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Abstract

This chapter explores how integrating predictive modeling with route
optimization can enhance the performance of urban meal delivery systems.
Three routing strategies—Greedy, Vehicle Routing Problem (VRP), and
VRP enhanced with LSTM-based predictive rebalancing—were evaluated
across varying temporal periods throughout the day. Results show that
while VRP reduces delivery durations compared to heuristic routing,
the hybrid VRP+LSTM model achieves additional efficiency gains by
anticipating spatial-temporal demand fluctuations. These improvements
translate into lower delivery times, and greater operational stability. Policy
implications emphasize the need for open urban data infrastructures, Al-
driven optimization frameworks, and adaptive governance models to support
sustainable last-mile logistics. The study demonstrates that hybrid predictive—
optimization frameworks can significantly advance intelligent and sustainable
urban delivery networks.

1. Introduction

Urban life is increasingly characterized by speed, convenience, and
digital connectivity, with meal delivery emerging as a critical component
of this transformation. However, managing efficient delivery operations in
densely populated metropolitan areas presents significant challenges. Traffic
congestion, fluctuating demand patterns, and intricate urban layouts often
strain traditional logistics systems, leading to delayed deliveries, elevated
operational costs, and heightened environmental impacts.
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In response, artificial intelligence (AI) has emerged as a transformative
tool for urban logistics. By leveraging machine learning algorithms and
predictive analytics, Al enables real-time, adaptive decision-making that
can optimize delivery routes, forecast demand, allocate courier workloads
efficiently, and mitigate emissions (Wang et al., 2023). These techniques
shift meal delivery from a reactive to a proactive, data-driven process,
capable of navigating complex urban environments with both efficiency and
sustainability.

This chapter examines Al-driven optimization strategies for metropolitan
meal delivery, emphasizing approaches that integrate urban dynamics, fleet
management, and operational efficiency. Its originality lies in the integration
of the Vehicle Routing Problem (VRP) framework with Long ShortTerm
Memory (LSTM)-based demand forecasting to analyze the impact of dynamic
courier rebalancing on delivery efficiency. Unlike earlier studies that treated
routing and forecasting separately, this chapter presents a unified model
linking predictive demand analysis with real-time operational optimization.
By analyzing how AI can reduce delays and improve resource allocation,
the study provides practical insights for enhancing delivery performance in
high-density cities. This work also offers a forward-looking perspective on
the digital evolution of urban food delivery, highlighting the potential for
Al to create smarter, faster, and more sustainable urban logistics systems.

The chapter is organized as follows: the next section reviews the
literature on VRP and AT applications in urban logistics and food delivery;
the methodology section presents the case study and introduces the VRP-
LSTM integration and rebalancing framework; results and analyses are then
presented; and finally, the discussion and conclusion reflect on implications
tor sustainable urban logistics and future research directions.

2. Literature Review

The rapid growth of urban populations, combined with the rising
demand for on-demand services, has profoundly transformed the landscape
of urban logistics. Among these services, meal delivery platforms have
become a cornerstone of modern urban economies, offering convenience
to consumers but also introducing new logistical challenges. The dense and
dynamic nature of cities creates unique constraints—ranging from traffic
congestion and variable demand patterns to narrow delivery windows—that
traditional logistics frameworks often fail to address effectively (Savelsbergh
& Van Woensel, 2016; Allen et al., 2018). Consequently, there is a growing
need for intelligent, adaptive systems that can manage these complexities
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efficiently. In this context, Artificial Intelligence (AI) has emerged as a
transformative enabler, allowing the development of data-driven and self-
learning logistics systems that optimize urban delivery operations (Goodchild

& Toy, 2018).

A core challenge in meal delivery logistics lies in the optimization of
delivery routes, commonly framed as the Vehicle Routing Problem (VRP).
The VRP involves determining optimal routes for a fleet of vehicles to
service a set of customers while respecting constraints such as delivery
time windows, vehicle capacity, and service requirements (Toth & Vigo,
2014). In the specific case of meal delivery, these constraints are even more
stringent due to the perishability of food and the high time sensitivity of
customer expectations. Over the years, traditional VRP models have evolved
into dynamic and time-dependent variants that incorporate real-time traffic
data, stochastic travel times, and fluctuating customer demands (Psaraftis et
al., 2016). More recently, Al and machine learning (ML) approaches have
turther advanced VRP solutions by enabling systems to predict and adapt to
dynamic urban conditions. Reinforcement learning, deep neural networks,
and hybrid optimization models have been applied to achieve faster, more
responsive routing decisions (Nazari et al., 2018; Kool et al., 2019).

Equally crucial to efficient meal delivery is demand forecasting, which
directly aftects how resources are allocated and scheduled. Accurate prediction
of customer demand enables platforms to plan for peak hours, allocate riders
strategically, and minimize both idle time and delayed deliveries. Al-driven
forecasting models leverage diverse data sources, including historical orders,
customer profiles, weather conditions, and local events, to forecast demand
at fine spatial and temporal resolutions. Machine learning techniques—such
as regression models, ensemble methods, and neural networks like LSTMs
and CNNs—have demonstrated superior performance in capturing non-
linear relationships in demand data (Bandara et al., 2020). Integrating these
forecasting models with routing algorithms creates a closed-loop decision
system, where anticipated demand informs vehicle routing and resource
distribution in real time.

Another essential component of adaptive logistics systems is rebalancing,
which refers to the dynamic repositioning of couriers or delivery vehicles
in response to fluctuating demand. Without effective rebalancing, meal
delivery platforms face inefficiencies such as excessive idle time, underutilized
capacity, and unbalanced workloads across the fleet. These Al-driven
approaches continuously monitor real-time information—such as order
density, traffic flow, and rider availability—to make autonomous relocation
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decisions, thereby improving service reliability and reducing operational
costs. By integrating rebalancing into the overall optimization framework,
platforms can achieve smoother demand-supply alignment and enhanced
customer satisfaction.

The integration of Al-driven optimization techniques across demand
prediction, vehicle routing, and rebalancing creates the foundation for a
cohesive, adaptive, and sustainable urban delivery system. Such integration
allows real-time decision-making that jointly optimizes routing efficiency,
resource allocation, and environmental sustainability. Moreover, the inherent
adaptability of Al systems enables rapid responses to disruptions such as
traffic incidents or sudden spikes in demand, maintaining high service levels
and customer satisfaction even under uncertainty.

Building on this background, the present study explores Al-driven
optimization for metropolitan meal delivery systems by integrating demand
torecasting, vehicle routing, and rebalancing strategies into a unified system.
Specifically, it examines whether cluster-level demand predictions generated
by LSTM networks can improve delivery performance by pre-positioning
couriers in high-demand zones before orders occur. This approach is
compared against conventional greedy routing and standard VRP-based
optimization. The study evaluates multiple operational metrics—including
average delivery time, congestion impact, and fleet utilization—across
various time slots. By combining predictive analytics with dynamic routing
and proactive rebalancing, this research aims to demonstrate how Al can
effectively reduce service delays, balance workloads, and improve overall
system efficiency in complex metropolitan environments. Ultimately; it
contributes to the development of a data-driven, adaptive, and sustainable
tramework for urban meal delivery logistics, illustrating the potential of Al
to transform last-mile delivery into a smarter and greener system.

3. Methodology

The study focuses on a metropolitan meal delivery scenario inspired by
the city of Amsterdam. A synthetic dataset of 1,000 delivery requests was
generated, distributed across three representative urban clusters with varying
spatial densities. Requests were assigned to 24 hourly time slots, reflecting
realistic daily demand patterns, including lunch (10:00-13:00) and dinner
(16:00-19:00) peaks (Figure 1). In this study, it is also assumed the riders
can carry at most 10 packages in one ride.
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Hourly Distribution of Delivery Requests — Amsterdam Scenario
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Figure 1. Temporal Distribution of Delivery Requests

Geographic coordinates were mapped onto the underlying street network
using OSMnx and NetworkX, allowing shortest-path distance computations
for all delivery locations and the central depot (Figure 2). This setup enables
the simulation of delivery operations in a realistic urban environment,
incorporating spatial clustering, demand variability, and network topology
constraints.
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Road Network with Customer Delivery Locations
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Figure 2. Road Network of Amsterdam Map with Customer Delivery Locations

At the first level, a greedy myopic routing algorithm was implemented
as a baseline. In this approach, vehicles iteratively serve the nearest feasible
request until their capacity constraints are reached, after which they return to
the depot. While this method is computationally simple and fast, it does not
incorporate global optimization, forecasted demand, or proactive resource
allocation, making it a representative benchmark for reactive delivery
strategies.

Building on this baseline, the study employs the Capacitated Vehicle
Routing Problem (CVRP) framework, implemented using Google OR-
Tools, to optimize delivery routes. In this framework, each vehicle departs
from the depot, respects capacity constraints, and seeks to minimize total
travel distance. Shortest-path distances derived from the street network are
used as cost metrics. Solutions are obtained through a combination of path-
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cheapest-arc first solution strategies and guided local search metaheuristics.
Compared to the greedy baseline, this approach provides a globally optimized
routing strategy, accounting for spatial clustering of requests and balanced
load distribution across vehicles.

To anticipate future delivery demand, a cluster-level LSTM model was
trained on historical request patterns. The model predicts demand for each
urban cluster in the next time slot using a sliding window of previous hourly
demands. These predictions inform pre-positioning strategies, allowing
vehicles to be proactively allocated to anticipated “hotspot™ clusters. The
LSTM is trained on normalized cluster-level demand series, using mean
squared error as the loss function, and is updated continuously over the 24-
hour simulation horizon.

Rebalancing leverages these LSTM forecasts by allocating a fraction
of vehicles to predicted high-demand clusters before each time slot
begins. Vehicles assigned to rebalance nodes are incorporated into the
VRP as starting points with zero demand, allowing the optimization to
simultaneously consider both pre-positioned and depot-based vehicles. This
proactive strategy enhances fleet management, reduces service delays, and
mitigates congestion during peak periods.

Delivery performance is evaluated by calculating average delivery times
per request across 24 time slots. Three strategies are compared: (i) greedy
myopic routing, (i) VRP without rebalancing, and (iii) VRP with LSTM-
based rebalancing. Congestion effects are approximated based on the load
ratios observed in each time slot, providing insights into the effectiveness of
proactive versus reactive routing strategies.

4. Results

Table 1 summarizes the average delivery durations obtained from three
optimization strategies—Greedy routing, VRP (Vehicle Routing Problem),
and VRP with LSTM-based Rebalancing—across 24 hourly time slots.
During low-demand periods (Time Slots 0-3 and 21-23), all methods
exhibit similar performance due to limited routing complexity. Notably,
in Slot 23, the VRP+LSTM approach reduces delivery time from 20.38
minutes (VRP and Greedy) to 16.06 minutes, illustrating the model’s ability
to anticipate and adapt to spatial-temporal demand fluctuations.
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Table 1. Performance Comparison of Delivery Durations Across Optimization Strategies

Avg Time Avg Time Avg Time VRP+LSTM

Time Slot Requests | Greedy (min) VRP (min) | Rebalancing (min)
0 2 27.34 25.61 25.27
1 6 12.29 11.45 11.45
2 2 24.99 24.99 25.01
3 1 25.11 25.11 25.11
4 0 0.00 0.00 0.00
5 8 9.88 8.47 8.47
6 7 11.20 10.17 10.17
7 13 13.61 11.39 11.22
8 38 7.78 6.76 6.65
9 56 7.21 6.53 6.48
10 81 7.40 5.75 5.80
11 111 7.13 6.10 6.06
12 86 7.12 6.15 6.07
13 71 6.64 5.60 5.47
14 41 8.01 6.26 6.11
15 40 8.99 7.86 7.81
16 53 9.23 7.30 7.31
17 94 7.11 6.13 6.19
18 112 7.12 5.97 5.99
19 98 7.27 6.03 6.11
20 50 7.80 6.41 5.68
21 21 12.12 8.47 7.33
22 6 10.23 8.38 8.38
23 3 20.38 20.38 16.06

During medium- to high-demand periods (Slots 8-19), the Greedy
algorithm consistently vyields longer delivery times, highlighting its
suboptimal performance under dense request conditions. The VR approach
achieves up to a 15% reduction in delivery duration relative to the Greedy
method, demonstrating the effectiveness of global route optimization. The
VRP+LSTM Rebalancing model further enhances performance, providing
marginal but consistent improvements across most active time slots. Overall,
these results indicate that integrating LSTM-based demand forecasting with
VRP improves delivery efficiency and system stability, combining spatial
optimization with temporal prediction for the most balanced and robust
performance among the evaluated strategies.

Table 2 turther quantifies the relative improvements achieved by the VRP
and VRP+LSTM Rebalancing models compared to the Greedy baseline.
The “VRP vs Greedy (%)” column reflects the percentage reduction in
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delivery duration achieved by the VRP method, while the “Rebalancing
vs VRP (%)” column indicates the additional effect of the LSTM-based
rebalancing mechanism. Across most active hours (Slots 5-20), the VRP
model consistently outperforms the Greedy algorithm, with reductions
ranging from 6% to 22%. The most pronounced improvement occurs
at Slot 21, with a 30.12% reduction, demonstrating VRIP’s robustness
under variable and late-hour demand conditions. In contrast, performance
differences during low-demand periods remain minimal, reflecting the
limited impact of routing optimization when demand is sparse.

Table 2. Comparative Performance Gains of Optimization Strategies

Avg Time
Avg Time |Avg Time |VRP+LSTM | VRP vs

Time Greedy VRP Rebalancing | Greedy Rebalancing
Slot | Requests | (min) (min) (min) (%) vs VRP (%)
0 2 27.34 25.61 25.27 6.33 1.33
1 6 12.29 11.45 11.45 6.83 0.00
2 2 24.99 24.99 25.01 0.00 -0.08
3 1 25.11 25.11 25.11 0.00 0.00
4 0 0.00 0.00 0.00 0.00 0.00
5 8 9.88 8.47 8.47 14.27 0.00
6 7 11.20 10.17 10.17 9.20 0.00
7 13 13.61 11.39 11.22 16.31 1.49
8 38 7.78 6.76 6.65 13.11 1.63
9 56 7.21 6.53 6.48 943 0.77
10 81 7.40 5.75 5.80 22.30 -0.87
11 111 7.13 6.10 6.06 14.45 0.66
12 86 7.12 6.15 6.07 13.62 1.30
13 71 6.64 5.60 5.47 15.66 2.32
14 41 8.01 6.26 6.11 21.85 2.40
15 40 8.99 7.86 7.81 12.57 0.64
16 53 9.23 7.30 7.31 20.91 -0.14
17 94 7.11 6.13 6.19 13.78 -0.98
18 112 7.12 5.97 5.99 16.15 -0.34
19 98 7.27 6.03 6.11 17.06 -1.33
20 50 7.80 6.41 5.68 17.82 11.39
21 21 12.12 8.47 7.33 30.12 13.46
22 6 10.23 8.38 8.38 18.08 0.00
23 3 20.38 20.38 16.06 0.00 21.2

The LSTM-based rebalancing mechanism contributes additional
improvements over the VRP baseline in several key intervals, including Slots
7-15,20-21, and 23, with the largest enhancement reaching 21.2% at Slot
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23. This indicates that predictive rebalancing effectively anticipates demand
imbalances and reallocates couriers to maintain efficient service, particularly
during transition or off-peak periods. Negative values observed in Slots 10
and 16-19 suggest minor over-adjustments by the predictive model, likely
due to discrepancies between forecasted and actual demand. However, these
fluctuations are small (below 1.5%) and do not compromise overall system
efficiency. Collectively, these results confirm that combining LSTM-based
predictive rebalancing with VRP enhances delivery stability and efficiency
across varying demand levels.

Figure 3 illustrates the temporal variation of average delivery durations
and relative improvements for the three strategies, highlighting lunch
(10:00-13:00) and dinner (16:00-19:00) peak periods. The Greedy
algorithm consistently produces longer delivery times, particularly during
peaks, whereas the VRP method maintains lower and more stable durations
throughout the day. The addition of LSTM-based rebalancing further
refines performance, particularly during transitional periods such as early
afternoon and late evening, by preemptively redistributing couriers based
on predicted demand.

Delivery Time and Efficiency Improvements Across Daily Time Slots (with Peak Hours)
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Figure 3. Temporal Comparison of Delivery Duration and Relative Performance Across
Routing Strategies

The relative improvement curves reinforce these observations. The
VRP vs Greedy curve shows consistent gains of 10-25% during peak
hours, demonstrating the efficiency advantage of route optimization under
dense demand. The Rebalancing vs VRP curve exhibits frequent positive
contributions, with localized improvements exceeding 10% in off-peak hours
(21:00-23:00), where predictive rebalancing eftectively reduces courier
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idle time. Overall, the figure highlights that the VRP+LSTM Rebalancing
strategy delivers the most balanced and resilient performance across daily
operational cycles.

Figure 4 depicts average delivery durations overlaid with hourly request
volumes, providing a visual link between demand intensity and algorithmic
performance. The Greedy method shows high delivery times during periods
of elevated demand, emphasizing its limited scalability. The VRP approach
demonstrates lower and more stable durations, confirming its system-level
routing efficiency. VRP+LSTM Rebalancing further improves performance
during high-demand intervals (approximately 10:00-19:00) by dynamically
reallocating couriers according to short-term forecasts, thereby maintaining
service efficiency under rapidly shifting demand patterns. During off-peak
hours, all strategies converge, reflecting minimal optimization impact when
demand is sparse.

Comparison: Greedy vs VRP vs VRP+LSTM Rebalancing
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Figure 4. Temporal Comparison of Delivery Duration and Request Volume

Finally, Figure 5 presents a comparative visualization of average delivery
durations for all three methods across 24 hourly time slots. The Greedy
algorithm consistently shows the highest durations, particularly during peak
demand, while the VRP-based approach achieves shorter and more stable
times throughout the day. The VRP+LSTM Rebalancing model enhances
efficiency further, particularly during midday and evening peaks, with the
most substantial reductions (up to 20%) observed in late hours (21:00-
23:00). These results demonstrate that integrating predictive demand
modeling with route optimization yields a more adaptive, resilient, and time-

efficient delivery process, highlighting the hybrid method’s applicability
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for urban micro-delivery systems characterized by dynamic and temporally
heterogeneous demand.

Comparison of Delivery Times per Time Slot
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Figure 5. Pevformance Comparison per Time Slot

5. Discussion

The comparative analysis of the three routing strategies—Greedy, VR,
and VRP combined with LSTM-based Rebalancing—reveals distinct
operational advantages and limitations across varying demand intensities.
Consistent with expectations, the Greedy approach performs adequately
under sparse request conditions but exhibits significant inefficiencies as
demand density increases. This outcome reflects the algorithm’s local
optimization behavior, which lacks the capacity to account for global spatial
relationships and temporal fluctuations in delivery requests (Savelsbergh &
Van Woensel, 2016). In contrast, the VRP method demonstrates a clear
performance advantage, achieving substantial reductions in delivery durations
during medium to high-demand periods. This improvement underscores
the importance of global optimization in coordinating courier assignments
and route sequencing, especially within dense urban environments where
real-time spatial efficiency is critical (Toth & Vigo, 2014).

The integration of LSTM-based predictive rebalancing into the VRP
framework further enhances overall system robustness and adaptability.
The hybrid VRP+LSTM approach consistently outperforms the baseline
methods, particularly during transitional and oft-peak periods, by
proactively repositioning couriers based on anticipated demand shifts. This
result highlights the potential of combining data-driven forecasting with
optimization algorithms to achieve spatio-temporal equilibrium in dynamic



Serkan Ozdemir | 51

delivery systems. The observed improvement of up to 21.2% in certain time
slots illustrates that predictive intelligence can effectively mitigate temporal
mismatches between supply and demand, reducing idle time and improving
service continuity.

Nevertheless, the minor negative improvements observed in a few
intervals suggest that predictive rebalancing is sensitive to forecast accuracy.
Small deviations between predicted and actual demand can lead to over-
adjustments in courier distribution, especially when temporal variability
is high. These findings point to a key challenge in predictive optimization
which is achieving reliable real-time demand estimation under stochastic and
rapidly evolving urban conditions (Goodfellow et al., 2016). Despite these
fluctuations, the overall gains in efficiency demonstrate that incorporating
LSTM-based demand anticipation enhances delivery system resilience
without introducing instability or excessive computational cost.

From a broader perspective, these results emphasize the strategic value of
integrating machine learning with classical optimization in urban logistics.
The VRP+LSTM framework not only improves operational performance
but also aligns with sustainability goals by reducing redundant travel and
optimizing resource utilization (Klumpp, 2021). Shorter and more stable
delivery times translate to reduced energy consumption, fewer emissions,
and improved customer satisfaction. These factors are increasingly critical
in the design of sustainable meal delivery systems. Moreover, the system’s
adaptability during both peak and off-peak hours reflects a capacity for
continuous performance balancing, an essential feature for modern on-
demand platforms operating under volatile demand conditions (Savelsbergh
& Van Woensel, 2016).

Therefore, the findings validate that a hybrid predictive—optimization
approach offers a superior balance between efficiency and robustness
compared to purely heuristic or static optimization methods. By anticipating
demand trends and integrating them into routing decisions, urban delivery
systems can achieve more intelligent resource deployment, enhanced
temporal stability, and greater responsiveness to consumer needs. These
insights contribute to the ongoing discourse on sustainable and adaptive
logistics  systems, underscoring the transformative role of Al-driven
predictive modeling in the evolution of urban mobility and last-mile delivery
operations (Cattaruzza et al., 2017; Ghiani et al., 2022).

The findings of this study carry several important implications
for policymakers, urban mobility planners, and researchers aiming to
develop more efficient and sustainable last-mile meal delivery systems.
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The demonstrated efficiency gains from integrating predictive demand
modeling into routing operations suggest that public authorities should
actively promote the adoption of intelligent logistics systems. This can be
achieved through well-designed incentives and regulatory frameworks that
facilitate data sharing and encourage the use of Al-driven optimization tools
(European Commission, 2020; McKinnon, 2021). Establishing open urban
data infrastructures, such as platforms providing real-time information
on traffic flow and delivery demand, would further enhance coordination
between private operators and municipal authorities, hence reducing
congestion and environmental impact (Taniguchi & Thompson, 2014).

The observed improvements in delivery stability and reduced courier
idle times also highlight opportunities to better align meal delivery logistics
with broader sustainability and decarbonization goals. Cities committed
to promoting low-emission transportation can leverage predictive routing
technologies to optimize the use of bicycle couriers and other eco-friendly
modes, ensuring efficient service delivery without expanding vehicle fleets.
Integrating these intelligent routing mechanisms into municipal logistics
zones or urban consolidation centers could support more equitable, energy-
efficient, and resilient delivery networks that contribute to long-term climate
and mobility objectives.

Furthermore, the robustness of the hybrid VRP+LSTM framework
across varying demand levels offers valuable insights for designing
adaptive urban logistics policies. This adaptability is especially relevant
for cities experiencing dynamic retail and e-commerce demand cycles,
where conventional static routing regulations often fall short. Embedding
predictive analytics into smart-city governance frameworks can therefore
enhance strategic decision-making in areas such as transport planning and
dynamic pricing for delivery operations (European Commission, 2021). By
aligning predictive intelligence with policy innovation, municipalities can
create more responsive and sustainable delivery systems capable of adapting
to fluctuating urban conditions.

Despite the demonstrated potential of the hybrid VRP+LSTM model,
several avenues remain open for future research and practical development.
One key direction involves integrating richer, real-time data streams—such
as live courier positions, weather conditions, and traftic dynamics—to further
enhance predictive accuracy and adaptability. Strengthening collaboration
between urban authorities, logistics providers, and technology developers
will also be essential for implementing and testing these predictive routing
systems in real-world environments. Such pilot projects can provide valuable
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empirical insights into operational feasibility, human—Al coordination,
and data governance challenges, bridging the gap between simulation and
deployment.

Beyond the technical and operational dimensions, future investigations
should also address the social and ethical implications of predictive logistics.
Ensuring fairness in task allocation, transparency in algorithmic decision-
making, and protection of courier autonomy will be vital for building
equitable and trustworthy Al-driven delivery systems. Addressing these
aspects will not only strengthen public acceptance but also ensure that
technological innovation supports the overarching goals of sustainable,
inclusive, and human-centered urban development.

6. Conclusion

In conclusion, the integration of LSTM-based predictive rebalancing
with VRP optimization represents a promising pathway toward sustainable,
adaptive, and intelligent urban delivery systems. By combining spatial
optimization with temporal foresight, cities and logistics operators can
achieve greater efticiency, lower environmental impact, and improved service
reliability which are key pillars for advancing sustainable urban logistics in
the age of digitization.

In addition, this research makes a distinctive contribution to the
existing body of knowledge by establishing a comprehensive model that
synthesizes temporal demand forecasting with spatial route optimization,
hence illustrating how data-driven predictive mechanisms can substantially
enhance the efficiency, responsiveness, and resilience of meal delivery
logistics operations.

The case study analysis demonstrates substantial performance gains over
greedy and conventional VRP approaches, particularly in terms of delivery
duration. Notably, the implementation of predictive rebalancing resulted
in an average 2.29% decrease in average delivery duration comparing
traditional VRP approach, thereby providing quantitative evidence of the
model’s operational efficacy and scalability in dynamic urban contexts.

From a policy perspective, these findings emphasize the importance
of integrating predictive analytics into urban logistics governance.
Policymakers should promote the adoption of intelligent logistics systems
through incentives and regulatory frameworks that support data sharing
and Al-based optimization. Developing open urban data infrastructures and
providing real-time information on traffic, and delivery demand can further
strengthen coordination between municipalities and private operators while
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advancing sustainability and decarbonization goals through greater use of
low-emission transport modes.

Future research should extend this study by incorporating richer real-
time data sources, such as courier locations, weather, and traffic dynamics,
to improve predictive accuracy and adaptability. Collaborative pilot projects
between city authorities, logistics providers, and technology developers
are essential to assess real-world feasibility and governance challenges.
Furthermore, addressing ethical concerns such as fairness in task allocation,
transparency in algorithmic decisions, and courier autonomy will be crucial
tor ensuring that Al-driven delivery systems remain inclusive, equitable, and
aligned with the broader goals of sustainable urban development. Lastly, by
integrating spatial optimization with temporal foresight, this study presents
a pathway toward efticient, low-impact, and reliable delivery solutions which
are key areas of sustainable urban logistics in the digital age.

Acknowledgements

This research was funded by The Scientific and Technological Research
Council of Tiirkiye (TUBITAK) with the grant number 1059B192402370.



Serkan Ozdemir | 55

References

Allen, J., Piecyk, M., Piotrowska, M., McLeod, E, Cherrett, T., Ghali, K.,
Nguyen, T, Bektas, T, Bates, O., Friday, A., Wise, S., & Austwick,
M. (2018). Understanding the impact of e-commerce on last-mile light
goods vehicle activity in urban areas: The case of London. Transportation
Research Part D: Transport and Environment, 61, 325-338. https://doi.
org/10.1016/5.trd.2017.07.020

Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series
databases using recurrent neural networks on groups of similar series:
A clustering approach. Expert Systems with Applications, 140, 112896.
https://doi.org/10.1016/j.eswa.2019.112896

Cattaruzza, D., Absi, N., Feillet, D., & Gonzalez-Feliu, J. (2017). Vehicle rout-
ing problems for city logistics. EURO Journal on Transportation and Lo-
Jistics, 6(1), 51-79. https://doi.org/10.1007/s13676-014-0074-0

European Commission. (2020). A European strategy for data. Publications Of-
fice of the European Union. https://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX%3A52020DC0066

European Commission. (2021). Sustainable and smart mobility strategy. Pub-
lications Office of the European Union. https://eur-lex.europa.cu/
legal-content/EN/TXT/?uri=CELEX%3A52020DC0789

Ghiani, G., Laporte, G., & Musmanno, R. (2022). Introduction to logistics systems

management: With Microsoft Excel and Python examples (3rd ed.). John
Wiley & Sons.

Goodchild, A., & Toy, J. (2018). Delivery by drone: An evaluation of un-
manned aerial vehicle technology in reducing CO: emissions in the deliv-
ery service industry. Transportation Research Part D: Transport and Envi-
ronment, 61, 58-67. https://doi.org/10.1016/j.trd.2017.02.017

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Kool, W., Van Hoof, H., & Welling, M. (2018). Attention, learn to solve
routing problems! arXiy Preprint, arXiv:1803.08475. https://arxiv.org/
abs/1803.08475

McKinnon, A. (2018). Decarbonizing logistics: Distributing goods in a low carbon
world. Kogan Page Publishers.

Nazari, M., Oroojlooy, A., Snyder, L., & Takdc, M. (2018). Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural
Information Processing Systems, 31.

Psaraftis, H. N., Wen, M., & Kontovas, C. A. (2016). Dynamic vehicle routing
problems: Three decades and counting. Networks, 67(1), 3-31. https://
doi.org/10.1002/net.21628


https://doi.org/10.1016/j.trd.2017.07.020
https://doi.org/10.1016/j.trd.2017.07.020
https://doi.org/10.1016/j.eswa.2019.112896
https://doi.org/10.1007/s13676-014-0074-0
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0066
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0066
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0789
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0789
https://doi.org/10.1016/j.trd.2017.02.017
https://arxiv.org/abs/1803.08475
https://arxiv.org/abs/1803.08475
https://doi.org/10.1002/net.21628
https://doi.org/10.1002/net.21628

56 | AI-Driven Optimization Techniques for Meal Delivery: Metropolitan Urban Logistics...

Savelsbergh, M., & Van Woensel, T. (2016). 50th anniversary invited arti-
cle—City logistics: Challenges and opportunities. Transportation Science,
50(2), 579-590. https://doi.org/10.1287/trsc.2016.0675

Taniguchi, E., & Thompson, R. G. (Eds.). (2014). City logistics: Mapping the
future. CRC Press.

Toth, P, & Vigo, D. (Eds.). (2014). Vehicle routing: Problems, methods, and
applications (2nd ed.). Society for Industrial and Applied Mathematics.


https://doi.org/10.1287/trsc.2016.0675

