Chapter 1

Digital Customer Experience and Personalization 8

Ömer Sezai Aykaç¹

Abstract

In today's digital environment, providing a tailored and meaningful customer experience has become an essential strategy for brands aiming to foster customer loyalty and enhance long-term engagement. This chapter explores how digital customer journeys can be mapped and enhanced through advanced personalization tools. It begins by defining the stages of the customer journey in digital environments, from initial awareness to post-purchase engagement, and discusses how each touchpoint contributes to shaping customer perceptions. The chapter highlights the importance of integrating omnichannel strategies to ensure seamless transitions between various online and offline touchpoints, providing a cohesive experience. It further delves into the role of data analytics, AI-driven personalization, and recommendation systems in tailoring content and offers to individual customer needs. While emphasizing the potential of personalization to drive engagement and satisfaction, the chapter also addresses the challenges related to privacy, trust, and algorithmic transparency. Ethical considerations in the use of personal data are explored, with a focus on balancing personalized experiences with consumer privacy expectations. By integrating theoretical insights and practical examples, the chapter provides a comprehensive framework for leveraging digital customer journey mapping and personalization strategies to enhance customer satisfaction, build trust, and ultimately, drive business performance.

Dr., Sakarya University of Applied Sciences, Sakarya Vocational School https://orcid.org/0000-0003-1500-623X, oaykac@subu.edu.tr

doi

1. Introduction

In the digital era, delivering superior customer experience has become a central strategic imperative for retailers and marketers. Customer experience (CX) is now regarded as a fundamental basis of competitive advantage in marketing management (Homburg et al., 2017; Lemon & Verhoef, 2016). With consumers empowered by technology, firms must manage the digital customer experience across myriad online touchpoints to meet rising expectations. Indeed, today's consumers expect brands to provide personalized, seamless interactions tailored to their individual needs. Marketing practice has thus shifted from mass communication toward more customer-centric, data-driven approaches (Becker & Jaakkola, 2020; Kotler & Keller, 2021). In particular, personalization has emerged as a key strategy to enhance digital customer experience and engagement (Tyrväinen et al., 2020; Bleier et al., 2019; Weidig et al., 2024). Personalization in digital marketing has rapidly evolved from simple segmentation and targeted ads into sophisticated, AIdriven tactics that analyze vast amounts of customer data in real time. By leveraging machine learning and predictive analytics, companies can now deliver highly relevant content, individualized product recommendations, and interactive experiences that boost customer satisfaction and loyalty. Research indicates that personalized experiences reduce information overload and increase perceived relevance for consumers, thereby strengthening their engagement (Chandra et al., 2022; Yeo et al., 2025). For example, a recent meta-analysis found that personalization in advertising produces modest but significant improvements in consumer attitudes and purchase intentions because it makes messages feel more personally relevant (Yeo et al., 2025). However, these benefits come with new challenges. Increasing reliance on customer data and AI-driven personalization raises concerns about privacy, trust, and ethical use of algorithms (Acquisti et al., 2015). Consumers appreciate personalization's convenience and relevance, but they also worry about the "personalization-privacy paradox," balancing the benefits of tailored content against the loss of privacy (Awad & Krishnan, 2006; Bleier & Eisenbeiss, 2015). Marketers must therefore design personalization strategies that are both effective and transparent to maintain customer trust (Dinçer et al., 2021).

Against this backdrop, this chapter examines Digital Customer Experience and Personalization from a marketing science perspective. We begin by mapping the digital customer journey, outlining how consumers move through online touchpoints and why journey mapping is critical to customer experience management. We then discuss modern personalization tools and techniques - from AI-powered recommender systems to dynamic content personalization - that firms use to tailor experiences to individual customers. Next, we identify key metrics for experience optimization and how organizations measure and improve digital customer experience performance. Throughout, we draw on recent research and theory to highlight best practices and emerging insights. By adopting an academic lens with practical examples, the chapter underscores how a data-driven yet humanized approach to personalization can elevate the digital customer experience while fostering long-term customer loyalty.

2. Mapping the Digital Customer Journey

Customer experience unfolds along the customer journey (CJ) - "the process a customer goes through, across all stages and touchpoints, that makes up the customer experience" (Lemon & Verhoef, 2016, p.71). In digital contexts, the customer journey encompasses the end-to-end sequence of a consumer's interactions with a brand via online channels, from initial awareness and consideration (e.g. exposure to social media or search engine results) through purchase (e.g. e-commerce website or app transaction) and into post-purchase engagement (e.g. online support, reviews, loyalty program activities). These stages are often non-linear and interconnected across multiple platforms. Modern consumers may embark on omnichannel journeys, switching between devices and touchpoints - for instance, researching a product on a mobile app, testing it in a store, then purchasing online for home delivery. Mapping this journey is complex, as each customer's path can involve numerous micro-interactions and channels. Yet, understanding the structure of the digital customer journey is crucial, because the cumulative experience across touchpoints ultimately drives customer satisfaction and loyalty (Rawson et al., 2013; Verhoef et al., 2009).

A growing body of research offers frameworks for conceptualizing and mapping customer journeys. Early work highlighted that managing isolated touchpoints is insufficient – firms must ensure the *overall journey* is coherent and frictionless to maximize customer satisfaction (Rawson et al., 2013; Edelman & Singer, 2015). Later studies formalized journey stages and characteristics. For example, Lemon and Verhoef (2016) distinguish pre-purchase, purchase, and post-purchase phases, each comprising various touchpoints that collectively shape the customer's perceptions. Within these stages, touchpoints can be brand-controlled (e.g. a retailer's website, app, or email communications) or customer-/social-controlled (e.g. user-generated content, online reviews), and each touchpoint's quality contributes to the holistic experience (Verhoef et al., 2009; De Keyser et al., 2020). Especially on social media platforms, opinion leaders such as "Instagram mothers," who

share their motherhood journeys and build trust-based relationships with their followers, enhance the influence and power of these user-controlled touchpoints on purchasing decisions through personalized content (Vodinalı, 2025). De Keyser et al. (2020) propose a "TCQ" nomenclature - touchpoints, context, and qualities - to categorize elements of customer experience. This reminds managers that when mapping a digital journey, they should inventory all relevant touchpoints, consider the context in which interactions occur (e.g. device, location, time, consumer's goal), and evaluate the quality of each interaction (e.g. ease of use, personalization level, emotional impact). By mapping these components, firms can identify pain points (e.g. high drop-off in an online checkout step) and moments of truth that significantly influence satisfaction. Studies show that improving the worst pain points in a journey can have a greater effect on overall customer satisfaction than optimizing individual touchpoints in isolation (Rawson et al., 2013). In other words, a smooth end-to-end journey is more important than any single contact point, since "customers judge their experiences on the entire journey, not just each encounter" (Edelman & Singer, 2015). Evidence from virtual retail contexts that complement these frameworks shows that perceived system efficiency increases perceived value, which in turn increases satisfaction and loyalty (Duman, Kurnaz, & Ecevit, 2021). This emphasizes that technical reliability is a fundamental lever in journey outcomes.

Omnichannel integration is a critical aspect of contemporary digital customer journeys. Consumers engage with brands through websites, mobile apps, email, chatbots, social media, and sometimes physical stores in tandem (Barwitz & Maas, 2018; Cummins et al., 2016). A journey might begin with an Instagram ad, continue on a product page on the company's website, and finish with a purchase through a voice assistant or in-store pickup. Research indicates customers value consistency across channels and the ability to transition seamlessly between online and offline touchpoints (Barwitz & Maas, 2018). Thus, journey mapping must account for cross-channel paths and ensure that information follows the customer - for example, items saved in a shopping cart on the website should be visible in the mobile app. Firms that successfully implement unified omnichannel journeys benefit from higher customer satisfaction and retention, as customers perceive a brand as a single cohesive entity rather than disparate channels (Verhoef et al., 2021). Achieving this integration often requires back-end alignment, such as connecting customer data platforms to break down silos (Wedel & Kannan, 2016; Verhoef et al., 2021).

To truly capture today's digital customer journey, companies are increasingly leveraging analytics and real-time data. Traditional journey

maps were static diagrams based on aggregate research, updated infrequently. Now, the availability of big data and streaming analytics enables dynamic journey mapping that reflects customer behavior in real time (Mele et al., 2025; Wedel & Kannan, 2016). By tracking digital signals (clicks, views, transactions, etc.) across channels, firms can detect where customers are in their journey and even predict their next steps. Real-time journey analytics allow for immediate response - for instance, triggering a personalized offer when a customer lingers on a product page but hasn't purchased. Lemon and Verhoef (2016) emphasize that incorporating real-time data into journey mapping greatly enhances its relevance and responsiveness, enabling businesses to adapt to customer needs as they evolve. Empirical evidence supports the value of this approach: companies that leverage realtime journey monitoring report higher customer satisfaction, retention, and revenue growth. One reason is that real-time data help identify problems or opportunities in the journey as they happen (e.g. detecting many users struggling at a particular checkout step and intervening with a support chat or simplifying the process). Additionally, AI-powered journey mapping can uncover complex patterns in how customers move through touchpoints. For example, unsupervised machine learning on journey data might reveal common paths to purchase or segments of customers with distinct journey behaviors (D'Arco et al., 2019). Such insights enable more proactive journey design.

Academic research on customer journeys has proliferated in recent years, reflecting its managerial importance. Systematic reviews note that the literature on customer journeys grew sevenfold over the last decade (Tueanrat et al., 2021) and spans themes from service design to technological disruption. Tueanrat et al. (2021) identify major research streams including how journeys relate to service satisfaction and service recovery, the role of co-creation during journeys, and the impact of new digital channels on journey dynamics. More recently, Mele et al. (2025) map the intellectual structure of customer journey research and propose an integrative framework, highlighting themes such as smart technology in journeys and customer journey mapping techniques. One emergent insight is that journeys are becoming "phygital", blending physical and digital touchpoints, which requires firms to orchestrate experiences across both realms (Mele et al., 2025). Another insight is the call for more customercentric journey design: rather than designing journeys from a firm's internal perspective (channels, processes), companies should map the journey from the customer's viewpoint, understanding how customers actually navigate and where they encounter friction (Becker & Jaakkola, 2020; Kuehnl et al.,

2019). Kuehnl et al. (2019) introduced the concept of effective customer journey design (CJD), defining it as the extent to which consumers perceive multiple brand touchpoints as cohesively designed in a thematic, consistent, and context-sensitive way. They developed a scale to measure consumers' perceptions of journey effectiveness and found that a well-designed, seamless journey can significantly improve customer loyalty - even more so than single touchpoint evaluations like brand experience in isolation. In their study, an effective, integrated journey increased loyalty via enhanced brand attitudes, especially utilitarian attitudes, above and beyond the effect of isolated positive experiences (Kuehnl et al., 2019). This underscores that optimizing the *overall structure* and flow of the journey (the "big picture") is crucial for long-term relationship outcomes.

In summary, mapping the digital customer journey is a foundational practice for delivering great customer experiences. By charting the stages and touchpoints of the journey, firms gain a holistic view of the customer's end-to-end experience. Journey mapping reveals critical moments where personalization and service improvements can have outsized impact. It also highlights the need for cross-channel consistency and real-time responsiveness in today's connected environment. Furthermore, empirical evidence shows that trust-based relationships formed during these journeys significantly enhance both attitudinal and behavioral loyalty, emphasizing the emotional dimension of sustained digital engagement (Geçti & Zengin, 2013). As we turn next to personalization, it will become clear that effective personalization strategies are often organized around the customer journey - delivering the right content at the right stage - and that journey analytics provide the context for personalization at scale (Weidig et al., 2024; Vesanen, 2007). A deep understanding of the customer journey thus sets the stage for deploying personalization tools in a way that truly resonates with customers and enhances their overall experience.

3. Personalization Tools and Techniques

Personalization refers to tailoring the marketing mix (product information, content, offers, etc.) to individual customers based on their personal data, preferences, and behavior patterns (Arora et al., 2008; Vesanen, 2007). Rather than a one-size-fits-all approach, personalization seeks to make each customer feel that a product or message is meant for them. In the context of digital customer experience, personalization is enabled by rich data and advanced analytics that allow firms to recognize a customer (or customer segment) and adjust what is presented. Contemporary personalization techniques range from rule-based recommendations (e.g. "customers who viewed X also viewed Y") to complex machine learning algorithms that predict individual needs. The tools for personalization have expanded greatly with the advent of Big Data and AI. Marketers are rethinking traditional approaches and increasingly relying on artificial intelligence to achieve personalization at scale (Davenport et al., 2020; Afsar et al., 2022; Chen et al., 2023). Below, we survey key tools and techniques, and how they enhance customer experience (Bleier et al., 2019; Weidig et al., 2024), while also addressing implementation challenges like privacy and trust (Aguirre et al., 2015; Goldfarb & Tucker, 2011; Martin et al., 2017).

Recommender systems are among the most prevalent personalization tools in digital commerce (Zhang et al., 2019; Bobadilla et al., 2013). Recommender algorithms analyze customer data—such as past purchases, browsing history, ratings, and demographics—to suggest products or content that an individual is likely to be interested in (Koren et al., 2009; Adomavicius & Tuzhilin, 2005). Classic approaches include collaborative filtering (recommending items that similar users liked) and content-based filtering (recommending items similar to what the user liked before) (Adomavicius & Tuzhilin, 2005). Modern recommendation engines often use hybrid methods and deep learning models for greater accuracy (Burke, 2002; Zhang et al., 2019). These systems have become fundamental to online retail and media platforms—for example, Amazon's item recommendations or Netflix's personalized movie lists—and they demonstrably increase engagement and sales by surfacing relevant options (Smith & Linden, 2017; Gómez-Uribe & Hunt, 2015). Academic research confirms the impact: personalized product recommendations not only boost immediate conversion rates but also enhance customers' perceived utility of the platform, thereby improving satisfaction (Bleier & Eisenbeiss, 2015; Arora et al., 2008). Dynamic website personalization goes further by customizing the entire user interface or content in real time. E-commerce sites can now render personalized homepages showing different banner ads, navigation, or promotions depending on the visitor's profile (Chandra et al., 2022). For instance, a returning customer might see a "Welcome back, [Name]! Here are your picks" section with items in their preferred category. Similarly, content websites personalize news feeds or article recommendations based on reading history. This level of personalization is powered by analytics that segment users into micro-segments or even treat each user as a "segment of one" (Kotler & Keller, 2021). Research by Wedel and Kannan (2016) discusses how firms utilize customer-level data (clickstreams, past responses) to perform such fine-grained targeting and continuously test and refine

personalized content through techniques like A/B testing and multi-armed bandits

Email and message personalization remains a workhorse technique in digital marketing. Personalization here can mean simply addressing the customer by name, but modern practices go well beyond, tailoring the timing, subject line, and content of communications to each recipient. Trigger-based messaging - for example, sending a follow-up email with product recommendations if a customer leaves items in their online cart has proven effective at re-engaging customers. Personalized email campaigns yield significantly higher open and click-through rates than generic blasts (Chandra et al., 2022). Marketers also use personalization in mobile push notifications or in-app messages, leveraging contextual data (location, browsing context) to send highly relevant offers ("You're near our store - stop in for a 20% off deal on an item in your wishlist"). These tactics are facilitated by customer relationship management (CRM) systems and customer data platforms that consolidate data from multiple touchpoints, enabling a unified, real-time profile for each customer (Payne & Frow, 2005; Verhoef et al., 2015; Neslin, 2022; Wedel & Kannan, 2016). The integration of such platforms means, for example, a customer's web browsing behavior can immediately inform the content of a mobile app offer, ensuring consistency and relevance across channels (Cummins et al., 2016). Studies indicate that consistency itself is a component of effective personalization – customers respond positively when they receive coherent, relevant messages at each stage of their journey (Kuehnl et al., 2019; Weidig et al., 2024). Conversely, disjointed or redundant messages (e.g. an email promoting a product the customer has already bought) reflect poor personalization and can undermine the experience.

Advances in artificial intelligence (AI) have truly transformed what is possible in personalization. AI techniques like machine learning, natural language processing (NLP), and deep neural networks can uncover subtle patterns in customer data and even adapt in real time. For example, predictive analytics can estimate a customer's lifetime value or churn risk and then personalize offers accordingly (e.g. giving high-value customers VIP perks). AI-driven propensity models predict which products or content a user will find appealing, updating these predictions continuously as new data come in (Huang & Rust, 2022). Chatbots and virtual assistants are another AI-based personalization tool. Many companies deploy AI chatbots on websites or messaging apps to provide instant, personalized customer service and product guidance (Rese et al., 2020; Allouch et al., 2021). These bots use NLP to understand customer queries and access customer data to

tailor their responses (Allouch et al., 2021). For instance, a banking chatbot might greet a user by name and provide account-specific information, or a retail chatbot might suggest sizes or styles based on the user's past purchases (Lappeman et al., 2023; Rese et al., 2020). Research shows that when AI chatbots can personalize their interaction style (e.g., using the customer's name, referencing prior interactions), customers report higher satisfaction though transparency that one is conversing with an AI is also important for trust (Shumanov & Johnson, 2021; Hsu & Lin, 2023; Luo et al., 2019; Gnewuch et al., 2024). Voice-based assistants (like Amazon's Alexa or Google Assistant) similarly enable personalized commerce through conversational interaction. Aw et al. (2022) demonstrate how voice assistants can transform customer experience by integrating into the journey – for example, a customer can ask their smart speaker to reorder their favorite product, reflecting a personalized understanding of past preferences. As IoT devices and smart environments grow, such voice- and AI-driven personalization is expected to become even more embedded in daily consumer life.

The most cutting-edge approach is 'hyper-personalization,' which involves using AI to deliver in-the-moment, contextually relevant experiences that are unique to each user (Jain et al., 2021; Chen et al., 2023; Meng et al., 2023; Weidig et al., 2024). Hyper-personalization goes beyond rule-based segmentation; it harnesses streaming behavioral data and sometimes even biometric or sensor data to adjust the experience on the fly. For example, a travel app might alter its interface and recommendations dynamically based on a user's real-time location, weather, and known preferences, or a media streaming service could personalize not just what content is recommended but also the artwork and descriptions shown, based on the user's profile. This era of AI-driven hyper-personalization enables a new level of customer engagement, as brands can essentially create 'segments of one' and treat each customer uniquely (Huang & Rust, 2021; Davenport et al., 2020; Jain et al., 2021; Weidig et al., 2024). The benefit is a highly bespoke experience - customers feel the brand truly understands them, which can deepen emotional connection and loyalty. Indeed, personalization has been linked to greater customer satisfaction, increased time spent on sites, and higher conversion rates (Arora et al., 2008). From a theoretical perspective, effective personalization leverages principles like self-congruity and relevance: consumers are more persuaded by messages that align with their self-image and current needs (Yeo et al., 2025). By delivering content that feels individually tailored, personalization enhances the perceived utility and enjoyment of the experience (Bleier et al., 2019; Tyrväinen et al., 2020; Lambillotte et al., 2022). One banking CEO famously noted that the goal is

to make digital interactions so personalized that the customer feels "known" and valued—mimicking the familiarity of an in-person service encounter in an online context (Lemon & Verhoef, 2016; Homburg et al., 2017).

While the tools and techniques of personalization are powerful, they must be applied thoughtfully to avoid pitfalls. One major concern is privacy. Personalization inherently relies on collecting and analyzing personal data - purchase histories, click behavior, social media likes, sometimes even location or biometric data. Consumers are often willing to share data for personalization benefits, but only up to a point. Research on the personalization-privacy paradox finds that if personalization efforts are too intrusive or visible (for example, an ad that clearly uses sensitive personal information), consumers can feel "creeped out" and react negatively (Awad & Krishnan, 2006; Bleier & Eisenbeiss, 2015). Interestingly, the recent meta-analysis by Yeo et al. (2025) indicates that perceived relevance is the key mediator of personalization's positive effect, whereas perceived intrusiveness did not significantly undermine ad effectiveness on average. In other words, people respond well to personalization when it resonates with their needs, and they may tolerate the underlying data use as long as it doesn't blatantly violate their privacy expectations. However, trust and transparency are critical moderators here. Studies in information systems and marketing have shown that consumers' trust in the platform or provider doing the personalization affects their openness to personalization (Bleier & Eisenbeiss, 2015; Belanger & Crossler, 2021). If a respected website recommends items, consumers trust the use of their data more than if a less known app does the same (Kobsa et al., 2016). Clearly communicating why certain data are collected and how they improve the customer's experience can alleviate privacy concerns. It is found that transparency about AI's decision-making process can bolster consumer trust in personalized digital marketing (Shin, 2021; Park & Yoon, 2024). It is also shown that when AI-driven recommendations are explainable and transparent, consumers are more likely to trust and follow them (Chen et al., 2024; Nunes & Jannach, 2017). Marketers are thus advised to adopt a policy of personalization with permission—using data within agreed bounds, allowing users to set preferences, and avoiding unwarranted use of sensitive information (Aguirre et al., 2015; Martin et al., 2017; Goldfarb & Tucker, 2011). In jurisdictions with strict data protection regulations (e.g. GDPR in the EU), such principles are not just ethical but legally required.

Another challenge is ensuring ethical and unbiased personalization. AI algorithms can inadvertently reproduce or even amplify biases present in training data, leading to unfair or problematic outcomes in personalized content (Mehrabi et al., 2021; Jin et al., 2023; Lambrecht & Tucker, 2019). For instance, an AI-based personalization system might consistently offer higher credit card limits or better product deals to one demographic over another if it infers profitability, thereby raising ethical issues. It has been emphasized that marketers have a responsibility to audit their AI personalization algorithms for bias and to incorporate ethical safeguards (Laine et al., 2024; Akter et al., 2023; Akter et al., 2022). This might include setting constraints so that personalization does not target vulnerable groups in exploitative ways (e.g., avoiding manipulative personalization that could negatively affect consumers' financial or physical well-being) (Mende et al., 2024; Sher, 2011; Boerman et al., 2021). Additionally, over-personalization is a potential risk - if everything is perfectly tailored, consumers might miss serendipitous discovery or feel their autonomy is limited (Toubia et al., 2021). A humanized approach will balance automation with a "human touch." Even in an AI-driven world, the human element remains vital: consumers appreciate efficiency but also crave authenticity and empathy that only human intervention can fully provide (Homburg et al., 2017). Thus, leading firms often use AI to augment human marketers—not replace them—for example, using AI to generate personalized content that is then curated or lightly supervised by humans, or blending chatbot support with easy escalation to human agents when needed (Davenport et al., 2020; Gnewuch et al., 2024). Evidence also shows that disclosing a bot can reduce purchases, underscoring the value of seamless human escalation in hybrid configurations (Luo et al., 2019; Gnewuch et al., 2024). Such a hybrid approach can deliver both personalization at scale and genuine customer care.

In summary, today's marketers have at their disposal a rich arsenal of personalization tools - from recommendation engines and programmatic advertising to chatbots and predictive analytics - which, when used responsibly, can significantly enhance the digital customer experience. Personalization makes interactions more relevant, convenient, and engaging for customers, which in turn drives business outcomes like higher conversion rates, greater customer satisfaction, and stronger loyalty (Morgan & Rego, 2006). At the same time, successful personalization requires a customercentric philosophy grounded in permission, trust, and value creation. The most effective personalized experiences are those where customers *feel* helped rather than targeted - what Yeo et al. (2025) term a "relevance engine" rather than a mere targeting tactic. As we move forward, personalization is expected to become even more granular and context-aware with advances in AI, but marketers must ensure to humanize these efforts, preserving customer

agency and privacy. The next section will discuss how companies can measure and optimize these experiences, since implementing personalization is not a one-off task but an iterative process of learning and improvement.

4. Metrics for Experience Optimisation

To manage and improve digital customer experience and personalization initiatives, organizations must track the right metrics. As the adage goes, "you can't manage what you can't measure." Metrics serve as vital feedback, telling managers whether their customer experience (CX) strategy is working and where to focus improvements. However, measuring customer experience, especially across a complex digital journey, is challenging. CX is inherently multidimensional, encompassing customers' cognitive, emotional, and behavioral responses (Lemon & Verhoef, 2016; Kranzbühler et al., 2018). No single metric can fully capture it, so companies typically employ a portfolio of metrics. In this section, we outline key metrics used to gauge digital customer experience and the effectiveness of personalization and discuss how firms link these metrics to performance outcomes for continuous optimization. We also highlight the importance of journey-level measurement as opposed to siloed channel metrics.

One of the most widely used high-level indicators is customer satisfaction (CSAT). This is often measured via surveys asking customers to rate their satisfaction with an experience (on, say, a 5-point or 10-point scale). CSAT can be collected at specific touchpoints ("How satisfied were you with your recent chat support interaction?") and for the overall journey or relationship ("Overall, how satisfied are you with our online shopping experience?"). High satisfaction scores are generally correlated with repeat purchase and positive word-of-mouth, while low scores indicate friction. Research by Morgan and Rego (2006) demonstrated that improvements in customer satisfaction metrics are linked to improvements in business performance, including sales growth and profitability. In the context of personalization, companies may also gauge satisfaction with personalization specifically - for instance, asking users if the product recommendations or content they received felt relevant to their needs (Arora et al., 2008). Another prevalent metric is the Net Promoter Score (NPS), introduced by Reichheld (2003). NPS is derived from the question "How likely are you to recommend this product/brand to others?" and is calculated as the percentage of promoters minus detractors. It essentially measures customer loyalty and the overall experience sentiment. Many firms track NPS for their digital services and aim to improve it by smoothing the customer journey and personalizing experiences. While NPS has its critics, it remains popular because of its

simplicity and its empirical link to growth in some studies (Reichheld, 2003). That said, scholars caution against relying on a single metric like NPS or overall satisfaction in isolation - complex constructs like CX often require multiple lenses (Kranzbühler et al., 2018). Indeed, companies known for CX excellence use composite indices that combine several metrics (satisfaction, retention rate, customer lifetime value, etc.) to get a balanced view (Frow et al., 2011).

When optimizing digital experiences, granular behavioral metrics are indispensable. Web analytics provide a wealth of indicators: conversion rate (the percentage of users who complete a desired action, e.g. make a purchase, sign up, etc.), bounce rate (the share of users who leave after viewing one page, indicating potential dissatisfaction or mismatch), click-through rates on personalized recommendations or offers, time spent on site or page, and scroll depth as a proxy for engagement. For example, if a personalized landing page has a high bounce rate, that suggests the content is not resonating with visitors - prompting a need to tweak the personalization algorithm or content. Funnel metrics are particularly useful to identify journey dropoffs: companies track what proportion of users move from product view to add-to-cart to checkout to order completion. A significant drop-off at checkout could indicate a UX issue or lack of trust (perhaps mitigated by better messaging or personalization at that stage). To optimize, firms often run A/B tests or multivariate tests, where different users are shown different variations (e.g. personalized vs. non-personalized page, or different personalization strategies) and metrics are compared (Wedel & Kannan, 2016). Such experimentation helps isolate the effect of personalization on user behavior. For instance, an experiment might reveal that algorithmically personalized product recommendations yield a 10% higher conversion rate than manually curated recommendations, giving confidence to deploy the algorithmic approach broadly.

Beyond immediate behaviors, companies monitor customer engagement and retention metrics to gauge long-term experience quality. Repeat visit rate or frequency of use indicates whether the digital experience is compelling enough to bring customers back. Daily or monthly active users (DAU/MAU) are key metrics for digital platforms, and personalization is often tuned to increase these (for example, a music streaming service's personalized playlists aim to increase daily engagement). Churn rate (the percentage of customers who stop using the service over a given period) is a critical metric, especially for subscription-based digital services. A rise in churn might signal that customers are dissatisfied or not perceiving continued value – possibly due to stale or irrelevant experiences, which personalization efforts can address. On

the positive side, customer lifetime value (CLV) is an aggregate metric that combines retention, frequency, and monetary value; improved experiences and effective personalization should increase CLV by boosting each of those components (Kumar & Reinartz, 2018). Companies are increasingly linking CX metrics to financial outcomes. For example, Forrester's Customer Experience Index and other industry indices have shown that leaders in CX enjoy higher revenue per customer and lower churn than laggards. Verhoef et al. (2021) advocate a multidisciplinary view where experience optimization is tied to business value - meaning firms should translate improvements in soft metrics (satisfaction, NPS) into hard metrics (revenue, cost-to-serve, CLV) to justify investments in personalization and CX initiatives.

Importantly, metrics can be used not just retrospectively but also in predictive and proactive optimization. With advances in analytics, firms construct predictive models (often called lead metrics) that foretell future outcomes (Wedel & Kannan, 2016). For instance, a drop in engagement time or a decline in personalization click-through rate might be an early warning that customer satisfaction will dip or churn will increase next period (Lemmens & Gupta, 2020). Companies like Amazon and Netflix famously use hundreds of metrics and machine-learning models behind the scenes to continuously tweak their digital interfaces and personalized recommendations in near-real time based on user response (Gómez-Uribe & Hunt, 2015; Smith & Linden, 2017). If a new personalization feature is introduced, metrics will be monitored minute-by-minute to ensure it is performing as intended; anomaly detection algorithms may flag if a key metric falls outside expected bounds, prompting a rollback or adjustment. This agile, metric-driven approach to experience management embodies a test-and-learn culture: every change in the digital customer experience is treated as an experiment, measured, and either scaled up or discarded based on data (Wedel & Kannan, 2016). For example, if adding a personalized "recommended for you" section on the homepage increases average session duration and basket size, those metrics validate the feature, whereas if it unexpectedly increases bounce rate (perhaps due to page load time or poor recommendations for some users), it signals further refinement is needed.

In measuring customer experience, firms must also be careful to capture the holistic, journey-level performance, not just siloed channel metrics. A common mistake is optimizing individual touchpoints without considering the end-to-end journey (Rawson et al., 2013; Kuehnl et al., 2019). To avoid this, organizations are adopting journey analytics that aggregate metrics across touchpoints and time. For instance, one can measure the conversion rate of the entire journey from initial website visit to eventual purchase (maybe

over days or weeks, across channels), rather than only per session. Likewise, journey satisfaction can be surveyed ("How satisfied were you with the overall process of researching and purchasing?") to complement touchpointspecific feedback ("Rate your satisfaction with the live chat support"). Recent research suggests that journey-level satisfaction is a stronger predictor of loyalty than touchpoint satisfaction, because it captures how well the firm orchestrates the experience as a whole (Rawson et al., 2013; Kuehnl et al., 2019). Another sophisticated metric is the Customer Effort Score (CES), which asks customers how much effort they had to expend to get an issue resolved or complete a purchase. Lower effort (i.e. easier experience) often correlates with higher loyalty. CES is especially relevant in digital contexts – for example, a well-designed personalized site might yield a low effort score ("It was very easy to find what I needed"), whereas a site where the customer had to search and filter extensively (due to lack of personalization) would score high effort. Companies like Gartner have promoted CES as a key metric for predicting repurchase and referral, sometimes even more strongly than CSAT, on the premise that reducing customer effort (by smoothing the journey) creates delight (Kranzbühler et al., 2018).

Finally, to close the loop from metrics to action, businesses use dashboard and attribution models to understand which improvements drive which outcomes. For instance, a retailer might have a dashboard showing NPS, conversion rate, average order value, and retention rate for its e-commerce business, all broken down by customer segment or journey stage. If NPS is lagging for mobile users in the post-purchase phase, further analysis may reveal issues in mobile order tracking or support - pinpointing an area for improvement. Attribution analysis can assign weight to different touchpoints or personalization tactics in contributing to a conversion or a high satisfaction rating (Li & Kannan, 2014). For example, if a customer received a personalized email and later clicked a retargeted ad before purchasing, multi-touch attribution models estimate the incremental contribution of each touchpoint (Li & Kannan, 2014; Anderl et al., 2016). This guides marketers on where to invest e.g., data may show personalized emails yield higher ROI than generic social ads, prompting budget shifts. The use of AI in analytics is making these assessments more precise: machine-learning models can capture the complex interplay among journey steps and personalization elements, while firms such as Netflix and Amazon continuously tune interfaces and recommendations using hundreds of metrics and models (Gómez-Uribe & Hunt, 2015; Smith & Linden, 2017). Some companies even employ predictive simulations (digital twins of customer

journeys) to test how changing a metric (like improving site load time or recommendation relevance) might affect outcomes like sales or NPS.

In conclusion, metrics are the compass guiding digital customer experience and personalization efforts. Leading firms measure a mix of outcome metrics (satisfaction, NPS, loyalty), process metrics (engagement, conversion, journey time), and operational metrics (response times, personalization accuracy) to gain a 360-degree view. They have learned that no single metric suffices; instead, a balanced scorecard of CX metrics is needed to truly understand and optimize the customer's digital journey (Kranzbühler et al., 2018). By rigorously tracking these metrics and tying them to business objectives, companies can iterate toward experiences that not only delight customers but also drive sustainable growth (Morgan & Rego, 2006; Verhoef et al., 2021). Metrics for experience optimization thus serve as the empirical foundation for decision-making in a space that was once considered difficult to quantify – turning the art of customer experience into more of a science. The final section will synthesize how effective management of the digital customer journey and personalization, guided by these metrics and grounded in marketing science, can yield significant benefits while noting future outlooks and challenges.

5. Conclusion

In the foregoing sections, we explored how digital customer experience and personalization can be strategically managed and enhanced, drawing on both theoretical insights and empirical findings. A unifying theme is that success in modern online retailing requires customer-centricity: understanding the customer's journey holistically, and deploying personalization technologies to deliver relevant, seamless experiences at each step. By mapping the digital customer journey, firms gain a blueprint of the customer's perspective illuminating critical touchpoints and interactions that shape perceptions. By leveraging advanced personalization tools, companies can then tailor these touchpoints to individual needs, making the journey feel intuitive and uniquely engaging for each customer. When executed well, this synergy between journey mapping and personalization yields substantial rewards: higher customer satisfaction and loyalty (Lemon & Verhoef, 2016; Kuehnl et al., 2019), greater customer engagement (Vesanen et al., 2020), and improved business performance through increased conversion and retention (Yeo et al., 2025). In essence, personalization serves as a vehicle for delivering the right content or service at the right time in the customer journey, thereby optimizing the overall experience. As Weidig et al. (2024) note, personalization can positively influence all dimensions of customer

experience - cognitive, emotional, and behavioral responses - especially when personalized touchpoints are carefully aligned with the customer's journey stage and context.

At the same time, our analysis highlights that firms must address important challenges and considerations in implementing digital personalization strategies. One recurring concern is the balance between personalization and privacy. Consumers increasingly demand personalized value while also expecting control over their personal data and transparency in its use (Acquisti et al., 2015; Awad & Krishnan, 2006). Trust is the cornerstone here: customers will share data and embrace AI-driven personalization only if they trust the brand's intentions and data stewardship (Martin et al., 2017; Aguirre et al., 2015). This calls for an ethical approach to personalization one that follows privacy regulations, offers clear opt-outs and preference controls, and communicates how personalization benefits the customer (Goldfarb & Tucker, 2011; Boerman et al., 2021). Brands like Apple have even made privacy a selling point, highlighting that personalization can be done on-device to minimize data sharing (Liu et al., 2020; Martin et al., 2017). Another challenge is ensuring personalization algorithms are fair and free of unintended bias. As AI takes on a larger role in curating experiences, marketers and data scientists must continually audit algorithms for biased outcomes or filter bubbles (Mehrabi et al., 2021; Akter et al., 2023). A hyper-personalized feed that only reinforces a customer's existing preferences might limit their exposure to new ideas or products, potentially reducing serendipity and discovery (Toubia et al., 2021). Thus, some experts suggest deliberately injecting diversity or randomness into recommendations to keep experiences fresh and avoid over-narrowing the customer's perspective.

From a theoretical standpoint, our discussion connects to several conceptual frameworks. Personalization's effectiveness can be partly explained by self-referencing and congruity theories - people pay more attention to and are more persuaded by messages that reflect aspects of themselves (Yeo et al., 2025). By aligning content with a customer's selfimage and needs, personalization enhances message resonance and impact. Another relevant framework is the expectation-confirmation theory in consumer behavior: personalization may heighten expectations for relevance, and when executed well, it confirms those expectations, leading to higher satisfaction (Hoyer et al., 2020). However, if personalization is poorly done (e.g. wrong recommendations), it could violate expectations and disappoint. The technology acceptance model (TAM) also offers insight, suggesting consumers will embrace AI-driven personalized services if they perceive them as useful and easy to use (Davis, 1989). This reiterates the

earlier point that transparency and ease (low effort) are key to customer uptake of personalized digital tools. In the realm of service marketing, the integration of AI into customer experiences has been framed as a service revolution - potentially delivering high-quality, consistent service at scale (Huang & Rust, 2022). Yet, scholars remind us of the enduring importance of the "human touch." The best strategies likely blend high-tech and hightouch elements: automated personalization for efficiency and relevance, combined with human oversight and empathetic customer service where it counts (Homburg et al., 2017; Lemon & Verhoef, 2016). Automated personalization optimizes interactions for relevance, while human oversight enhances empathy and decision quality (Davenport et al., 2020; Gnewuch et al., 2024). This hybrid approach can create what Pine and Gilmore (2011) term memorable experiences that engage customers on both utilitarian and emotional levels.

Looking ahead, the field of digital customer experience and personalization is poised to continue evolving rapidly. On the technology front, advances in artificial intelligence, especially generative AI, could enable even more dynamic personalization—for example, AI models that generate on-the-fly personalized content (texts, images, product designs) tailored to each user's profile (Shin, 2023; Luo et al., 2019). This could blur the line between marketing and service, as products or offerings themselves become personalized (Grewal et al., 2021; Akter et al., 2023). Augmented reality (AR) and virtual reality (VR) present new arenas for personalized experiences, such as AR shopping apps that personalize how a product is visualized in one's home, or VR retail environments that adapt to a user's preferences in real time. Moreover, the proliferation of Internet of Things (IoT) devices means customer journey data will extend beyond screens into the physical world (smart homes, connected cars), offering more touchpoints where personalization can be applied (Verhoef et al., 2021). This raises the prospect of deeply integrated omnichannel journeys - imagine a scenario where a customer's smart refrigerator detects they're low on groceries and coordinates with their smartphone to present a personalized grocery order, which they confirm with a voice assistant – a seamless journey orchestrated by AI using personal data. While such convenience is attractive, it again underscores the need for robust governance of data use and algorithmic decision-making to avoid crossing into consumer manipulation. Indeed, consumer trust and ethics will remain as crucial as technology. Firms that manage to innovate in personalization while maintaining consumer trust (through responsible AI, privacy protection, and delivering genuine value) will likely earn enduring loyalty. In contrast, those that misuse personalization - by being too intrusive, using data irresponsibly, or forgetting the human element – risk customer backlash and regulatory action.

In conclusion, digital customer experience and personalization are in many ways two sides of the same coin: personalization is a means to enhance customer experience, and a superior customer experience often stems from feeling personally understood and served. By carefully mapping customer journeys, deploying state-of-the-art personalization techniques, and rigorously measuring outcomes, companies can create digitally enabled experiences that feel personal, effortless, and rewarding to customers. Such experiences not only satisfy customers but can turn them into brand advocates, fueling positive feedback loops of business success (Rawson et al., 2013; Reichheld, 2003). The chapter has highlighted that achieving this is as much a science as it is an art – it requires data and analytics, experimental mindset, and cross-disciplinary knowledge bridging marketing, psychology, and information technology. Yet, the heart of the matter remains understanding people: even with AI algorithms and big data, the goal is to connect with customers on an individual level and fulfill their needs in a meaningful way (Kotler & Keller, 2021). As we advance further into the age of AI and digital everything, the brands that will thrive are those that use technology not to depersonalize, but to re-personalize marketing - scaling the warmth and attentiveness of the corner shop to millions of customers worldwide. This human-centric vision of personalized digital experience, backed by sound metrics and ethical practices, will be the cornerstone of successful online retail strategy in the years to come.

References

- Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Privacy and human behavior in the age of information. Science, 347(6221), 509-514. https:// doi.org/10.1126/science.aaa1465
- Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. https://doi.org/10.1109/TKDE.2005.99
- Afsar, M. M., Crump, T., & Far, B. (2022). Reinforcement learning based recommender systems: A survey. ACM Computing Surveys, 55(13), Article 108. https://doi.org/10.1145/3543846
- Aguirre, E., Mahr, D., Grewal, D., de Ruyter, K., & Wetzels, M. (2015). Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. Journal of Retailing, 91(1), 34–49. https://doi.org/10.1016/j.jretai.2014.09.005
- Akter, S., Dwivedi, Y. K., Sajib, S., Biswas, K., Bandara, R. J., & Michael, K. (2022). Algorithmic bias in machine learning-based marketing models. Journal of Business Research, 144, 201–216. https://doi.org/10.1016/j. jbusres.2022.01.083
- Akter, S., Sultana, S., Mariani, M., Fosso Wamba, S., Spanaki, K., & Dwivedi, Y. K. (2023). Advancing algorithmic bias management capabilities in AI-driven marketing analytics research. Industrial Marketing Management, 114, 243–261. https://doi.org/10.1016/j.indmarman.2023.08.013
- Allouch, M., Azaria, A., & Azoulay, R. (2021). Conversational agents: Goals, technologies, vision and challenges. Sensors, 21(24), 8448. https://doi. org/10.3390/s21248448
- Anderl, E., Becker, I., von Wangenheim, F., & Schumann, J. H. (2016). Mapping the customer journey: A graph-based framework for online attribution modeling. Journal of Marketing Research, 53(6), 873-892. https:// doi.org/10.1509/jmr.15.0089
- Arora, N., Drèze, X., Ghose, A., Hess, J. D., Iyengar, R., Jing, B., ... & Spitler, R. (2008). Putting one-to-one marketing to work: Personalization, customization, and choice. Marketing Letters, 19(3-4), 305-321. https://doi. org/10.1007/s11002-008-9056-z
- Aw, E., Tan, G. W. H., Cham, T. H., Raman, R., & Ooi, K. B. (2022). Alexa, what's on my shopping list? Transforming customer experience with digital voice assistants. Technological Forecasting and Social Change, 180, 121711. https://doi.org/10.1016/j.techfore.2022.121711
- Awad, N. F., & Krishnan, M. S. (2006). The personalization-privacy paradox: An empirical evaluation of information transparency and the will-

- ingness to be profiled online. MIS Quarterly, 30(1), 13-28. https://doi. org/10.2307/25148715
- Barwitz, N., & Maas, P. (2018). Understanding the omnichannel customer journey: Determinants of interaction choice. Journal of Interactive Marketing, 43, 116-133. https://doi.org/10.1016/j.intmar.2018.02.001
- Becker, L., & Jaakkola, E. (2020). Customer experience: fundamental premises and implications for research. Journal of the Academy of Marketing Science, 48(4), 630-648. https://doi.org/10.1007/s11747-019-00718-x
- Belanger, F., & Crossler, R. E. (2021). Privacy in the digital age: A review of information privacy research in information systems. MIS Quarterly, 45(1), 279-320. https://doi.org/10.2307/41409971
- Bleier, A., & Eisenbeiss, M. (2015). The importance of trust for personalized online advertising. Journal of Retailing, 91(3), 390-409. https://doi. org/10.1016/j.jretai.2015.04.001
- Bleier, A., Harmeling, C. M., & Palmatier, R. W. (2019). Creating effective online customer experiences. Journal of Marketing, 83(2), 98–119. https:// doi.org/10.1177/0022242918809930
- Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109-132. https://doi. org/10.1016/j.knosys.2013.03.012
- Boerman, S. C., Kruikemeier, S., & Bol, N. (2021). When is personalized advertising crossing personal boundaries? How type of information, data sharing, and personalized pricing influence consumer perceptions of personalized advertising. Computers in Human Behavior Reports, 4, 100144. https://doi.org/10.1016/j.chbr.2021.100144
- Burke, R. (2002). Hybrid recommender systems: Survey and experiments. *User Modeling and User-Adapted Interaction*, 12(4), 331–370. https://doi. org/10.1023/A:1021240730564
- Chandra, S., Verma, S., Lim, W. M., Kumar, S., & Donthu, N. (2022). Personalization in personalized marketing: Trends and ways forward. Psychology & Marketing, 39(8), 1529-1562. https://doi.org/10.1002/mar.21670
- Chen, C., Tian, A. D., & Jiang, R. (2024). When post hoc explanation knocks: Consumer responses to explainable AI recommendations. Journal of Interactive Marketing, 59(3), 234-250. https://doi. org/10.1177/10949968231200221
- Chen, X., Yao, L., McAuley, J., Zhou, G., & Wang, X. (2023). Deep reinforcement learning in recommender systems: A survey and new perspectives. Knowledge-Based Systems, 264, 110335. https://doi.org/10.1016/j. knosys.2023.110335
- Cummins, S., Peltier, J. W., & Dixon, A. (2016). Omni-channel research framework in the context of personal selling and sales management: A review

- and research extensions. Journal of Research in Interactive Marketing, 10(1), 2-16. https://doi.org/10.1108/JRIM-12-2015-0094
- D'Arco, M., Presti, L. L., Marino, V., & Resciniti, R. (2019). Embracing AI and big data in customer journey mapping: From literature review to a theoretical framework. Innovative Marketing, 15(4), 102-111. https://doi. org/10.21511/im.15(4).2019.09
- Davenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24-42. https://doi.org/10.1007/ s11747-019-00696-0
- De Keyser, A., Verleye, K., Lemon, K. N., Keiningham, T., & Klaus, P. (2020). Moving the customer experience field forward: Introducing the touchpoints-context-qualities (TCQ) nomenclature. Journal of Service Research, 23(4), 433-455. https://doi.org/10.1177/1094670520928390
- Dhebar, A. (2013). Toward a compelling customer touchpoint architecture. Business Horizons, 56(2), 199-205. https://doi.org/10.1016/j. bushor.2012.11.004
- Dincer, M. A. M., Yıldırım, E., & Arslan, Y. (2021). Do consumers really care about corporate social responsibility messages on social media? Akademik İncelemeler Dergisi, 16(1), 47–72. https://doi.org/10.17550/ akademikincelemeler.840643
- Duman, O., Kurnaz, A., & Ecevit, M. Z. (2021). Sanal/çevrimiçi etkinliklerin sistem etkinliği, değer, memnuniyet ve sadakat açısından incelenmesi [Examination of virtual/online events in terms of system effectiveness, value, satisfaction, and loyalty]. 4. Uluslararası Sosyal Bilimler Kongresi Bildiri Kitabı, Selçuk Üniversitesi, ss. 270.
- Edelman, D. C., & Singer, M. (2015). Competing on customer journeys. Harvard Business Review, 93(11), 88-100.
- Geçti, F., & Zengin, H. (2013). The relationship between brand trust, brand affect, attitudinal loyalty and behavioral loyalty: A field study towards sports shoe consumers in Turkey. International Journal of Marketing Studies, 5(2), 111.
- Gnewuch, U., Morana, S., Hinz, O., Kellner, R., & Maedche, A. (2024). More than a bot? The impact of disclosing human involvement on customer interactions with hybrid service agents. Information Systems Research, 35(3), 936–955. https://doi.org/10.1287/isre.2022.0152
- Goldfarb, A., & Tucker, C. E. (2011). Privacy regulation and online advertising. Management Science, 57(1), 57-71. https://doi.org/10.1287/ mnsc.1100.1246
- Gómez-Uribe, C. A., & Hunt, N. (2015). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transacti-

- ons on Management Information Systems, 6(4), Article 13. https://doi. org/10.1145/2843948
- Grewal, D., Ailawadi, K. L., Gauri, D., Hall, K., Kopalle, P. K., & Robertson, J. R. (2021). Innovations in retail pricing and promotions. Journal of Retailing, 87, S43–S52. https://doi.org/10.1016/j.jretai.2021.04.008
- Homburg, C., Jozić, D., & Kuehnl, C. (2017). Customer experience management: Toward implementing an evolving concept. Journal of the Academy of Marketing Science, 45(3), 377-401. https://doi.org/10.1007/ s11747-015-0460-7
- Hsu, C.-L., & Lin, J. C.-C. (2023). Understanding the user satisfaction and loyalty of customer service chatbots. Journal of Retailing and Consumer Services, 71, 103211. https://doi.org/10.1016/j.jretconser.2022.103211
- Huang, M. H., & Rust, R. T. (2022). Artificial intelligence in service. Journal of Service Research, 25(2), 123-137. https://doi. org/10.1177/1094670517752459
- Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
- Jain, G., Paul, J., & Shrivastava, A. (2021). Hyper-personalization, co-creation, digital clienteling and transformation. Journal of Business Research, 124, 12–23. https://doi.org/10.1016/j.jbusres.2020.11.034
- Jin, D., Wang, L., Zhang, H., Zheng, Y., Ding, W., Xia, F., & Pan, S. (2023). A survey on fairness-aware recommender systems. Information Fusion, 99, 101906. https://doi.org/10.1016/j.inffus.2023.101906
- Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37. https://doi.org/10.1109/ MC.2009.263
- Kotler, P., & Keller, K. L. (2021). Marketing management (16th ed.). Pearson.
- Kranzbühler, A. M., Kleijnen, M. H. P., Morgan, R. E., & Teerling, M. L. (2018). The multilevel nature of customer experience research: An integrative review and research agenda. International Journal of Management Reviews, 20(2), 433-456. https://doi.org/10.1111/ijmr.12140
- Kuehnl, C., Jozic, D., & Homburg, C. (2019). Effective customer journey design: Consumers' conception, measurement, and consequences. Journal of the Academy of Marketing Science, 47(4), 551-568. https://doi. org/10.1007/s11747-018-00625-7
- Laine, J., Minkkinen, M., & Mäntymäki, M. (2024). Ethics-based AI auditing: A systematic literature review on conceptualizations of ethical principles and knowledge contributions to stakeholders. Information & Management, 61(5), 103969. https://doi.org/10.1016/j.im.2024.103969

- Lambillotte, L., Magrofuoco, N., Poncin, I., & Vanderdonckt, J. (2022). Enhancing playful customer experience with personalization. Journal of Retailing and Consumer Services, 68, 103017. https://doi.org/10.1016/j. jretconser.2022.103017
- Lambrecht, A., & Tucker, C. (2019). Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads. Management Science, 65(7), 2966–2981. https://doi.org/10.1287/ mnsc.2018.3093
- Lappeman, J., Marlie, S., Johnson, T., & Poggenpoel, S. (2023). Trust and digital privacy: Willingness to disclose personal information to banking chatbot services. Journal of Financial Services Marketing, 28(2), 337–357. https://doi.org/10.1057/s41264-022-00154-z
- Lemmens, A., & Gupta, S. (2020). Managing churn to maximize profits. Marketing Science, 39(5), 956-973. https://doi.org/10.1287/mksc.2020.1229
- Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420
- Li, H., & Kannan, P. K. (2014). Attributing conversions in a multichannel online marketing environment: An empirical model and a field experiment. Marketing Science, 33(1), 73-92. https://doi.org/10.1287/ mksc.2013.0811
- Liu, X., Park, C., & Li, M. (2020). The role of privacy in digital marketing: An empirical study of consumer responses to privacy policies. Journal of Marketing Research, 57(4), 631–646. https://doi.org/10.1177/0022243720937397
- Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937–947. https://doi.org/10.1287/ mksc.2019.1192
- Martin, K. D., Borah, A., & Palmatier, R. W. (2017). Data privacy: Effects on customer and firm performance. Journal of Marketing, 81(1), 36–58. https://doi.org/10.1509/jm.15.0497
- Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), Article 115, 1–35. https://doi.org/10.1145/3457607
- Mele, C., Hollebeek, L. D., de Bernardo, I., & Russo-Spena, T. (2025). Unravelling the customer journey: A conceptual framework and research agenda. Technological Forecasting and Social Change, 211, 123916. https:// doi.org/10.1016/j.techfore.2024.123916
- Mende, M., Bradford, T. W., Roggeveen, A. L., Scott, M. L., & Zavala, M. (2024). Consumer vulnerability dynamics and marketing: Conceptual foundations and future research opportunities. Journal of the Aca-

- demy of Marketing Science, 52, 1301–1322. https://doi.org/10.1007/ s11747-024-01039-4
- Meng, X., Li, B., Lin, W., & Yang, Q. (2023). A survey of context-aware recommender systems. IEEE Transactions on Knowledge and Data Engineering, 35(12), 12305–12325. https://doi.org/10.1109/TKDE.2022.3187434
- Morgan, N. A., & Rego, L. L. (2006). The value of different customer satisfaction and loyalty metrics in predicting business performance. Marketing Science, 25(5), 426-439. https://doi.org/10.1287/mksc.1050.0180
- Neslin, S. A. (2022). The omnichannel continuum: Integrating online and offline channels along the customer journey. Journal of Retailing, 98(1), 111-132. https://doi.org/10.1016/j.jretai.2022.02.003
- Nunes, I., & Jannach, D. (2017). A systematic review and taxonomy of explanations in decision support and recommender systems. User Modeling and *User-Adapted Interaction*, 27(3–5), 393–444. https://doi.org/10.1007/ s11257-017-9195-0
- Park, K., & Yoon, H. Y. (2024). Beyond the code: The impact of AI algorithm transparency signaling on user trust and relational satisfaction. Public Relations Review, 50(5), 102507. https://doi.org/10.1016/j. pubrev.2024.102507
- Payne, A., & Frow, P. (2005). A strategic framework for customer relationship management. Journal of Marketing, 69(4), 167–176. https://doi. org/10.1509/jmkg.2005.69.4.167
- Pine, B. J., & Gilmore, J. H. (2011). The experience economy (Rev. ed.). Harvard Business Review Press.
- Rawson, A., Duncan, E., & Jones, C. (2013). The truth about customer experience. Harvard Business Review, 91(9), 90-98.
- Reichheld, F. F. (2003). The one number you need to grow. Harvard Business Review, 81(12), 46-54.
- Rese, A., Ganster, L., & Baier, D. (2020). Chatbots in retailers' customer communication: How to measure their acceptance? Journal of Retailing and Consumer Services, 56, 102176. https://doi.org/10.1016/j. jretconser.2020.102176
- Sher, S. (2011). A framework for assessing immorally manipulative marketing tactics. Journal of Business Ethics, 102(1), 97-118. https://doi. org/10.1007/s10551-011-0802-4
- Shin, D. (2021). The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. International Journal of Human-Computer Studies, 146, 102551. https://doi.org/10.1016/j. ijhcs.2020.102551

- Shumanov, M., & Johnson, L. (2021). Making conversations with chatbots more personalized. Computers in Human Behavior, 117, 106627. https:// doi.org/10.1016/j.chb.2020.106627
- Smith, B., & Linden, G. (2017). Two decades of recommender systems at Amazon.com. IEEE Internet Computing, 21(3), 12–18. https://doi. org/10.1109/MIC.2017.72
- Tueanrat, Y., Papagiannidis, S., & Alamanos, E. (2021). Going on a journey: A review of the customer journey literature. Journal of Business Research, 125, 336-353. https://doi.org/10.1016/j.jbusres.2020.12.028
- Tyrväinen, O., Karjaluoto, H., & Saarijärvi, H. (2020). Personalization and hedonic motivation in creating customer experiences and loyalty in omnichannel retail. Journal of Retailing and Consumer Services, 57, 102233. https://doi.org/10.1016/j.jretconser.2020.102233
- Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889-901. https://doi.org/10.1016/j.jbusres.2019.09.022
- Verhoef, P. C., Kannan, P. K., & Inman, J. J. (2015). From multi-channel retailing to omni-channel retailing: Introduction to the special issue on multi-channel retailing. *Journal of Retailing*, 91(2), 174–181. https://doi. org/10.1016/j.jretai.2015.02.005
- Verhoef, P. C., Lemon, K. N., Parasuraman, A., Roggeveen, A., Tsiros, M., & Schlesinger, L. (2009). Customer experience creation: Determinants, dynamics and management strategies. Journal of Retailing, 85(1), 31-41. https://doi.org/10.1016/j.jretai.2008.11.001
- Vesanen, J. (2007). What is personalization? A conceptual framework. Journal of Interactive Marketing, 21(1), 25-41. https://doi. org/10.1108/03090560710737534
- Vesanen, J., Haapasalo, H., & Heinonen, K. (2020). Understanding customer engagement in the context of personalized online services. Journal of Retailing, 96(4), 486–502. https://doi.org/10.1016/j.jretai.2020.07.003
- Vodinalı, S. (2025). Instagram anneleri: Yeni medyada tüketim kültürü ve marka etkileşimi [Instagram mothers: Consumption culture and brand interaction in new media]. Akademisyen Kitabevi A.Ş. https://doi.org/10.37609/ akya.3531
- Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121. https://doi.org/10.1509/ jm.15.0413
- Weidig, J., Weippert, M., & Kuehnl, C. (2024). Personalized touchpoints and customer experience: A conceptual synthesis. Journal of Business Research, 177, 114641. https://doi.org/10.1016/j.jbusres.2024.114641

- Yeo, T. E. D., Chu, T. H., & Li, Q. (2025). How persuasive is personalized advertising? A meta-analytic review of experimental evidence. Journal of Advertising Research, 65(1), 103-121. https://doi.org/10.1080/0021849 9.2025.2467763
- Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys, 52(1), Article 5. https://doi.org/10.1145/3285029

Dr. Ömer Sezai Aykaç is currently working as an Assistant Professor at Sakarya University of Applied Sciences, Sakarya Vocational School, and has been holding the position of Vice Coordinator in the Quality Coordination Office of the same university since 2024. He completed his undergraduate studies in 2012 at Sakarya University, Faculty of Business Administration, Department of Business Administration. Between 2013 and 2014, he worked in the "International Factoring – Operations Department" at Finans Faktoring Hizmetleri A.Ş. He completed his Master's degree in 2015 at Sakarya University, Institute of Social Sciences, with his thesis titled " The Effect of Consumer Ethnocentrism on Consumer Sentiment Toward Marketing: Sakarya University Example." Dr. Aykaç completed his Ph.D. in 2024 at Sakarya University, Graduate School of Business, with his thesis titled "A Scale Development Study on Post-Purchase Decision Procrastination."