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Birefringence in Mode-Locked Fiber Laser 
Systems 
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Abstract

Adaptive control and self-tuning of mode-locked fiber laser systems is an 
interesting topic in applied optics. Rapid and accurate detection of the cavity 
birefringence value is critical for the adaptive control and self-tuning of fiber 
laser systems. The birefringence varies randomly and significantly affects 
the mode-locking performance of fiber laser. In addition, the birefringence 
value in the laser cavity cannot be measured directly. In this study, from 
a new perspective, the birefringence value is determined (estimated) by 
hierarchical implementation of supervised machine learning algorithms. 
Unlike previous studies, instead of using the laser pulse energy directly, the 
energy evolution is recorded and a separate time series is obtained for each 
case of birefringence. The four statistical moments (mean, variance, skewness 
and kurtosis) of these time series are used as input variables (features) in the 
machine learning algorithm. When the findings of this study are compared 
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with the results of previous studies, it is seen that the birefringence value 
can be estimated with higher accuracy in a short time with the hierarchical 
approach. More accurate classification of birefringence increases efficiency 
of algorithms that enable adaptive control and self-tuning of mode-locked 
fiber laser systems. Consequently, the study contributes to the advancement 
of mode-locked fiber laser technology by enhancing performance in various 
industrial and scientific applications, enabling broader and more efficient use 
of laser systems.

INTRODUCTION

Mode locking is a phenomenon frequently observed in optical resonator 
cavities, where nonlinear interactions in the cavity synchronize different 
cavity modes to generate localized and stable light pulses (Bağcı and Kutz, 
2020; Bağcı and Kutz, 2022). Mode-locked fiber lasers play a crucial role 
in many scientific and industrial applications due to their ability to generate 
ultra-short pulses with high peak powers. However, the performance 
and stability of these systems are highly sensitive to variations in cavity 
birefringence, a parameter that fluctuates randomly due to environmental 
factors such as temperature changes or mechanical vibrations (Brunton et 
al., 2014). Since the birefringence value cannot be directly measured during 
operation, maintaining optimal performance through adaptive control and 
self-tuning remains a significant challenge.

Since there is the possibility of making femtosecond laser pulses with 
gaining media in solids, liquids, and gases, most of the time, solid-state 
crystal, semiconductor, or fiber materials are preferred in the construction 
of lasers because of their practical use. For their optical gain, these systems 
generally work with ion-doped insulating crystals or glasses and pump 
in an optical way. As soon as the ions of the gain medium absorb energy 
from an optical pump, these ions excite to their higher energy level and 
spontaneously return to the lower energy level, photon emission occurs. 
These photons reflect countless times between the two cavity mirrors of the 
laser, during which amplification of the light wave occurs. When the optical 
gain becomes greater than the losses such as scattering or absorption, laser 
light results (Sennaroğlu, 2010; Sennaroğlu, 2007).

The shortest achievable pulse duration in a laser system depends on 
multiple factors, including the refractive index of the material used (via 
the Kerr effect), nonlinear physical interactions (e.g., polarization effects, 
absorption, scattering), the cavity length, and the reflectivity/transmission 
properties of the mirrors. Achieving a stable and robust mode-locking state is 
particularly difficult, as minor perturbations and environmental fluctuations 
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can easily disrupt the cavity dispersion and destabilize the mode-locking 
regime (Bağcı and Kutz, 2024). The randomness of fiber setups and the 
environmental sensitivity of laser parameters demand specialized techniques 
to ensure stable operation. These systems are often modeled using nonlinear 
Schrödinger-type equations to capture the complex interplay of dispersion 
and nonlinearity in fiber cavities (Kutz, 2006).

In this context, one of the most critical parameters affecting mode-locking 
stability is the birefringence in the laser cavity, which effectively represents 
cavity-induced loss. This birefringence changes based on environmental 
conditions such as position, temperature, and humidity. Variations in 
birefringence disrupt the stability of the laser system, necessitating the 
continuous adjustment of filter settings to ensure consistent performance. 
Hence, accurate detection of birefringence changes and automated tuning 
of the laser cavity parameters become essential tasks for maintaining stable 
mode-locked operation. In existing studies, the kurtosis of the laser output 
signal has been used to estimate birefringence (Fu et al., 2014; Kutz and 
Brunton, 2015; Bağcı and Kutz, 2024).

This study presents a novel method that uses supervised machine learning 
algorithms to improve adaptive control and self-tuning of mode-locked fiber 
lasers. The suggested approach uses mean, variance, and skewness as input 
features in addition to kurtosis to increase the accuracy of birefringence 
estimation, in contrast to earlier approaches that only use kurtosis. A rich 
dataset is created for machine learning model training by examining the pulse 
energy evolution over time and identifying these four statistical moments. 
The classification performance and estimation speed are greatly enhanced 
by this method, which enables high-precision, real-time control of the laser 
system.

To this end, a numerical model of the fiber laser cavity is first developed, 
and the resulting laser output is analyzed statistically. Before applying 
machine learning, data preprocessing—such as normalization and cleaning—
is applied to enhance model performance. Then, supervised learning 
algorithms including Logistic Regression, Support Vector Machines, 
k-Nearest Neighbors, Decision Trees, Random Forests, and Naive Bayes, 
are then employed and compared in terms of accuracy, precision, recall and 
F1-score.
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NUMERICAL METHODS

Theoretical Model

In this study, the propagation of the optical field in a fiber is modeled 
using a coupled nonlinear Schrödinger (CNLS) equation framework 
(Menyuk, 1987; Menyuk, 1989). 

( )
2

2 2 2 *
22

u D ui Ku u A v u Bv u iRu
z t
∂ ∂

+ − + + + =
∂ ∂

,

( )
2

2 2 2 *
2 .

2
v D vi Kv A u v v Bu v iRv
z t
∂ ∂

+ − + + + =
∂ ∂

The model describes two orthogonally polarized electric field envelopes 
u ( z , t ) and v ( z , t )  in an optical fiber. Here, t  is the normalized time 
scaled to the pulse’s full-width half-maximum, and z  is the normalized 
propagation distance with respect to the cavity length. The components u  
and v  represent the fast and slow polarization components, respectively 
(Brunton et al., 2014).

The parameter K  denotes the birefringence of the cavity, while D  
represents the average group velocity dispersion. The parameters A  and B  
are nonlinear coupling coefficients corresponding to cross-phase modulation 
and four-wave mixing, respectively. These values are determined by the 
physical properties of the fiber, and satisfy the condition A  + B  = 1. For a 
silica-based optical fiber, typical values are A  = 2/3 ​ and B  = 1/3​.

The terms Ru  and Rv  represent the gain-loss operator, incorporating 
the effects of Ytterbium-doped amplification, saturable gain, and bandwidth-
limited amplification. The operator R  is defined as:
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where 0g ​ is the dimensionless pumping strength, and 0e ​ is the 
dimensionless saturation energy of the gain medium. The parameter τ  
represents the gain bandwidth, while Γ  accounts for losses due to output 
coupling and fiber attenuation.

After each cavity round-trip, the application of wave plates and a passive 
polarizer is modeled via the discrete application of Jones matrices (Ding and 
Kutz, 2009; Komarov et al., 2005; Jones, 1941). The optical elements are 
defined as follows:
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Here, /4Wλ  represents the quarter-wave plate (with orientation angles 
α1 and α2​​), /2Wλ  ​ represents the half-wave plate (with angle α3​), and pW ​ is 
the polarizer (with angle αp​). If the principal axes of these elements are not 
aligned with the fast axis of the cavity, a rotation matrix is applied:
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where jα ​ represents the orientation angle of each wave plate or polarizer 
(j = 1, 2, 3, p). These rotation angles are considered as control variables 
in the model and are essential for achieving mode-locking solutions. 
Recent experimental results have shown that these control variables can 
be manipulated electronically with ease, making them highly suitable for 
adaptive laser control systems (Shen et al., 2012).

Feature Descriptions

Input Variables

The first moment, mean, represents the average value of the laser’s 
output power (or energy) over multiple cycles. It is used to measure the 
overall performance of the laser. To calculate the mean, all output energy 
values are summed and this total is divided by the number of measurements. 
Mathematically, it is expressed as:

1

1 n

i
i

x x
n =

= ∑
Here, x  represents the mean output energy, ix  denotes each 

measurement value, and n is the number of measurements.
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The variance shows the spread of output energy values around the mean. 
A higher variance indicates that the measurements deviate more from the 
mean, and thus the laser output is more unstable. The variance ( 2s ) is 
calculated as:
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Skewness indicates whether the distribution is symmetric and whether 
it leans to the right or left. Positive skewness suggests a longer tail on the 
right side, while negative skewness indicates a longer tail on the left side. 
Skewness ( Sk ) is calculated as:
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Kurtosis measures the extremity or the tailedness of the distribution. 
High kurtosis indicates more outliers in the distribution, showing greater 
deviations from the mean. Kurtosis ( )  is calculated as:
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The use of these statistical moments summarizes the dynamic behavior 

of the laser, offering strong and distinctive features for estimating the 
birefringence value (Fu et al., 2014; Kutz and Brunton, 2015).

Exploratory Data Analysis of Input Features

For generation of the sample dataset the parameters in the CNLS model 
are specified as follows:

D A B 0g 0e τ

-0.4 2/3 1/3 1.73 4.23 0.1 0.1
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Also, the birefringence K parameter is iterated between -0.32 and 0.32 
with 0.01 step size, while the polarizer angle (αp) is varying from -90o to 90o 
with 1o of step size. Thus, the number of instances of training sample dataset 
is 65x181=11765. To test the machine learning models, we generated a 
separate mis-aligned (noised) dataset in which we have 1000 instances with 
random K and αp values. 

To gain a better understanding of the dataset’s underlying structure, 
the distributions of all input features were examined before the model was 
trained. Every input variable displays a unique statistical pattern, as shown 
in Figure 1.

The intricacy and non-linearity of the birefringence estimation task are 
revealed by these visualizations’ features. Additionally, they defend the 
use of tree-based models, like Random Forests, which don’t require rigid 
parametric assumptions and are ideal for handling skewed and non-normally 
distributed data.

Figure 1. Histogram of all input features used in the model. The figure highlights the 
statistical characteristics and potential skewness of each feature distribution.

Supervised Machine Learning Methods

In recent years, machine learning algorithms and artificial intelligence 
techniques have been extensively employed to enhance the functionality 
and performance of mode-locked fiber lasers (Bağcı and Kutz, 2024). In 
particular, Artificial Neural Networks (ANNs) have been utilized to improve 
system architecture, operational efficiency, and control mechanisms. These 
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methods have also demonstrated notable success in areas such as signal 
processing, system modeling, channel equalization, and the efficient control 
of optical systems (Freire et al., 2023; Ma et al., 2022; Mezzi et al., 2023; 
Boscolo and Finot, 2020). Additionally, Genetic Algorithms (GAs) have 
been adopted to fully automate the startup procedures of laser systems, 
thereby contributing to enhanced reliability and operational efficiency (Ma 
et al., 2022; Han et al., 2024; Woodward and Kelleher, 2016).

In the present study, six supervised machine learning algorithms are 
employed, including Logistic Regression (LR), Support Vector Machines 
(SVM), K-Nearest Neighbors (KNN), Decision Trees (DT), Random 
Forests (RF), and Naive Bayes (NB).

Logistic Regression (LR) is a widely used method for binary classification 
tasks. This supervised learning technique models a binary outcome variable 
using an S-shaped logistic (sigmoid) function (Tolles, 2016). Through this 
function, LR defines decision boundaries between classes, which may range 
from simple linear to complex nonlinear structures depending on the nature 
of the classification problem (Gudivada et al., 2016; DeMaris, 1995).

Support Vector Machines (SVM) are supervised algorithms applicable 
to both classification and regression problems. This method separates data 
points into different classes using a hyperplane that maximizes the margin 
between classes (Vapnik and Cortes, 1995; Burges, 1998). Data points 
closest to the hyperplane, known as support vectors, are critical to defining 
the decision boundary. In the context of mode-locked fiber lasers, SVMs 
have been effectively used to analyze cavity parameter spaces essential for 
achieving stable mode-locking.

K-Nearest Neighbors (KNN) is a non-parametric, instance-based 
learning algorithm that can be applied to both classification and regression 
problems. One of the key advantages of KNN is the absence of a training 
phase; instead, it assigns class labels based on similarity metrics—such as 
Euclidean or Manhattan distance—to the nearest neighbors in the feature 
space (Cover, 1967; Hall et al., 2008; Keller et al., 1985). Although 
computationally intensive, KNN is particularly effective in scenarios where 
data are balanced and class boundaries are not well defined.

Decision Trees (DT) represent a non-parametric supervised learning 
approach that uses a hierarchical tree structure to model decisions based on 
input features (Twa et al., 2005; Rokach, 2014; Brodley and Utgoff, 1995). 
The algorithm sequentially partitions the input space and assigns class labels 
based on impurity measures such as Gini index or entropy (Quinlan, 1986). 
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DTs are especially effective in large and complex datasets for uncovering 
meaningful patterns and identifying influential features (Myles et al., 2004).

Random Forest (RF) is an ensemble-based supervised learning algorithm 
designed for both classification and regression tasks. It consists of multiple 
decision trees constructed with random subsets of the training data and 
features. The ensemble nature of RF helps mitigate overfitting and improves 
generalization performance by averaging predictions from multiple models 
(Breiman, 2001; Schonlau and Zou, 2020; Ho, 1995). RF is known for its 
robustness and scalability, making it well-suited for high-dimensional and 
large-scale datasets (Paul et al., 2018).

Naive Bayes (NB) is a probabilistic classification algorithm grounded 
in Bayes’ theorem. It operates under the assumption of conditional 
independence among input features (Bernardo and Smith, 2001). NB 
computes the posterior probabilities of each class and assigns the class label 
with the highest probability using maximum likelihood estimation (Hastie 
et al., 2001). Despite its simplicity and strong independence assumption, 
Naive Bayes remains a highly effective model, particularly in large-scale and 
high-dimensional problems due to its computational efficiency.

Model Training and Validation

Model Training

The selected supervised machine learning algorithms were trained on the 
training dataset to estimate the birefringence value. The training process 
involves the model learning the relationships between the input variables 
(statistical moments) and the output variable (birefringence value). During 
this stage, the model’s parameters are optimized to minimize the error on 
the training data.

Grid Search-Based Hyperparameter Optimization

To ensure optimal model performance in birefringence estimation, a 
systematic hyperparameter tuning process was applied to the Random Forest 
algorithm. A grid search strategy combined with five-fold cross-validation 
was employed to explore a wide range of parameter combinations. This 
procedure involved evaluating 432 distinct configurations across multiple 
decision trees, resulting in a total of 2160 model fits.

The hyperparameters considered in this optimization included the 
number of trees in the forest, maximum tree depth, the minimum number 
of samples required to split an internal node, the minimum number of 
samples required to be at a leaf node, the method used to select the number 
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of features at each split, and class weight adjustments to handle potential 
class imbalances.

Following this exhaustive search, the configuration that achieved the 
highest cross-validated accuracy was selected as the optimal model setup. 
This final set of parameters enhanced the model’s ability to generalize across 
different birefringence levels and contributed significantly to the overall 
robustness and precision of the classification results.

Metrics for Performance Measurement

The performance of the trained model was evaluated on the validation 
dataset using various metrics. These metrics provide comprehensive 
information about the accuracy and reliability of the model’s predictions.

Accuracy: The ratio of correctly predicted instances to the total number 
of instances. It is a general indicator of overall performance and can be 
sufficient on its own, especially for balanced datasets.

Precision: Indicates how many of the instances predicted as positive by 
the model are actually positive. It is important for minimizing false positives. 
For instance, in critical laser systems, the cost of a false positive alarm can 
be high.

Recall: Shows how many of the actual positive instances were correctly 
identified as positive by the model. It is important for minimizing false 
negatives. This metric is crucial because the failure to correctly identify the 
birefringence value can lead to unstable laser system operation.

F1-score: The harmonic mean of precision and recall. It provides a 
more informative performance measure than accuracy alone, especially in 
unbalanced datasets.

RESULTS

Running multiple classification models on the birefringence dataset 
yielded insightful comparative results regarding their segmentation 
capability. As illustrated in Figure 2, all models performed above a 
moderate threshold; however, their success varied significantly. Among 
the tested algorithms, Random Forest and Decision Tree achieved the 
highest accuracy—approaching 0.99 across all evaluated metrics, including 
precision, recall, and F1-score. In contrast, traditional methods such as 
Naive Bayes and Logistic Regression showed noticeably lower performance, 
with accuracies around 0.55 and 0.53, respectively. This clear distinction 
highlights the superior ability of tree-based ensemble methods in capturing 
the nonlinear and statistical characteristics of birefringence dynamics. 
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Figure 2. Comparison of classification performance metrics (Accuracy, Precision, 
Recall, F1-Score) across supervised machine learning models used for birefringence level 

prediction.

Following the comparative evaluation, the Random Forest classifier was 
selected for hierarchical classification due to its balance of interpretability, 
scalability, and strong empirical performance. To assess its robustness under 
different iterations, the continuous K values are discretized (classified) into 
2 to 32 levels using quantile-based binning.

Figure 3 presents the accuracy trends across the number of iterations 
(hierarchically). The model achieved 98.9% accuracy for (21)-class (or 
two-class) classification, and despite a gradual decline in performance with 
increasing iteration number, the model retained strong accuracy (88.2%) 
even at (25)-class (or 32-class) classification. The decline is expected due to 
the increased complexity and reduced separation between classes in higher-
resolution binning.

Furthermore, a summary of performance metrics is shown in Table 1, 
where precision, recall, and F1-score values remain highly consistent with 
overall accuracy. All scores remained above 0.88, validating the model’s 
reliability across both coarse and fine classifications.
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Figure 3. Accuracy, precision, recall, and F1-score trends of the Random Forest model 
across different birefringence classification levels (number of iterations).

Table 1. Performance metrics (accuracy, precision, recall, and F1-score) of the Random 
Forest classifier for different iterations.

Iteration
Performance Metrics

Accuracy Precision Recall F1-Score

1 0.9890 0.9890 0.9890 0.9890

2 0.9530 0.9532 0.9530 0.9530

3 0.9290 0.9326 0.9290 0.9290

4 0.9160 0.9183 0.9160 0.9159

5 0.8820 0.8876 0.8820 0.8819

To better understand the internal decision-making process of the Random 
Forest classifier, a feature importance analysis is performed. As illustrated in 
Figure 4, the polarizer angle (αp) emerges as the most significant contributor 
to model performance, followed by higher-order statistical moments such as 
skewness and kurtosis.

DISCUSSION AND CONCLUSION

Using polarizer angle and statistical moments of the energy evolution as 
inputs, the study’s findings showed how well a hierarchical machine learning 
technique estimates birefringence in mode-locked fiber laser systems. With 
accuracy values above 92% in low-resolution class definitions, Random 
Forest performed noticeably better than the other classifiers that were 
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evaluated. This lends credence to the claim that complex and nonlinear 
optical dynamics were best handled by ensemble-based decision models.

Figure 4. Relative importance of input features in the Random Forest model for 
birefringence classification. The polarizer angle (αp) dominates in importance, followed 

by skewness (skewE), kurtosis (kurtE), variance (varE), and mean (meanE).

While a previous study employing sparse representation techniques under 
misalignment reported an accuracy of 88% (Fu et al., 2014), our method 
achieved a comparable level of accuracy while offering greater robustness in 
multi-level classification scenarios. Moreover, the present study eliminates 
the need for alignment-dependent spectrogram inputs by directly utilizing 
time-domain statistical features. This methodological distinction provides 
advantages in terms of both computational efficiency and implementation 
flexibility for real-world laser control applications.

The consistent performance across all levels of classification indicates the 
reliability of moment-based features in capturing essential variations in the 
laser cavity. In particular, skewness and kurtosis—higher-order statistical 
measures—proved highly discriminative, confirming that birefringence 
states influence the asymmetry and tailedness of the energy evolution data. 
The use of the polarizer angle (αp) as an input also adds to the model’s 
predictive power while preserving its independence from physical modeling 
constraints.
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In practical terms, this work aids in the creation of adaptive laser control 
real-time birefringence recognition systems. Accurate and quick birefringence 
detection can increase laser systems’ self-tuning capabilities, shorten 
maintenance schedules, and boost long-term operational effectiveness. 
Furthermore, the model’s ability to scale to higher resolution levels raises 
the possibility of its incorporation into more intricate fiber laser networks or 
multi-NPR (nonlinear polarization rotation) setups. 

In conclusion, a very precise, understandable, and ready-to-implement 
solution for birefringence classification in fiber laser systems was provided by 
the hierarchical Random Forest classifier trained on moment-based features. 
Future research might examine hybrid models that combine spectral and 
statistical features for even greater precision, real-time deployment, or 
transfer learning across various laser architectures.
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