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Chapter 11

Structural and Statistical Analysis of Finite 
Mixture Models Based on q-Calculus 

Nurgül Okur1

Abstract

The foundations of q -analysis date back to the 1740s, when Euler introduced 
the theory of partitions, also referred to as additive analytic number theory. 
Over the years, the discovery of q -calculus applications in fields such as 
operator theory, combinatory, probability theory, and many others has 
sparked tremendous interest in this mathematical framework.

Mixture distributions are probabilistic models in which a data set is assumed 
to originate from multiple underlying distributions, each contributing with a 
certain probability. These distributions are commonly used to model complex 
data structures more accurately. 

This paper introduces q -finite mixture models as a novel extension of 
the classical finite mixture family, motivated by recent progress in q
-calculus and generalized probability distributions. By incorporating a 
deformation parameter q , the proposed mixture models offer enhanced 
modeling flexibility for a variety of stochastic phenomena. The fundamental 
distributional and statistical properties of the suggested q -mixture models 
are systematically are explored. 

INTRODUCTION

Quantum calculus, also known as q -calculus or calculus without limit is 
a generalization of classical calculus that originated in the early 20th century, 
although its roots can be traced even further back. Euler studied the q -analog 
of Newton’s infinite series and made foundational contributions. Jacobi 
formulated the Gauß-Jacobi triple product identity. Gauß introduced the 
q -binomial coefficients and established identities involving them. Jackson 
defined the concept of the q -integral. Ernst provided a comprehensive 
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historical overview and proposed a new approach to q -calculus. Cheung 
and Kac authored the monograph Quantum Calculus, further developing 
the field. 

Mixture distributions are probabilistic models in which observations are 
assumed to originate from multiple underlying distributions, each with a 
certain probability. The evolution of q -distributions represents a natural 
progression in the development of q -calculus. q -calculus serves as a 
parametric generalization of classical calculus, with the classical framework 
being recovered in the limit as 1q → .  Significant contributions to the 
theory of q -distributions including such as Dunkl, 1981, Crippa et al., 
1997, Kupershmidt, 2000, Kemp, 2002, Charalambides, 2016, including 
the Gaussian and generalized gamma q -distributions by Diaz et al., 2009, 
2010, the Erlang q -distributions by Charalambides, 2016, the gamma and 
beta q -distributions by Boutouria et al., 2018, the Lindley q -distribution 
in two forms was introduced by Bouzida, 2023. 

In response to recent progress in the study of generalized probability q
-distributions, this paper presents q -finite mixture distribution with their 
fundamental statistical and distributional characteristics.

MATERIAL AND METHODS

This section outlines the principles of q -calculus, and q -probability 
theory. In this entire study, unless otherwise stated, it is assumed that 
0 1q< < . Readers are referred to the relevant literature.

Definition 1 (Kac and Cheung, 2002).  Let ,x q be real numbers. The 
q -number [ ]q

x  is defined as 
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Definition 2 (Kac and Cheung, 2002).  The q -Gauss binomial formula 
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The q -binomial coefficients are provided for 0,1, ,k n= …  by

[ ]
[ ] [ ] [ ]

[ ]
[ ] [ ] [ ] [ ] [ ] [ ],

! !
,    ,   ! 1 2 1 .

! ! !
q q

k q q q q q q
q q q q

n nn
n n n n

k n k k n k
 

= = = − …  − − 



Nurgül Okur  |  161

Definition 3 (Kac and Cheung, 2002).  The q -analogues of the 
exponential function are presented
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Definition 4 (Kac and Cheung, 2002).  The q -derivative of f  is 
defined as
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Definition 5 (Kac and Cheung, 2002).  The well-known Jackson q
-integral of f  is given by
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Definition 6 (Vamvakari, 2023). X  is considered q -continuous if 
there exists ( )X

qf x  such that

{ } ( ) ,  0.
b X

q qa
P a X b f x d x x< ≤ = ≥∫

The q -cumulative distribution function ( q -CDF) of X  is defined for 
0x >

( ) ( ) ( )
0

,
xX X

q q qF x P X x f u d u= ≤ = ∫

satisfying the relation ( ) ( ) ( )X X
q qP X F Fα β β α< ≤ = − . Then, 

( ) ( ).q q qf x D F x=

Definition 7 (Vamvakari, 2023). Under the condition 

( ) ( ) ( ) ( )2)1 2 1n nq qξ ξ ξ ξ ξ−< < <…< <  the random variable ( )νξ  is defined as 
ν -th q -ordered random variable. The q -CDFs of the q -ordered statistics 

( )nξ , ( )1ξ , ( ) (1 nνξ ν≤ ≤� ) are expressed, respectively
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Definition 8 (Vamvakari, 2023). Let  r
q ξ ∞<  for all positive 

integers r . Then,
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Definition 9 (Okur and Djongmon, 2025). Let ξ  be a q -continuous 
non-negative RV, and ( )r

q q q
ξ µ ∞− <

 for all positive integers r . Then,
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Definition 10 (Okur and Djongmon, 2025). Let ξ  be a q -continuous 
non-negative RV. Then, its q -MGF is expressed in two distinct forms as 
follows:
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Definition 11 (Djongmon and Okur, 2025). Let ξ  be a q -continuous 
non-negative RV. Then,

the q -survival function ( q -CCDF) ( ) ( ) ( )1 ,q qP Fτ ξ τ τ= > = −
the q -hazard rate function ( q -HRF) 
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the q -mean residual life function ( q -MRLF) 
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Definition 12 (Djongmon and Okur, 2025). Let X  and Y  be two 
independent q -continuous non-negative random variables. The q -stress-
strenght reliability ( q -SSR) is given by:
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RESULTS

This section outlines a q -finite mixture model, including structral and 
statistical properties.

Modeling of a q -Finite Mixture Model

A q -finite mixture model (denoted q -FMM) is a q -probabilistic model 
composed of multiple component q -distributions combined with certain 
weights. The general form of mixture q -PDF is described as:

( ) ( ) ( ) ( ) ( )( ) { }
1

; ,  ,1 / ,  0 1m m

i i

K
mix i k C k k

q q q i
k

f x f x q q q qπ λ
=

= ⋅ ∈ < <∑
where:

{ },i I II∈ : type of q -mixture model such that q , for i I=  and 1/ q
, for i II=

{ }1,2, , 2nm∈  : number of q -mixture model

K : number of components,
( )

i
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qπ :  mixing proportion of the k -th component, ( ) 0
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mC : selecting function the appropriate q  or 1/ q -PDF for the k -th 
density component

( ) kλ : parameter vector of the k -th density component
( ) ( )( );k k

qf x λ : the k -th q -density component
( ) ( )( )1/ ;k k
qf x λ : the k -th 1/ q -density component

As 1q → , the q -finite mixture model converges to its ordinary form.

Structure Properties of the q -Finite Mixture Model

The q -finite mixture model represents a general modeling framework 
that subsumes both q -homogeneous and q -hybrid variants, offering 
enhanced flexibility for representing heterogeneous systems characterized 
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by different q -parametrizations. Let ( )A k  be the indicator function 
equal to 1 if k A∈ , and 0  otherwise, and ( )B k  is similarly defined for 
complementary set { }1, 2, ,B K⊂ … , where { }1,2, , .A B K∪ = …   

q -Homogeneous Finite Mixture Model. A q -homogeneous mixture model 
refers to a class of mixture models in which all component distributions are 
derived exclusively from a single formulation family—either the original q
-formulation or its reciprocal counterpart based on 1/ q . The homogeneity 
of the component structure ensures a consistent parametric behavior across 
the mixture, which is particularly advantageous for analytical tractability 
and interpretability within the same functional family. Hence, it can be 
formulated:
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q -Hybrid Finite Mixture Model. A q -hybrid mixture model is a type of 
mixture model that incorporates component distributions originating from 
both the original q -formulation and its reciprocal counterpart based on 
1/ q . Unlike the q -homogeneous model, the q -hybrid structure allows 
for the coexistence of multiple generative mechanisms within a single 
framework. Thus, it can be defined as:
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Statistical Properties of the q -Finite Mixture Model

The corresponding q -mixture statistical characteristics are given by

q -cumulative distributional function of  model and the q -ordered 
statistics
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q -moment, q -central moment, q -expectation and q -variance:
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q -moment generating function:
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q -reliability functions and q -stress-strength reliability:
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An Illustirative Example ( q -Exponential Finite Mixture Model)

A q -exponential finite mixture model ( q -EFMM) is constructed by 
combining multiple q -exponential distributional components through a 
weighted linear combination. These weights reflect the relative contributions 
of each component and may be generalized using the q -algebra framework. 
The resulting model provides a flexible representation for heavy-tailed data. 
Its general form is:
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K
k k

q q i
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where ( )( )Exp ; k
q x λ  represents th exponential q -distribution and the 

corresponding q  and 1/ q -component densities are:
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For 2K = , let us describe two types of the q -mixture exponential model 
with a fixed mixing proportion. For the sake of simplification, let 

	 ( ) ( ) ( ) ( )1 2 1 2
1/ 1/ 1/ 1/, 1  ,  , 1q q q q q q q qπ ω π ω π ω π ω= = − = = −

Thus, the parameters of the q -density components may either be 
identical or non-identical. In such a case,  ( ) ( )1 2 0λ λ λ= = >  or alternatively, 

( ) ( )1 2 λ α λ β= ≠ = , where , 0α β > . Accordingly, the distributional 
characteristics of the q -exponential mixture model ( q -EMM) are given by: 

Table 1. The exponential mixture q -PDFs with identical component parameters

m
The Homogeneous Mixture q
-PDF The Hybrid Mixture q -PDF 

1 q x
qE λλ −

 ( )1q x x
q q q qE eλ λω λ ω λ− −+ −

2 x
qe λλ − ( )1x q x

q q q qe Eλ λω λ ω λ− −+ −
 

3 q x
qE λλ − ( )1/ 1/1q x x

q q q qE eλ λω λ ω λ− −+ −

4 x
qe λλ − ( )1/ 1/1x q x

q q q qe Eλ λω λ ω λ− −+ −
 

Table 2. The exponential mixture q -PDFs with non-identical component parameters

m
The Homogeneous Mixture q
-PDF The Hybrid Mixture q -PDF 

1 ( )1q x q x
q q q qE Eα βω α ω β− −+ −

 
	 ( )1q x x

q q q qE eα βω α ω β− −+ −

2 	 ( )1x x
q q q qe eα βω α ω β− −+ − ( )1x q x

q q q qe Eα βω α ω β− −+ −
 

3 ( )1/ 1/1q x q x
q q q qE Eα βω α ω β− −+ −

 
	 ( )1/ 1/1q x x

q q q qE eα βω α ω β− −+ −

4 	 ( )1/ 1/1x x
q q q qe eα βω α ω β− −+ − ( )1/ 1/1x q x

q q q qe Eα βω α ω β− −+ −
 

The graphs below illustrate the q -exponential mixture model with 
identical component parameters for 0.75ω =  and 2λ = , with varying 
values of the q -parameter as outlined in Table 1. 
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Figure 1. Graph of the homogeneous exponential mixture q -PDFs with identical 
component parameters for 0.75ω =  and 2λ =

Figure 2. Graph of the hybrid exponential mixture q -PDFs with identical component 
parameters for 0.75ω =  and 2λ =
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Presented below is the graph of the q-exponential mixture model with 
non-identical component parameters corresponding to  0.75ω =  and 

1, 3, α β= = under varying q -parameter values as specified in Table 2. The 
homogeneous and hybrid configurations are depicted in Figures 3 and 4:

Figure 3. Graph of the homogeneous exponential mixture q -PDFs with non-identical 
component parameters for 0.75ω =  and 1, 3α β= =
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Figure 4. Graph of the hybrid exponential mixture q -PDFs with non-identical 
component parameters for 0.75ω =  and 1, 3α β= =  

Above, q - HoEMMm  ( )1 4m = −  and q - HyEMMm  ( )1 4m = −  
denote homogeneous and hybrid q -exponential mixture models, 
respectively. NIP and IP stand for non-identical and identical parameters. 
The plots show that increasing q  enhances model convexity, and all q
-exponential mixtures reduce to the standard form as 1q → .

DISCUSSION AND CONCLUSION

Probability q -distributions provide a flexible and dynamic framework 
that generalizes classical probability distributions by introducing the q
-parameter. This parameter allows for a broader class of probabilistic models, 
enriching both theoretical understanding and practical applications. 

In this paper, we introduce q -finite mixture model, and and provide a 
detailed analysis of the structural and statistical properties. As a representative 
example to elucidate the core concept, this study presents an exponential 
mixture model with a fixed mixing proportion, along with a discussion of 
its properties. Our findings suggest that the proposed q -distribution holds 
significant promise and may have widespread applications across various 
fields. In future research, we aim to explore the finite mixture and compound 
q -distribution.
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