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Chapter 3

AI-Driven Optimization Techniques for 
Meal Delivery: Metropolitan Urban Logistics 
Approach 

Serkan Özdemir1

Abstract

This chapter explores how integrating predictive modeling with route 
optimization can enhance the performance of urban meal delivery systems. 
Three routing strategies—Greedy, Vehicle Routing Problem (VRP), and 
VRP enhanced with LSTM-based predictive rebalancing—were evaluated 
across varying temporal periods throughout the day. Results show that 
while VRP reduces delivery durations compared to heuristic routing, 
the hybrid VRP+LSTM model achieves additional efficiency gains by 
anticipating spatial–temporal demand fluctuations. These improvements 
translate into lower delivery times, and greater operational stability. Policy 
implications emphasize the need for open urban data infrastructures, AI-
driven optimization frameworks, and adaptive governance models to support 
sustainable last-mile logistics. The study demonstrates that hybrid predictive–
optimization frameworks can significantly advance intelligent and sustainable 
urban delivery networks.

1. Introduction

Urban life is increasingly characterized by speed, convenience, and 
digital connectivity, with meal delivery emerging as a critical component 
of this transformation. However, managing efficient delivery operations in 
densely populated metropolitan areas presents significant challenges. Traffic 
congestion, fluctuating demand patterns, and intricate urban layouts often 
strain traditional logistics systems, leading to delayed deliveries, elevated 
operational costs, and heightened environmental impacts.
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In response, artificial intelligence (AI) has emerged as a transformative 
tool for urban logistics. By leveraging machine learning algorithms and 
predictive analytics, AI enables real-time, adaptive decision-making that 
can optimize delivery routes, forecast demand, allocate courier workloads 
efficiently, and mitigate emissions (Wang et al., 2023). These techniques 
shift meal delivery from a reactive to a proactive, data-driven process, 
capable of navigating complex urban environments with both efficiency and 
sustainability.

This chapter examines AI-driven optimization strategies for metropolitan 
meal delivery, emphasizing approaches that integrate urban dynamics, fleet 
management, and operational efficiency. Its originality lies in the integration 
of the Vehicle Routing Problem (VRP) framework with Long Short-Term 
Memory (LSTM)-based demand forecasting to analyze the impact of dynamic 
courier rebalancing on delivery efficiency. Unlike earlier studies that treated 
routing and forecasting separately, this chapter presents a unified model 
linking predictive demand analysis with real-time operational optimization. 
By analyzing how AI can reduce delays and improve resource allocation, 
the study provides practical insights for enhancing delivery performance in 
high-density cities. This work also offers a forward-looking perspective on 
the digital evolution of urban food delivery, highlighting the potential for 
AI to create smarter, faster, and more sustainable urban logistics systems.

The chapter is organized as follows: the next section reviews the 
literature on VRP and AI applications in urban logistics and food delivery; 
the methodology section presents the case study and introduces the VRP–
LSTM integration and rebalancing framework; results and analyses are then 
presented; and finally, the discussion and conclusion reflect on implications 
for sustainable urban logistics and future research directions. 

2. Literature Review

The rapid growth of urban populations, combined with the rising 
demand for on-demand services, has profoundly transformed the landscape 
of urban logistics. Among these services, meal delivery platforms have 
become a cornerstone of modern urban economies, offering convenience 
to consumers but also introducing new logistical challenges. The dense and 
dynamic nature of cities creates unique constraints—ranging from traffic 
congestion and variable demand patterns to narrow delivery windows—that 
traditional logistics frameworks often fail to address effectively (Savelsbergh 
& Van Woensel, 2016; Allen et al., 2018). Consequently, there is a growing 
need for intelligent, adaptive systems that can manage these complexities 
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efficiently. In this context, Artificial Intelligence (AI) has emerged as a 
transformative enabler, allowing the development of data-driven and self-
learning logistics systems that optimize urban delivery operations (Goodchild 
& Toy, 2018).

A core challenge in meal delivery logistics lies in the optimization of 
delivery routes, commonly framed as the Vehicle Routing Problem (VRP). 
The VRP involves determining optimal routes for a fleet of vehicles to 
service a set of customers while respecting constraints such as delivery 
time windows, vehicle capacity, and service requirements (Toth & Vigo, 
2014). In the specific case of meal delivery, these constraints are even more 
stringent due to the perishability of food and the high time sensitivity of 
customer expectations. Over the years, traditional VRP models have evolved 
into dynamic and time-dependent variants that incorporate real-time traffic 
data, stochastic travel times, and fluctuating customer demands (Psaraftis et 
al., 2016). More recently, AI and machine learning (ML) approaches have 
further advanced VRP solutions by enabling systems to predict and adapt to 
dynamic urban conditions. Reinforcement learning, deep neural networks, 
and hybrid optimization models have been applied to achieve faster, more 
responsive routing decisions (Nazari et al., 2018; Kool et al., 2019).

Equally crucial to efficient meal delivery is demand forecasting, which 
directly affects how resources are allocated and scheduled. Accurate prediction 
of customer demand enables platforms to plan for peak hours, allocate riders 
strategically, and minimize both idle time and delayed deliveries. AI-driven 
forecasting models leverage diverse data sources, including historical orders, 
customer profiles, weather conditions, and local events, to forecast demand 
at fine spatial and temporal resolutions. Machine learning techniques—such 
as regression models, ensemble methods, and neural networks like LSTMs 
and CNNs—have demonstrated superior performance in capturing non-
linear relationships in demand data (Bandara et al., 2020). Integrating these 
forecasting models with routing algorithms creates a closed-loop decision 
system, where anticipated demand informs vehicle routing and resource 
distribution in real time.

Another essential component of adaptive logistics systems is rebalancing, 
which refers to the dynamic repositioning of couriers or delivery vehicles 
in response to fluctuating demand. Without effective rebalancing, meal 
delivery platforms face inefficiencies such as excessive idle time, underutilized 
capacity, and unbalanced workloads across the fleet. These AI-driven 
approaches continuously monitor real-time information—such as order 
density, traffic flow, and rider availability—to make autonomous relocation 
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decisions, thereby improving service reliability and reducing operational 
costs. By integrating rebalancing into the overall optimization framework, 
platforms can achieve smoother demand–supply alignment and enhanced 
customer satisfaction.

The integration of AI-driven optimization techniques across demand 
prediction, vehicle routing, and rebalancing creates the foundation for a 
cohesive, adaptive, and sustainable urban delivery system. Such integration 
allows real-time decision-making that jointly optimizes routing efficiency, 
resource allocation, and environmental sustainability. Moreover, the inherent 
adaptability of AI systems enables rapid responses to disruptions such as 
traffic incidents or sudden spikes in demand, maintaining high service levels 
and customer satisfaction even under uncertainty.

Building on this background, the present study explores AI-driven 
optimization for metropolitan meal delivery systems by integrating demand 
forecasting, vehicle routing, and rebalancing strategies into a unified system. 
Specifically, it examines whether cluster-level demand predictions generated 
by LSTM networks can improve delivery performance by pre-positioning 
couriers in high-demand zones before orders occur. This approach is 
compared against conventional greedy routing and standard VRP-based 
optimization. The study evaluates multiple operational metrics—including 
average delivery time, congestion impact, and fleet utilization—across 
various time slots. By combining predictive analytics with dynamic routing 
and proactive rebalancing, this research aims to demonstrate how AI can 
effectively reduce service delays, balance workloads, and improve overall 
system efficiency in complex metropolitan environments. Ultimately, it 
contributes to the development of a data-driven, adaptive, and sustainable 
framework for urban meal delivery logistics, illustrating the potential of AI 
to transform last-mile delivery into a smarter and greener system.

3. Methodology

The study focuses on a metropolitan meal delivery scenario inspired by 
the city of Amsterdam. A synthetic dataset of 1,000 delivery requests was 
generated, distributed across three representative urban clusters with varying 
spatial densities. Requests were assigned to 24 hourly time slots, reflecting 
realistic daily demand patterns, including lunch (10:00–13:00) and dinner 
(16:00–19:00) peaks (Figure 1). In this study, it is also assumed the riders 
can carry at most 10 packages in one ride.
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Figure 1. Temporal Distribution of Delivery Requests

Geographic coordinates were mapped onto the underlying street network 
using OSMnx and NetworkX, allowing shortest-path distance computations 
for all delivery locations and the central depot (Figure 2). This setup enables 
the simulation of delivery operations in a realistic urban environment, 
incorporating spatial clustering, demand variability, and network topology 
constraints.
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Figure 2. Road Network of Amsterdam Map with Customer Delivery Locations

At the first level, a greedy myopic routing algorithm was implemented 
as a baseline. In this approach, vehicles iteratively serve the nearest feasible 
request until their capacity constraints are reached, after which they return to 
the depot. While this method is computationally simple and fast, it does not 
incorporate global optimization, forecasted demand, or proactive resource 
allocation, making it a representative benchmark for reactive delivery 
strategies.

Building on this baseline, the study employs the Capacitated Vehicle 
Routing Problem (CVRP) framework, implemented using Google OR-
Tools, to optimize delivery routes. In this framework, each vehicle departs 
from the depot, respects capacity constraints, and seeks to minimize total 
travel distance. Shortest-path distances derived from the street network are 
used as cost metrics. Solutions are obtained through a combination of path-
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cheapest-arc first solution strategies and guided local search metaheuristics. 
Compared to the greedy baseline, this approach provides a globally optimized 
routing strategy, accounting for spatial clustering of requests and balanced 
load distribution across vehicles.

To anticipate future delivery demand, a cluster-level LSTM model was 
trained on historical request patterns. The model predicts demand for each 
urban cluster in the next time slot using a sliding window of previous hourly 
demands. These predictions inform pre-positioning strategies, allowing 
vehicles to be proactively allocated to anticipated “hotspot” clusters. The 
LSTM is trained on normalized cluster-level demand series, using mean 
squared error as the loss function, and is updated continuously over the 24-
hour simulation horizon.

Rebalancing leverages these LSTM forecasts by allocating a fraction 
of vehicles to predicted high-demand clusters before each time slot 
begins. Vehicles assigned to rebalance nodes are incorporated into the 
VRP as starting points with zero demand, allowing the optimization to 
simultaneously consider both pre-positioned and depot-based vehicles. This 
proactive strategy enhances fleet management, reduces service delays, and 
mitigates congestion during peak periods.

Delivery performance is evaluated by calculating average delivery times 
per request across 24 time slots. Three strategies are compared: (i) greedy 
myopic routing, (ii) VRP without rebalancing, and (iii) VRP with LSTM-
based rebalancing. Congestion effects are approximated based on the load 
ratios observed in each time slot, providing insights into the effectiveness of 
proactive versus reactive routing strategies.

4. Results

Table 1 summarizes the average delivery durations obtained from three 
optimization strategies—Greedy routing, VRP (Vehicle Routing Problem), 
and VRP with LSTM-based Rebalancing—across 24 hourly time slots. 
During low-demand periods (Time Slots 0–3 and 21–23), all methods 
exhibit similar performance due to limited routing complexity. Notably, 
in Slot 23, the VRP+LSTM approach reduces delivery time from 20.38 
minutes (VRP and Greedy) to 16.06 minutes, illustrating the model’s ability 
to anticipate and adapt to spatial–temporal demand fluctuations.
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Table 1. Performance Comparison of Delivery Durations Across Optimization Strategies

Time Slot Requests
Avg Time 
Greedy (min)

Avg Time 
VRP (min)

Avg Time VRP+LSTM 
Rebalancing (min)

0 2 27.34 25.61 25.27
1 6 12.29 11.45 11.45
2 2 24.99 24.99 25.01
3 1 25.11 25.11 25.11
4 0 0.00 0.00 0.00
5 8 9.88 8.47 8.47
6 7 11.20 10.17 10.17
7 13 13.61 11.39 11.22
8 38 7.78 6.76 6.65
9 56 7.21 6.53 6.48
10 81 7.40 5.75 5.80
11 111 7.13 6.10 6.06
12 86 7.12 6.15 6.07
13 71 6.64 5.60 5.47
14 41 8.01 6.26 6.11
15 40 8.99 7.86 7.81
16 53 9.23 7.30 7.31
17 94 7.11 6.13 6.19
18 112 7.12 5.97 5.99
19 98 7.27 6.03 6.11
20 50 7.80 6.41 5.68
21 21 12.12 8.47 7.33
22 6 10.23 8.38 8.38
23 3 20.38 20.38 16.06

During medium- to high-demand periods (Slots 8–19), the Greedy 
algorithm consistently yields longer delivery times, highlighting its 
suboptimal performance under dense request conditions. The VRP approach 
achieves up to a 15% reduction in delivery duration relative to the Greedy 
method, demonstrating the effectiveness of global route optimization. The 
VRP+LSTM Rebalancing model further enhances performance, providing 
marginal but consistent improvements across most active time slots. Overall, 
these results indicate that integrating LSTM-based demand forecasting with 
VRP improves delivery efficiency and system stability, combining spatial 
optimization with temporal prediction for the most balanced and robust 
performance among the evaluated strategies.

Table 2 further quantifies the relative improvements achieved by the VRP 
and VRP+LSTM Rebalancing models compared to the Greedy baseline. 
The “VRP vs Greedy (%)” column reflects the percentage reduction in 
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delivery duration achieved by the VRP method, while the “Rebalancing 
vs VRP (%)” column indicates the additional effect of the LSTM-based 
rebalancing mechanism. Across most active hours (Slots 5–20), the VRP 
model consistently outperforms the Greedy algorithm, with reductions 
ranging from 6% to 22%. The most pronounced improvement occurs 
at Slot 21, with a 30.12% reduction, demonstrating VRP’s robustness 
under variable and late-hour demand conditions. In contrast, performance 
differences during low-demand periods remain minimal, reflecting the 
limited impact of routing optimization when demand is sparse.

Table 2. Comparative Performance Gains of Optimization Strategies

Time 
Slot Requests

Avg Time 
Greedy 
(min)

Avg Time 
VRP 
(min)

Avg Time 
VRP+LSTM 
Rebalancing 
(min)

VRP vs 
Greedy 
(%)

Rebalancing 
vs VRP (%)

0 2 27.34 25.61 25.27 6.33 1.33
1 6 12.29 11.45 11.45 6.83 0.00
2 2 24.99 24.99 25.01 0.00 -0.08
3 1 25.11 25.11 25.11 0.00 0.00
4 0 0.00 0.00 0.00 0.00 0.00
5 8 9.88 8.47 8.47 14.27 0.00
6 7 11.20 10.17 10.17 9.20 0.00
7 13 13.61 11.39 11.22 16.31 1.49
8 38 7.78 6.76 6.65 13.11 1.63
9 56 7.21 6.53 6.48 9.43 0.77
10 81 7.40 5.75 5.80 22.30 -0.87
11 111 7.13 6.10 6.06 14.45 0.66
12 86 7.12 6.15 6.07 13.62 1.30
13 71 6.64 5.60 5.47 15.66 2.32
14 41 8.01 6.26 6.11 21.85 2.40
15 40 8.99 7.86 7.81 12.57 0.64
16 53 9.23 7.30 7.31 20.91 -0.14
17 94 7.11 6.13 6.19 13.78 -0.98
18 112 7.12 5.97 5.99 16.15 -0.34
19 98 7.27 6.03 6.11 17.06 -1.33
20 50 7.80 6.41 5.68 17.82 11.39
21 21 12.12 8.47 7.33 30.12 13.46
22 6 10.23 8.38 8.38 18.08 0.00
23 3 20.38 20.38 16.06 0.00 21.2

The LSTM-based rebalancing mechanism contributes additional 
improvements over the VRP baseline in several key intervals, including Slots 
7–15, 20–21, and 23, with the largest enhancement reaching 21.2% at Slot 
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23. This indicates that predictive rebalancing effectively anticipates demand 
imbalances and reallocates couriers to maintain efficient service, particularly 
during transition or off-peak periods. Negative values observed in Slots 10 
and 16–19 suggest minor over-adjustments by the predictive model, likely 
due to discrepancies between forecasted and actual demand. However, these 
fluctuations are small (below 1.5%) and do not compromise overall system 
efficiency. Collectively, these results confirm that combining LSTM-based 
predictive rebalancing with VRP enhances delivery stability and efficiency 
across varying demand levels.

Figure 3 illustrates the temporal variation of average delivery durations 
and relative improvements for the three strategies, highlighting lunch 
(10:00–13:00) and dinner (16:00–19:00) peak periods. The Greedy 
algorithm consistently produces longer delivery times, particularly during 
peaks, whereas the VRP method maintains lower and more stable durations 
throughout the day. The addition of LSTM-based rebalancing further 
refines performance, particularly during transitional periods such as early 
afternoon and late evening, by preemptively redistributing couriers based 
on predicted demand.

Figure 3. Temporal Comparison of Delivery Duration and Relative Performance Across 
Routing Strategies

The relative improvement curves reinforce these observations. The 
VRP vs Greedy curve shows consistent gains of 10–25% during peak 
hours, demonstrating the efficiency advantage of route optimization under 
dense demand. The Rebalancing vs VRP curve exhibits frequent positive 
contributions, with localized improvements exceeding 10% in off-peak hours 
(21:00–23:00), where predictive rebalancing effectively reduces courier 
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idle time. Overall, the figure highlights that the VRP+LSTM Rebalancing 
strategy delivers the most balanced and resilient performance across daily 
operational cycles.

Figure 4 depicts average delivery durations overlaid with hourly request 
volumes, providing a visual link between demand intensity and algorithmic 
performance. The Greedy method shows high delivery times during periods 
of elevated demand, emphasizing its limited scalability. The VRP approach 
demonstrates lower and more stable durations, confirming its system-level 
routing efficiency. VRP+LSTM Rebalancing further improves performance 
during high-demand intervals (approximately 10:00–19:00) by dynamically 
reallocating couriers according to short-term forecasts, thereby maintaining 
service efficiency under rapidly shifting demand patterns. During off-peak 
hours, all strategies converge, reflecting minimal optimization impact when 
demand is sparse.

Figure 4. Temporal Comparison of Delivery Duration and Request Volume

Finally, Figure 5 presents a comparative visualization of average delivery 
durations for all three methods across 24 hourly time slots. The Greedy 
algorithm consistently shows the highest durations, particularly during peak 
demand, while the VRP-based approach achieves shorter and more stable 
times throughout the day. The VRP+LSTM Rebalancing model enhances 
efficiency further, particularly during midday and evening peaks, with the 
most substantial reductions (up to 20%) observed in late hours (21:00–
23:00). These results demonstrate that integrating predictive demand 
modeling with route optimization yields a more adaptive, resilient, and time-
efficient delivery process, highlighting the hybrid method’s applicability 
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for urban micro-delivery systems characterized by dynamic and temporally 
heterogeneous demand.

Figure 5. Performance Comparison per Time Slot

5. Discussion 

The comparative analysis of the three routing strategies—Greedy, VRP, 
and VRP combined with LSTM-based Rebalancing—reveals distinct 
operational advantages and limitations across varying demand intensities. 
Consistent with expectations, the Greedy approach performs adequately 
under sparse request conditions but exhibits significant inefficiencies as 
demand density increases. This outcome reflects the algorithm’s local 
optimization behavior, which lacks the capacity to account for global spatial 
relationships and temporal fluctuations in delivery requests (Savelsbergh & 
Van Woensel, 2016). In contrast, the VRP method demonstrates a clear 
performance advantage, achieving substantial reductions in delivery durations 
during medium to high-demand periods. This improvement underscores 
the importance of global optimization in coordinating courier assignments 
and route sequencing, especially within dense urban environments where 
real-time spatial efficiency is critical (Toth & Vigo, 2014).

The integration of LSTM-based predictive rebalancing into the VRP 
framework further enhances overall system robustness and adaptability. 
The hybrid VRP+LSTM approach consistently outperforms the baseline 
methods, particularly during transitional and off-peak periods, by 
proactively repositioning couriers based on anticipated demand shifts. This 
result highlights the potential of combining data-driven forecasting with 
optimization algorithms to achieve spatio-temporal equilibrium in dynamic 
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delivery systems. The observed improvement of up to 21.2% in certain time 
slots illustrates that predictive intelligence can effectively mitigate temporal 
mismatches between supply and demand, reducing idle time and improving 
service continuity.

Nevertheless, the minor negative improvements observed in a few 
intervals suggest that predictive rebalancing is sensitive to forecast accuracy. 
Small deviations between predicted and actual demand can lead to over-
adjustments in courier distribution, especially when temporal variability 
is high. These findings point to a key challenge in predictive optimization 
which is achieving reliable real-time demand estimation under stochastic and 
rapidly evolving urban conditions (Goodfellow et al., 2016). Despite these 
fluctuations, the overall gains in efficiency demonstrate that incorporating 
LSTM-based demand anticipation enhances delivery system resilience 
without introducing instability or excessive computational cost.

From a broader perspective, these results emphasize the strategic value of 
integrating machine learning with classical optimization in urban logistics. 
The VRP+LSTM framework not only improves operational performance 
but also aligns with sustainability goals by reducing redundant travel and 
optimizing resource utilization (Klumpp, 2021). Shorter and more stable 
delivery times translate to reduced energy consumption, fewer emissions, 
and improved customer satisfaction. These factors are increasingly critical 
in the design of sustainable meal delivery systems. Moreover, the system’s 
adaptability during both peak and off-peak hours reflects a capacity for 
continuous performance balancing, an essential feature for modern on-
demand platforms operating under volatile demand conditions (Savelsbergh 
& Van Woensel, 2016).

Therefore, the findings validate that a hybrid predictive–optimization 
approach offers a superior balance between efficiency and robustness 
compared to purely heuristic or static optimization methods. By anticipating 
demand trends and integrating them into routing decisions, urban delivery 
systems can achieve more intelligent resource deployment, enhanced 
temporal stability, and greater responsiveness to consumer needs. These 
insights contribute to the ongoing discourse on sustainable and adaptive 
logistics systems, underscoring the transformative role of AI-driven 
predictive modeling in the evolution of urban mobility and last-mile delivery 
operations (Cattaruzza et al., 2017; Ghiani et al., 2022).

The findings of this study carry several important implications 
for policymakers, urban mobility planners, and researchers aiming to 
develop more efficient and sustainable last-mile meal delivery systems. 
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The demonstrated efficiency gains from integrating predictive demand 
modeling into routing operations suggest that public authorities should 
actively promote the adoption of intelligent logistics systems. This can be 
achieved through well-designed incentives and regulatory frameworks that 
facilitate data sharing and encourage the use of AI-driven optimization tools 
(European Commission, 2020; McKinnon, 2021). Establishing open urban 
data infrastructures, such as platforms providing real-time information 
on traffic flow and delivery demand, would further enhance coordination 
between private operators and municipal authorities, hence reducing 
congestion and environmental impact (Taniguchi & Thompson, 2014).

The observed improvements in delivery stability and reduced courier 
idle times also highlight opportunities to better align meal delivery logistics 
with broader sustainability and decarbonization goals. Cities committed 
to promoting low-emission transportation can leverage predictive routing 
technologies to optimize the use of bicycle couriers and other eco-friendly 
modes, ensuring efficient service delivery without expanding vehicle fleets. 
Integrating these intelligent routing mechanisms into municipal logistics 
zones or urban consolidation centers could support more equitable, energy-
efficient, and resilient delivery networks that contribute to long-term climate 
and mobility objectives.

Furthermore, the robustness of the hybrid VRP+LSTM framework 
across varying demand levels offers valuable insights for designing 
adaptive urban logistics policies. This adaptability is especially relevant 
for cities experiencing dynamic retail and e-commerce demand cycles, 
where conventional static routing regulations often fall short. Embedding 
predictive analytics into smart-city governance frameworks can therefore 
enhance strategic decision-making in areas such as transport planning and 
dynamic pricing for delivery operations (European Commission, 2021). By 
aligning predictive intelligence with policy innovation, municipalities can 
create more responsive and sustainable delivery systems capable of adapting 
to fluctuating urban conditions.

Despite the demonstrated potential of the hybrid VRP+LSTM model, 
several avenues remain open for future research and practical development. 
One key direction involves integrating richer, real-time data streams—such 
as live courier positions, weather conditions, and traffic dynamics—to further 
enhance predictive accuracy and adaptability. Strengthening collaboration 
between urban authorities, logistics providers, and technology developers 
will also be essential for implementing and testing these predictive routing 
systems in real-world environments. Such pilot projects can provide valuable 
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empirical insights into operational feasibility, human–AI coordination, 
and data governance challenges, bridging the gap between simulation and 
deployment.

Beyond the technical and operational dimensions, future investigations 
should also address the social and ethical implications of predictive logistics. 
Ensuring fairness in task allocation, transparency in algorithmic decision-
making, and protection of courier autonomy will be vital for building 
equitable and trustworthy AI-driven delivery systems. Addressing these 
aspects will not only strengthen public acceptance but also ensure that 
technological innovation supports the overarching goals of sustainable, 
inclusive, and human-centered urban development.

6. Conclusion

In conclusion, the integration of LSTM-based predictive rebalancing 
with VRP optimization represents a promising pathway toward sustainable, 
adaptive, and intelligent urban delivery systems. By combining spatial 
optimization with temporal foresight, cities and logistics operators can 
achieve greater efficiency, lower environmental impact, and improved service 
reliability which are key pillars for advancing sustainable urban logistics in 
the age of digitization.

In addition, this research makes a distinctive contribution to the 
existing body of knowledge by establishing a comprehensive model that 
synthesizes temporal demand forecasting with spatial route optimization, 
hence illustrating how data-driven predictive mechanisms can substantially 
enhance the efficiency, responsiveness, and resilience of meal delivery 
logistics operations.

The case study analysis demonstrates substantial performance gains over 
greedy and conventional VRP approaches, particularly in terms of delivery 
duration. Notably, the implementation of predictive rebalancing resulted 
in an average 2.29% decrease in average delivery duration comparing 
traditional VRP approach, thereby providing quantitative evidence of the 
model’s operational efficacy and scalability in dynamic urban contexts.

From a policy perspective, these findings emphasize the importance 
of integrating predictive analytics into urban logistics governance. 
Policymakers should promote the adoption of intelligent logistics systems 
through incentives and regulatory frameworks that support data sharing 
and AI-based optimization. Developing open urban data infrastructures and 
providing real-time information on traffic, and delivery demand can further 
strengthen coordination between municipalities and private operators while 
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advancing sustainability and decarbonization goals through greater use of 
low-emission transport modes.

Future research should extend this study by incorporating richer real-
time data sources, such as courier locations, weather, and traffic dynamics, 
to improve predictive accuracy and adaptability. Collaborative pilot projects 
between city authorities, logistics providers, and technology developers 
are essential to assess real-world feasibility and governance challenges. 
Furthermore, addressing ethical concerns such as fairness in task allocation, 
transparency in algorithmic decisions, and courier autonomy will be crucial 
for ensuring that AI-driven delivery systems remain inclusive, equitable, and 
aligned with the broader goals of sustainable urban development. Lastly, by 
integrating spatial optimization with temporal foresight, this study presents 
a pathway toward efficient, low-impact, and reliable delivery solutions which 
are key areas of sustainable urban logistics in the digital age.
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