponential 

Correlation( 𝜌𝜌 ) Pears-Smoot Kendal-Smoot Spear-Smoot Pears-Spear 

0 1.0064 0.4669 1.0024 1.0040 

0.25 1.3173 0.9166 1.0057 1.3098 

0.50 1.6154 2.5556 1.0065 1.6050 

0.75 1.7028 7.8280 1.0131 1.6807 

0.95 1.1578 40.9222 1.0479 1.1049 

 

As we see Table 2, Smoothed rank's 𝑟𝑟𝑠𝑠𝑠𝑠 and Spearman's 𝑟𝑟𝑠𝑠 performs equally 
as 𝜌𝜌 approaches 1 . Both are better than the Pearson's estimator especially 
when 𝜌𝜌 is around 0.50 − 0.75. The proposed smoothed rank based 
estimator performs better than the Kendall since relative efficiencies goes 
as high as 40 as 𝜌𝜌 approaches 1. 

6 CONCLUSIONS 

The Spearman's rank correlation coefficient (𝜌𝜌) is a nonparametric measure 
that assesses the strength and direction of association between two ranked 
variables. Tradi- 
tionally, 𝜌𝜌 is computed as 

𝜌𝜌 = 1 − 6 ∑  𝐷𝐷𝑖𝑖
2

𝑛𝑛(𝑛𝑛2 − 1) #(40)  

where 𝐷𝐷𝑖𝑖 is the difference between the ranks of corresponding variables 𝑥𝑥 
and 𝑦𝑦, and 𝑛𝑛 is the number of observations. However, this method can be 
sensitive to the exact rank assignments, particularly when there are ties or 
the noise is present in the data. To address these issues, smoothed of ranks 
can be employed in the Wilcoxon's linear score function which would 
enhance the robustness and sensitivity of Spearman's correlation under 
several conditions such as existence of ties or extreme monotonic 
associations. 
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The advantages of using smoothed ranks in Spearman's correlation are 
manifold. First, they provide a more nuanced understanding of the 
relationship between variables, particularly in the presence of noisy or tied 
data. Second, the approach is more robust to outliers and non-linear 
relationships. Third, it allows for a more flexible interpretation of ranks, 
accommodating the specific characteristics and distributions of the data. 
The proposed method can yield more accurate and meaningful insights 
into the underlying monotonic relationships, especially in complex data 
sets where traditional methods might not work the best. Finally, one of the 
future research objectives would be implementation of adaptive score 
functions that would address non-monotone associations when Spearman's 
correlation might not be an ideal method. 
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